
1/32

Synchronized Computations

2/32

Barrier

A barrier is a mechanism that allows multiple processes to synchronize at a
point in their execution. All processes then continue execution after all
processes have reached the synchronization point.
A variation allows processes to proceed from the barrier if a specified
number of processes reach the barrier (less than the total number of
processes in the barrier).

I MPI provides a MPI_Barrier(MPI_Comm comm) call.

3/32

Barrier

4/32

MPI Barrier Examples

I Example 1: lab/MPI/barrier/barrier_demo_mpi.c
I Example 2: lab/MPI/barrier/lb_demo_mpi.c

5/32

Barrier Implementations

I Single counter in the coordinator process
I Tree synchronization
I Butterfly synchronization

6/32

Barrier Implemented Using a Counter

barrier(pid)
//process pid,0≤ i ≤ p−1
//value is a dummy variable
if (pid = 0) //coordinator

//arrival phase
for (i=1; i<p; i++)

recv(value, PANY)
//departure phase
for (i=1; i<p; i++)

send(value, Pi)
else //other processes

send(value, P0)
recv(value, P0)

2(p−1) communication steps.

7/32

Barrier Implemented Using a Tree

P0

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P2 P4 P6

P0 P2 P4 P6

P0 P4

P0 P4 Departure
Phase

Phase
Arrival

2 lgp communication steps.

8/32

Tree Barrier Pseudo-code

tree-barrier(pid)
//process pid,0≤ i ≤ p−1, p = 2k

//value is a dummy variable
//arrival phase
for (h=1; h≤ lgp; h++)

if (pid mod 2h) = 0
recv(value, Ppid+2h−1)

else
send(value, Ppid−2h−1)
break

//departure phase
if (pid 6= 0) recv(value, PANY)
for (h =lgp; h≥ 1; h--)

if (pid mod 2h) = 0
send(value, Ppid+2h−1)

How to modify if the number of processes isn’t a power of 2?

9/32

Barrier Implemented Using Butterfly Synchronization

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

Butterfly Synchronization

Stage 2

Stage 3

Stage 1

lgp communication steps.

10/32

Butterfly Synchronization

I Assume that the number of processes is a power of 2.
I Similar to a tree except we don’t need separate

arrival/departure phases.
I At stage s, process i synchronizes with process i ⊕2s−1, where
⊕ is the bit-wise exclusive or operation.

I How to handle the case when the number of processes isn’t a
power of 2?

Recommended exercise: Write pseudo-code for barrier using
butterfly synchronization.

11/32

Near Neighbor Synchronization

A common pattern is when process Pi needs to synchronize with
neighboring processes Pi−1 and Pi+1, where 0≤ i ≤ p−1 with or without
wrap-around.

Process Pi−1
send(Pi)
send(Pi−2)
recv(Pi)
recv(Pi−2)

Process Pi

send(Pi−1)
send(Pi+1)
recv(Pi−1)
recv(Pi+1)

Process Pi+1
send(Pi)
send(Pi+2)
recv(Pi)
recv(Pi+2)

If each process is executing send’s first, then there is potential for deadlock
using synchronous sends or blocking send without sufficient buffering. We
can resolve this problem by interleaving send’s and recv’s.

12/32

Examples using Synchronized Computations

I Wave Simulation. Simulate a wave through 2-d or 3-d space or
materials.

I Heat Distribution. Given a material and an ambient
temperature, how does the heat distribute across the material.

I Cellular Automata. E.g. Conway’s Game of Life.

13/32

Wave Simulation

The Wave Equation is given by

utt = c(uxx +uyy)

where c is a constant and u = u(t,x ,y) is a function of three
variables. The variable t represents time and x and y are spatial
variables.

We want to solve it using the finite difference method.

