
PTK: A Parallel Toolkit Library

Kirsten Allison and Amit Jain

Boise State University

November 3, 2010

The High Performance Computing Market

◮ The cluster market is growing with the increasing
price/performance ratio of commodity computing hardware.

◮ Cluster software development is not necessarily keeping up.

◮ There are many specialized software packages for certain
applications, including computational chemistry and biology,
oceanic and atmospheric modeling, and copious math libraries.

◮ There are also applications for building clusters, and system
administration tools.

◮ Programs are still being written at the message passing level.

Writing Programs At the Message Passing Level

To send a “chunk” of an array from one node to all the other
nodes in the group we do:

if (me == sender) {

for(i = 0; i < size of the group - 1; i++) {

pack the i’th chunk into a send buffer

send the data

}

} else {

probe for a message and find out how big it is

allocate memory to receive the message

receive the message and unpack it

}

It would be much simpler to do:

ptk_scatter(data, ...);

PTK: Parallel Toolkit Library

◮ The toolkit supports common parallel program design
patterns.

◮ Data sharing - scatter, gather, all to all, multicast.
◮ Workpools - centralized and distributed.
◮ Utilities - initialize, exit, filemerge.

◮ The library builds on PVM and MPI, which are lower level
message passing libraries that are widely used to write parallel
programs.

◮ Examples are provided to demonstrate how to use PTK.

◮ Documentation on the toolkit functions and examples is
included.

Prior Research

Nathan Sachs and Jeff McGough: “Hybrid Process Farm/Work
Pool Implementation in a Distributed Environment using MPI.”

◮ Presented at the Midwest Instructional Computing
Symposium, Duluth, Minnesota, April 2003.

◮ Part of a project with Sun to develop preliminary versions of
their libraries.

◮ Not available via open source.

Steffen Priebe: “Dynamic Task Generation and Transformation
within a Nestable Workpool Skeleton.”

◮ Presented at the European Conference on Parallel Computing
(Euro-Par) 2006, Dresden, Germany.

◮ Skeletons are written in Eden, a parallel version of Haskell.

◮ C and Fortran are the predominant parallel programming
languages. Eden is not mainstream enough to be pertinent to
our discussion.

General Issues in Library Development

◮ Adequate functionality versus ease of use:

◮ Adding functionality means adding parameters.
◮ The more parameters there are, the harder it is to understand

how to use the function, however ...
◮ the additional parameters give us more functionality.

◮ Memory allocation - where should it happen?

◮ Wanted the library to do as much for the user as possible.
◮ Inconsistent to have the toolkit allocate memory and then

expect user to free it.
◮ Conclusion was to have the user allocate and deallocate

memory wherever possible.

Simplifying Initialization and Exit

◮ Initialization

◮ Every PVM and MPI program starts by doing the same things.
◮ Variables are filled in, such as group size, group rank, task IDs

(PVM), etc.
◮ Instead of three or four PVM or MPI calls, this is now one

function.

◮ Exit

◮ Same problem as initialization.
◮ Exit is now also one function, and ensures that the necessary

things are done before a program exits.

Data Sharing Design Patterns

The PTK data sharing functions do not have the limitations that
the MPI functions do:

◮ Arrays do not need to be evenly divisible by the number of
processes in the group.

◮ PTK supports data sharing of two-dimensional arrays.

◮ Patterns supported include:

◮ Scatter
◮ Gather
◮ All to all
◮ Multicast

Scatter with a group size of four

Data at the root node

...

? ? ? ?

P0 P1 P2 P3

0 send
count
- 1

send
count

(send

count
∗ 2)

- 1

send
count
∗ 2

(send

count
∗ 3)

- 1

send
count
∗ 3

(send

count
∗ 3)

+ last
count
- 1

Gather

Data at the root node

...

? ? ? ?

P0 P1 P2 P3

0 recv
count
- 1

recv
count

(recv

count
∗ 2)

- 1

recv
count
∗ 2

(recv

count
∗ 3)

- 1

recv
count
∗ 3

(recv

count
∗ 3)

+ last
count
- 1

All to all

P0 P1 P2 P3

P0 P1 P2 P3

First iteration of all to all

P0 P1 P2 P3

P0 P1 P2 P3

Third iteration of all to all

P0 P1 P2 P3

P0 P1 P2 P3

Second iteration of all to all

Workpools

◮ Centralized may be used when:

◮ a task can be processed by any node,
◮ the worker nodes can store all of the data needed to process

tasks,
◮ the coordinator can store all of the data needed to process

results.

