
Single Source, Shortest Path

Kevin Nuss

CS 530 Parallel Computing

Statistics and Verification
Every run saves its runtime and message count

Hand check a few small solutions from sequential
program

Save solutions from all sequential runs

Every parallel run checks itself against sequential
solutions

A few mismatches

Too many messages?
Only occurred in 400k messages or more
Repeat runs did not have the mismatches

Program bug?

Moore's Algorithm

The problem involves finding the shortest path from a
single, designated source to each of the other vertices in a
directed graph that has weighted edges.

Begin with every vertex in a work queue. Try to find a
shorter path to another vertex than a direct path from the
source. If a shorter path is found, add that destination
vertex to the work queue, if not already there. Continue
processing vertices that are in the queue looking for
shorter paths to other vertices than those already found.
If any shorter ones are found, add those destination
vertices to the work queue, and so on.

Dijkstra's algorithm uses a similar strategy, but takes
advantage of a priority queue which allows each vertex's
edges to be examined only once.

Termination Strategy
Dual Pass Ring Termination Algorithm

When finished with its work, a designated initiator passes a
'white' token to the next process. When that next process
finishes its work, it passes the token onward. However, if a
process sends work to another process that is before it in the
ring, it changes the next token it receives to 'black.' A process
can not know whether the work it sent was to a process that
already sent on a 'white' token. Therefore, when a "white"
token does arrive, it does not know whether it is still valid.

If the initiator receives a "black" token, it initiates a new white
token for another pass.

If the initiator receives a white token, all work is complete
because all processes passed on the token without change.

Methods of Optimization
Consolidate outgoing messages to reduce
communication bottlenecks.

Receive all available information before
calculating shortest paths to reduce wasted
effort and wasted outgoing work messages.

Include locally known shortest paths with work
messages and tokens to reduce wasted effort
and wasted outgoing messages.

Use a priority queue within a process to
improve useage of cpu.

Centralized Work Queue, by the Book

Centralized Work Queue
First Try: Combine Messages from Slaves

Centralized Work Queue
Second Try: Priority Queue & Multiple Vertices Sent to Slave in Each
Message

Distributed Queue, by the Book

Distributed Queue
First Try: Combine Messages and Send Known

Minimums

Distributed Queue
Second Try: Add Priority Queue

Distributed Queue, Second Try - 10k
Vertices

Distributed Queue, Second Try - 10k Vertices
Processing of Vertices Commences Before All Processes Have Their

Data

All Versions of Single Source, Shortest
Path

Explanation of Previous Graph

"Sequential Moore's" is the sequential version of Moore's algorithm. It does not use a priority
queue.
 "Central by the book" is a naive implementation of the parallel pseudocode provided by the
textbook.
 "Central, First Try" is an initial attempt to improve the textbook's algorithm by combining
messages from the slaves to the master.
 "Central, Second Try" adds a priority queue to the master and allows it to send more than one
vertex to a slave at a time.
 "Central with Data Time" includes the time required to distribute the edge data to the slave
processes. Each slave gets all edge data.
 "Distrib with Data Time" is my best implementation of the distributed work queue but includes
the time to distribute the data to the slaves. Work by a slave begins as soon as that slave has its
partial set of edge data.
 "Distrib, Second Try" is my best implementation of the distributed work queue version of the
program. It includes a priority queue within each process.
 "Distrib, First Try" does not have a priority queue. Like the second try, each process receives a
subset of the edge data and when it discovers a new shorter path, it sends a message to the
appropriate process that has that subset. The master process creates the data, distributes it,
manages the termination strategy, records runtime, and checks solution.
 "Distrib by the Book" is a naive approach to implementing the parallel pseudocode
provided by the textbook.
 "Sequential" is a sequential implementation of Dijkstra's Algorithm for finding single
source, shortest path. It is the best known method.

Possible Improvements
MPI Versions of Fastest Algorithms

Better Queue Handling

Improve Memory Management

Release message buffers immediately
Send large data in smaller pieces so message does not
compete for memory.

Improve Centralized Strategy

Only send part of edge data to slaves to reduce setup
time and increase capacity before virtual memory is
needed. Perhaps track which processes already have
which edges and manage work queue accordingly.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