14/32

Discretization of the Wave Simulation

A discretization of the wave equation on a two-dimensional grid on
[0,1]× [0,1] using finite differences gives:

ut+1,x ,y = 1(1−2ρ
2)ut,x ,y + ρ

2(ut,x+1,y +ut,x−1,y+

ut,x ,y+1 +ut,x ,y−1)−ut−1,x ,y

where ρ = ∆t/∆h, ∆t is the increment in time, h is the step size
in the x and y directions.
Calculating new values of u at a time t +1 only requires the
knowledge of values of u at time t and t−1. Hence only two time
steps need to be kept in memory simultaneously.
We assume that c = 1 and for stability reasons choose
(∆t)2 = (h/c)2/2. We want to study the case when we introduce a
diagonal wave at time t = 0. Assume periodic boundary conditions
(that is, as if the square is wrapped around like a toroid).

15/32

Wave Simulation Details

I Set the number of points on the grid to be
N = 64,128,256, . . . and the number of time steps.

I Note that N = 1/h and the initial value of u is 1 on the
diagonal and 0 otherwise. Take the value of u at time step 1
to be a diagonal wave of magnitude 1, but shifted right by one
step including wrap-around.

I The goal is to calculate the wave function at the end of the
equation.

16/32

Sequential Wave Simulation

/* lab/misc/wave/slow_seq_wave.c */

#define M (MAX+2)
float u[MAX+2][MAX+2], uold[MAX+2][MAX+2], unew[MAX+2][MAX+2];
char data[MAX][MAX];

h = 1/(float) N;
dt = h/(float) sqrt((double)2.0);
rho = dt/h;

for (i=0; i<N-1; i++) {
uold[i][i]=u[i][i]=1.0;
u[i][i+1]=1.0;

}
uold[N-1][N-1]=u[N-1][N-1]=1.0;
u[N-1][0]=1.0;
...

17/32

Sequential Wave Simulation (contd.)

/* lab/misc/wave/slow_seq_wave.c */
...
for (t=0; t<steps; t++) {

for (i=0; i<N; i++) {
iS = (i<N-1 ? (i+1):(0));
iN = (i>0 ? (i-1):(N-1));
for (j=0; j<N; j++) {

jE = (j<N-1 ? (j+1):(0));
jW = (j>0 ? (j-1):(N-1));
unew[i][j] = 2.0*(1-2.0*rho*rho)*u[i][j] + rho*rho*(u[iS][j] +

u[iN][j] + u[i][jW] + u[i][jE]) - uold[i][j];
}

}
for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
uold[i][j]=u[i][j];
u[i][j]=unew[i][j];

}
}

}

18/32

Compiler Optimization

Use the optimizer that comes with your compiler! The following
table shows the gain with optimization with the gcc compiler. The
option -O turns on the optimizer. It solves a wave equation of size
1024 and 1000 iterations.

Optimizer time
level (seconds)
default (-O0) 25.5
-O 22.4
-O2 21.5
-O3 20.0
-O5 19.7

Over 20% improvement.

19/32

Improvements to Sequential Wave Simulation

I Instead of copying arrays, we can cyclically swap pointers.
I Eliminate if statements in the body of the loop.
I Use pointer arithmetic. (CAUTION: be very careful here, not

needed for most cases. This makes the code less readable and
maintainable.)

After the improvements, the time dropped to 7.5s, over 340%
improvement!

20/32

Faster Sequential Wave Simulation

/* lab/misc/wave/fast_seq_wave.c */

/* initialize pointers */
p_u = &u[0][0];
p_uold = &uold[0][0];
p_unew = &unew[0][0];

h = 1/(float) N;
dt = h/(float) sqrt((double)2.0);
rho = dt/h;
rho_2 = rho * rho;

for (i=1; i<N; i++) {
uold[i][i]=u[i][i]=1.0;
u[i][i+1]=1.0;

}
uold[N][N]=u[N][N]=1.0;
/*u[N][1]=1.0;*/

...
}

21/32

Faster Sequential Wave Simulation (contd.)

