
1/15

Software Pipelining

2/15

Pipelining versus Parallel

Suppose it takes 3 units of time to assemble a widget.
Furthermore, suppose the assembly consists of three steps– A, B,
and C –and each step requires exactly one unit of time.

I Sequential. Time to make n widgets is 3n, with one widget
per 3 units of time.

I Pipelined. Each of the three steps have been assigned to a
separate machine. Then the pipeline produces the first widget
in three time units, but after that one new widget appears
every time unit. Time needed to assemble n widgets is n+2.

I Parallel. Three independent widget assemblers. Produces
three widgets in every three time units. Time to assemble n
widgets is 3dn/3e time units.

3/15

Pipelining

In general, suppose we have p sub-assembly tasks, each taking one
time unit.

I First widget comes out in p time units.
I After that one widget comes out every time unit.

Therefore n widgets require n−1+p time units. Sequentially, n
widgets require np time units. The speedup is:

Sp(n) =
np

n−1+p
=

p

1− 1−p
n

Pipelining is widely used in hardware design. Here we will see its
use in software. Such use is termed software pipelining.

4/15

Example 1: Prime Number Generation

Sieve of Eratosthenes is an efficient sequential algorithm for
generating all primes in the range 2 . . .n.

I Start with a list of n numbers 2,3, . . . ,n.
I At iteration i , strike out all multiples of the current prime

number, which is always at the front of the remaining list. We
need to iterate at most

√
n times.

iteration ˜numbers eliminated
1 n

2
2 n

2×3
3 n

2×3×5
4 n

2×3×5×7
.

5/15

Sieve of Eratosthenes (contd.)
The Prime Number Theorem states that we have Θ(n/ lgn) prime
numbers between 1 and n. So we will, in general, stop the sieve iterations
when the count of the remaining numbers is Θ(n/ lgn). In each iteration,
we are eliminating a constant fraction of the numbers. So the number of
iterations is O(lg lgn). The sequential runtime is T ∗(n) = O(n lg lgn).
Some improvements to be used in an actual sieve implementation.

I Eliminate all even numbers (except 2) from the starting list.
I Eliminate all numbers that are not a multiple of 2 or 3 (except 2 and 3)

from the starting list. So the list look like:

2,3,5,7,11,13,17,19,23,25, . . .

This list can be generated with 3i +2,3i +4, where i = 1,3,5,7,
I We can further eliminate all numbers of the form 30m±5,m ≥ 1, thereby

eliminating all spurious multiples of 5.
I Exclusion of multiples of 7 shortens the list by another 14% but no more

gains can be made after that since the time to compute the next number in
the list exceeds the savings to be had with the list being shorter.

I We can also use addition/subtractions and avoid multiplications although it
it is tricky to set this up properly. For more details, see (A Practical Sieve Algorithm for

Finding Prime Numbers by Xuedong Luo, Communications of the ACM, Mar 1989, Volume 32, Number 3,

pp. 344-346.)

6/15

Pipelined Sieve

P1 P2
P0

n n−1 . . . 5 4 3 2

eliminates multiples eliminates multiples

of 2nd prime number of 3rd prime number
eliminates multiples
of 1st prime number

A Pipelined Prime Number Sieve

sieve(i)
//Process i ,0≤ i ≤ p−1

recv(n, Pi−1)
recv(prime, Pi−1)
for (j=2; j<n; j++) {

recv(number, Pi−1)
if (number == TERMINATOR) break
if ((number % prime) != 0)

send(number, Pi+1)
}
send(TERMINATOR, Pi+1)

We need as many processes as the number of primes numbers we will generate. In
an implementation we could use a fixed number of processes to simulate the above
algorithm.

7/15

Sieve Algorithms for Large Numbers

I Suppose we are dealing with integers with r bits. Then
addition/subtraction takes O(r) time and multiplication/division takes
O(r2) time. The sequential runtime becomes O(r22r lg r), which is
exponential.