◮ Distributed may be used when:

◮ nodes can be responsible for a certain set of tasks,
◮ the memory required to process tasks can not be stored at one

node.

Processing tasks and results using the centralized workpool
WORKER

COORDINATOR

result returned
by filling in the
result parameter

new tasks returned
by filling in the
newTasks parameter

Toolkit sends
results to the
coordinator to
process

processTask()

processResults()

 for the
 worker to process

Toolkit sends task

Using granularity in the centralized workpool

COORDINATOR
group "granularity" number of
 tasks together to send

result sent immediately after
 each task is
 processed

WORKER

for i = 0 to granularity

 processTask()
 send result

Example processTask() function - Centralized

int sqr(void *dataToProcess,

void **ptkResult,

int *returnSize)

{

long int *intData = (long int *)dataToProcess;

long int number = *intData * *intData;

memcpy(*ptkResult, &number, sizeof(long int));

*returnSize = sizeof(long int);

return 0;

}

Example processResult() function - Centralized

int processResult(void *results,

void **ptkNewTasks,

int *numNewTasks)

{

long int *intResults = (long int *)results;

sum += *intResults;

*ptkNewTasks = NULL;

*numNewTasks = 0;

return 0;

}

Processing tasks and results using the distributed workpool

processTask()

return new tasks and
results to the toolkit

processResult()

get new result information

PROCESS Y

processTask()

return new tasks and
results to the toolkit

processResult()

get new result information

PROCESS X

The toolkit sends new tasks
and resultsresult resulttask

task

Dual-pass token ring termination algorithm

Pj PiP0 Pn−1

Task

white token white token
Pi turns white token black

Example processTask() function - Distributed

void *processTask(void *task, int tasksToProcess,

void **ptkNewTasks, int *numNewTasks,

void **ptkResults, int *numResults) {

for (i = 0; i < tasksToProcess; i++) {

processTask;

if (new task generated) {

increment numNewTasks;

copy new task into ptkNewTasks;

}

}

copy results into pktResults;

set numResults value;

}

Structure of a task in the distributed workpool

x task numNewTasks − 1...task 0 task 1y z

x, y, and z tell the toolkit where to send the corresponding task

Example processResult() function - Distributed

void *processResult(void *result) {

for (i = 0; i < length of result array; i++) {

process ith result;

}

}

Testing coverage of toolkit functions

Toolkit function Example/test program

ptk alltoall1d allToAll1d

ptk alltoall2d bucketSortWithAlltoAll2d

ptk central workpool shortestPathsCentral
shortestPathsCentralMoreEfficient
sumOfSquares

ptk distributed workpool shortestPathsDistributed
shortestPathsDistributedMoreEfficient

ptk exit all

ptk filemerge filemerge

ptk gather1d gather1d

ptk gather2d gather2d

ptk init all

ptk mcast shortestPathsCentral
shortestPathsCentralWithGranularity

ptk scatter1d shortestPathsDistributed

ptk scatter2d bucketSortWithScatter2d

Shortest Paths Examples

◮ The shortest paths programs are the most significant
examples of how to use the workpools.

◮ They use Moore’s algorithm for finding shortest paths in a
directed graph with positive edge weights.

◮ Vertices to investigate are kept in a queue. For each vertex j
in the queue do the following:

1. Find the distance to vertex j through vertex i and compare
with the current minimum distance to vertex j.

2. Change the minimum distance if the distance through vertex i

is shorter.
3. If a new distance is found for vertex j, insert it into the queue.

Benchmarking:

Shortest paths central

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450 500

T
im

e
in

se
co

n
d
s

X

granularity X with verticesPerTask = 1
verticesPerTask X with granularity = 1

Benchmarking:

Shortest paths central versus shortest paths distributed

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000 12000

T
im

e
in

se
co

n
d
s

Vertices

shortest paths central
shortest paths distributed

Benchmarking:

Shortest paths distributed

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450 500

T
im

e
in

se
co

n
d
s

Granularity

shortest paths distributed with granularity

Summary

◮ PTK contains functions for data sharing that go beyond what
is available in PVM and MPI.

◮ PTK contains workpools that are not available via open
source. The workpools provide functionality that would
require a significant amount of time to create from scratch.

◮ The functions in PTK are fully tested, and benchmarking
numbers are available.

◮ PTK provides the user with examples of how to use the
functions, along with user documentation.

Future Directions

◮ Change the task list in the centralized workpool to a priority
queue.

◮ this may slow things down - needs to be benchmarked
◮ adds an extra parameter

◮ Multi-threading - implement separate computation and
communication threads in the distributed workpool.

◮ Create a C++ version of the library.