/* lab/misc/wave/fast_seq_wave.c */
...
for (t=0; t<steps; t++) {

i1=N*M; i2=i1+M; i3=M; i4=M+N;
for (i=1; i<=N; i++) {

i1++; i2++;
*(p_u+i) = *(p_u+i1);
*(p_u+i2) = *(p_u+M+i);
*(p_u+i3)= *(p_u+i4);
*(p_u+i4+1)= *(p_u+i3+1);
i3 += M; i4 += M;

}
for (i=1; i<=N; i++) {

ij = i*M;
ij1 = ij+M;
ij2 = ij-M;
for (j=1; j<=N; j++) {

ij++;ij1++;ij2++;
(p_unew+ij) = 2.0(1-2.0*rho_2)* (*(p_u+ij)) +

rho_2*(*(p_u+ij1) + *(p_u+ij2) +
*(p_u+ij-1) + *(p_u+ij+1)) - *(p_uold+ij);

}
}
tmp1 = p_u; p_u = p_unew; p_unew = p_uold; p_uold = tmp1;

}

22/32

Parallelization of the Wave Simulation

for (t = 0; t < iter; t++){
/* send info to adjacent processes */

/* compute internal positions (those that don't require info */
/* from adjacent processors). */

/* get the info from adjacent processes */

/* compute edge positions, also compute min and max values
for this worker */

...
barrier()
/* This section handles the rotation of the matrices */
tmp = uold; uold = u; u = unew; unew = tmp;

}

23/32

Partitioning of the wave problem

I Checkerboard
I Strips (by rows or columns)
I How to decide which one will be better?

24/32

Comparing Strip versus Block partitioning

Assume that the wave size is n×n with p processes.

I For partitoning by strips, each strip needs to send and receive
one column (or row) of size n with processes on either side for
total communication per process to be:

Tcomm = 4(tstartup +ntdata)

I For partitioning by blocks, each block is of size n/
√
p. We

need to communicate with four neighboring processes (north,
south, east and west). In each case one edge is sent and one
edge is received. So the communication time per process is
given by:

Tcomm = 8(tstartup +
n
√
p
tdata)

24/32

Comparing Strip versus Block partitioning

Assume that the wave size is n×n with p processes.

I For partitoning by strips, each strip needs to send and receive
one column (or row) of size n with processes on either side for
total communication per process to be:

Tcomm = 4(tstartup +ntdata)

I For partitioning by blocks, each block is of size n/
√
p. We

need to communicate with four neighboring processes (north,
south, east and west). In each case one edge is sent and one
edge is received. So the communication time per process is
given by:

Tcomm = 8(tstartup +
n
√
p
tdata)

25/32

Comparing Strip versus Block partitioning (contd.)

Assume that the wave size is n×n with p processes.

I In general, strip partition is better for large startup time
whereas block partition is better for small startup time. Block
partition has a larger communication time than strip partition
if

tstartup > n(1− 2
√
p

)tdata

The above requires p ≥ 9 for the equation to be valid.
I For our current lab setup, tstartup = 78 microseconds, while the

tdata = 1.12 nanoseconds. So we can plot the value of p for
various fixed values of n

26/32

Comparing Strip versus Block partitioning (contd.)

 0

 20000

 40000

 60000

 80000

 100000

 0 200 400 600 800 1000

#processes

Block versus Strip partitioning

10000*(1 - 2/sqrt(x))
1000*(1 - 2/sqrt(x))

70000
100000*(1 - 2/sqrt(x))

20000*(1 - 2/sqrt(x))
50000*(1 - 2/sqrt(x))
70000*(1 - 2/sqrt(x))

27/32

Program Safety

I If all processes send simultaneously, we may get deadlock. To
solve this, use the usual MPI techniques like:

I Alternate the order of sends/recvs in adjacent processes.
I Use combined send/recvs with MPI_Sendrecv()
I Buffered sends.
I Nonblocking sends.

28/32

Heat Distribution

A two-dimensional grid is given with m×m points on it.
Temperature is known around the edges. Find the temperature
distribution inside the area using simulation.
The value at a point is given by:

xi ,j = (xi−1,j + xi+1,j + xi ,j−1 + xi ,j+1)/4, 0≤ i , j ≤m−1

Repeat for a fixed number of iterations or until the maximum
difference in temperature between iterations for all points is less
than some pre-specified precision.