I The sieve method is a good way of generating all primes to use in
factoring smaller integers but for large integers better methods exist
(like the quadratic sieve) that takes O(r22r/2) time. See The Art of
Computer Programming: Seminumerical Algorithms (Volume 2) by
Don Knuth, Section 4.5.4.

8/15

Example 2: Solving a Triangular System of Linear Equations

an−1,0x0 +an−1,1x1 + . . .+an−1,n−1xn−1 = bn−1

. . . = . . .

. . . = . . .

. . . = . . .

a2,0x0 +a2,1x1 +a2,2x2 = b2

a1,0x0 +a1,1x1 = b1

a0,0x0 = b0

The a’s and b’s are constants and the x ’s are the unknowns to be found. A simple
repeated “back" substitution can be used to solve for x0,x1, . . . ,xn−1. This is the last
step in Gaussian Elimination, a method for solving a general system of linear
equations.

9/15

Back Substitution
To solve for the unknowns in a triangular system of equations.

x0 =
b0

a0,0

x1 =
b1−a1,0x0

a1,1

x2 =
b2−a2,0x0−a2,1x1

a2,2
. . .

xi =
bi −∑

i−1
j=0 ai ,jxj

ai ,i
. . .

The sequential runtime is T ∗(n) = Θ(n2).

10/15

Sequential Triangular Solver

triangular_solve(a,b,x)
//a[0..n-1][0..n-1]: matrix of coefficients
//b[0..n-1]: vector of coefficients
//x[0..n-1]: vector of unknowns

x[0] = b[0]/a[0][0]
for (i=1; i<n; i++) {

sum = 0
for (j=0; j<i; j++) {

sum = sum + a[i][j] * x[j]
}
x[i] = (b[i] - sum)/a[i][i]

}

11/15

Pipelined Triangular Solver
P0

x[0] x[0]

x[2]

x[1]
x[1]

x[0]

P P P1 2 3

compute x[0] compute x[1] compute x[2] compute x[3]

Pipelined Triangular Solver

triangular_solve(a,b,x,i)
//i: process id, 0≤ i ≤ n−1
//a[0..n-1][0..n-1]: matrix of coefficients
//b[0..n-1]: vector of coefficients
//x[0..n-1]: vector of unknowns

sum = 0
for (j=0; j<i; j++) {

recv(x[j], Pi−1)
send(x[j], Pi+1)
sum = sum + a[i][j] * x[j]

}
x[i] = (b[i] - sum)/a[i][i]
send(x[i], Pi+1)

12/15

Analysis of the Pipelined Triangular Solver

I The ith process (0< i < n−1) performs i recv()’s, i send()’s,
i multiply/divide operations, one divide/subtract and a final
send()– for a total of 2i +1 communication steps and 2i +2
computational steps. That gives us a parallel time of O(n),
and a good speedup if communication and computation times
are balanced.

I Reasonable algorithm for a shared memory machine.
I For a distributed memory machine, we need to adapt the

pipelining approach so that it works for a fixed number of
processes.

13/15

Parallel Triangular Solver

How would you solve the triangular array of equations on a cluster?
I Adapt pipelining to the cluster.
I Use partitioning.

14/15

Adapting Solutions to a Cluster

compute x[3]
compute x[7]

compute x[2]
compute x[6]

compute x[1]
compute x[5]

compute x[0]
compute x[4]

P0

x[0]

x[0]x[0]

x[1]

x[2]

x[2]

x[0]
x[1]

x[2]
x[1]

P

P

P3

2

1

15/15

Adapting Solution to a Cluster

I We can also use partitioning for the triangular array of equations. However, if we just
assign n/p equations to each process, the work load will not be balanced. The
following table shows an example of balancing the load by assigning different number
of equations to different processes.

eqn. no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
work load 1 3 6 10 15 21 28 36 45 55 66 78 81 95 110 136
assignment Process 0 Process 1 Process 2

I The work load for the ith equation is O(i) steps. The second line shows the
cumulative work load for processing the first i equations. Since we have 3 processes,
we divide the total workload by three, which is 45. Thus process 0 handles equations
1 through 9, process 1 handles equations 10 through 13 and process 2 the rest to
balance the work load.