29/32

Partially Asynchronous Computations

I Synchronizing parallel processes is an expensive operation that
significantly slows the computation.

I Computations in which individual processes operate without
needing to synchronize with other processes on every iteration.
For example, in the Heat distribution problem, it is possible to
get convergence without synchronizing on every iteration.

29/32

Partially Asynchronous Computations

I Synchronizing parallel processes is an expensive operation that
significantly slows the computation.

I Computations in which individual processes operate without
needing to synchronize with other processes on every iteration.
For example, in the Heat distribution problem, it is possible to
get convergence without synchronizing on every iteration.

30/32

Conway’s Game of Life

Board game - theoretically infinite two-dimensional array of cells.
Each cell can hold one “organism” and has eight neighboring cells,
including those diagonally adjacent. Initially, some cells occupied.
The following rules apply:

I Every organism with two or three neighboring organisms
survives for the next generation.

I Every organism with four or more neighbors dies from
overpopulation.

I Every organism with one neighbor or none dies from isolation.
I Each empty cell adjacent to exactly three occupied neighbors

will give birth to an organism.

On a Fedora system, try
yum install golly

to try a Game of Life program.

30/32

Conway’s Game of Life

Board game - theoretically infinite two-dimensional array of cells.
Each cell can hold one “organism” and has eight neighboring cells,
including those diagonally adjacent. Initially, some cells occupied.
The following rules apply:

I Every organism with two or three neighboring organisms
survives for the next generation.

I Every organism with four or more neighbors dies from
overpopulation.

I Every organism with one neighbor or none dies from isolation.
I Each empty cell adjacent to exactly three occupied neighbors

will give birth to an organism.

On a Fedora system, try
yum install golly

to try a Game of Life program.

30/32

Conway’s Game of Life

Board game - theoretically infinite two-dimensional array of cells.
Each cell can hold one “organism” and has eight neighboring cells,
including those diagonally adjacent. Initially, some cells occupied.
The following rules apply:

I Every organism with two or three neighboring organisms
survives for the next generation.

I Every organism with four or more neighbors dies from
overpopulation.

I Every organism with one neighbor or none dies from isolation.
I Each empty cell adjacent to exactly three occupied neighbors

will give birth to an organism.

On a Fedora system, try
yum install golly

to try a Game of Life program.

30/32

Conway’s Game of Life

Board game - theoretically infinite two-dimensional array of cells.
Each cell can hold one “organism” and has eight neighboring cells,
including those diagonally adjacent. Initially, some cells occupied.
The following rules apply:

I Every organism with two or three neighboring organisms
survives for the next generation.

I Every organism with four or more neighbors dies from
overpopulation.

I Every organism with one neighbor or none dies from isolation.

I Each empty cell adjacent to exactly three occupied neighbors
will give birth to an organism.

On a Fedora system, try
yum install golly

to try a Game of Life program.

30/32

Conway’s Game of Life

Board game - theoretically infinite two-dimensional array of cells.
Each cell can hold one “organism” and has eight neighboring cells,
including those diagonally adjacent. Initially, some cells occupied.
The following rules apply:

I Every organism with two or three neighboring organisms
survives for the next generation.

I Every organism with four or more neighbors dies from
overpopulation.

I Every organism with one neighbor or none dies from isolation.
I Each empty cell adjacent to exactly three occupied neighbors

will give birth to an organism.

On a Fedora system, try
yum install golly

to try a Game of Life program.

31/32

Game of Life Example

32/32

Parallel Game of Life

Sketch out how you would parallelize the n×n Game of Life on a p
processor cluster, where p << n. For the simulation, you may
assume that the two-dimensional array is a torus so each cell always
has eight neighbors.

I Does your implementation need to use a barrier. If so, where?
I Are there load balancing issues?
I Analyze the computation time and the speedup that your

approach would yield.

