

Parallel Parallel AAdditive dditive LLagged Modular agged Modular
FFibonacci Random Number ibonacci Random Number

GGeneratorsenerators
 ((ALFG’s)ALFG’s)

(Or why bad code documentation (Or why bad code documentation
is worse than none at all)is worse than none at all)

Lewis HallLewis Hall
Jason MainJason Main

Misleading documentation of glibc random():

 From random(3) man page “it uses a non-linear
additive feedback random number generator”

 Documentation in actual code discusses “special
state info interface”

 What glibc actually uses:
 Additive Lagged Modular Fibonacci Random

Number Generator (RNG)

Fibonacci Generators

... 377 233 144 89 55 34 21 13 8 5 3 2 1 1 0

)(otherwise

2)(n

12

+
<

=
−− nn

n ff

n
f

Normal Fibonacci Sequence

Lagged Modular Fibonacci Sequence

() P mod)(klagnlagnn fff −−− +=
P is typically the max machine word

lag is 31 as default for glibc and is limited to 63

Notes about glibc implementation
Kept in a circular buffer with the last lag

Essential ideas for parallelization

•Each processor calculates a contiguous block of
 random numbers from the original sequence
•Processor i calculates the state as if it had just been
 generated

•Formulate a group of algorithm iterations into a
 matrix. Then use linear algebra to find the initial
 state quickly. (lag many iterations are used)

 ipn ⋅/X

How to parallelize glibc’s implementation?

 Each process needs to be updated with
constantly changing state information from other
processes.

 This leads to excessive communication time.

 Disjoint subsequence paradigm.

Independent State Calculation

 Each process knows how many random numbers total
need generated and how many processes will participate,
and thus can calculate the proper state to begin
generating random numbers.

 This can be accomplished using a little clever linear
algebra, polynomial calculation knowledge, and recursion.

 Eliminates the need for communicating state information,
so each process can quickly compute it’s own subset of
random numbers.

A few iterations of the random()...

Core Idea: Formulate matrix A so that Ax = x* where x
is the state vector and x* is the vector after lag many
iterations. We will then manipulate A.

Formulate matrix A so that Ax = x* where x is the state
vector and x* is the vector after lag many iterations.

Algorithm forms A as a square matrix of size lag

For this example:

lag is 5

k is 2

The oldest member
of the state is at
index 0

After this two fast linear algebra algorithms exist for calculating An for large n

Successive doubling: Recursively square A and use the binary expansion of n to
choose which powers of A to combine (order O(lag 3 log2 n))

Diagonalization: Find decomposition A = X-1DX. Then An = X-1DX. (order O(lag

2) as the decomposition can be precomputed. Probably wont work here.)

Construction of the Matrix

‘Srinivas Aluru’ Style Matrices
(Combine a permutation of the state vector with a
single iteration of the LF algorithm)

=

−

−

−

−

−

+

−

−

−

−

−

−

5

4

3

2

1

1

6

5

4

3

2

1

0100000

0010000

0001000

0000100

0000010

0000001

1001000

n

n

n

n

n

n

n

n

n

n

n

n

n

n

X

X

X

X

X

X

X

X

X

X

X

X

X

X

‘Our’ Style Matrices
(Iterate lag many iterations so that no permutation

has to occur)

=

+

+

+

+

+

+

+

−

−

−

−

−

−

1

2

3

4

5

6

7

6

5

4

3

2

1

1011001

1100100

0110010

0011001

1000100

0100010

0010001

n

n

n

n

n

n

n

n

n

n

n

n

n

n

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Matrix Powers

128128256

6464128

323264

161632

8816

448

224

2

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

A

=

=
=
=

=
=

=
=

28321285122147483648

222222

x

22222

22222

0
0

1
1

2
2

30
30

31
31

x

01228293031

1357931

0
0

1
1

29
31

30
30

31
31

0
0

1
1

2
2

30
30

31
31

:have even x wefor 0 is b since Now

22222

 xoddfor 0bsay that on illustratiFor

:B ofexpansion binary thehave Say we

AAAAAAA

AAAAAAA

AAAAAA

AA

bbbbbB

bbbbbbbB

B

B

bbbbbB

bbbbbB

=
=

=

=

+++=

=

=

+++

Basic Algorithm for ALFG

UnrankRandom (stride) Takes how far you want to move ahead

while (stride % polySize)
 random() There is really some code here to handle

 stride-- (stride < polySize)

B = stride / polySize B is how many permutations from our

A = createPermutationMatrix() matrix we need given that each multiple

P = fastpower(A,B) takes us ahead by polySize states

x = Px

END

Timing ResultsTiming Results

Runtime of unrankRand() in milliseconds() 50% Bits
set

0

1

2

3

4

5

1 4 7 10 13 16 19 22 25 28 31 34

log(n)

Ti
m

e
in

 m
ill

is
ec

on
ds

7 Word

15 Word

31 Word

Runtime of unrankRand() in microseconds 50% Bits
set for Linear Congruence generator

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

log(n)

tim
e

in
 m

ic
ro

se
co

nd
s

Runtime of unrankRand() in milliseconds() 50% Bits
set for order 63 ALFG

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

log(n)

tim
e

in
 m

ill
is

ec
on

ds

 In order to calculate the state after k random numbers have been
generated, the equations becomes:

maaacXaX kk
n

k
kn mod)1(21 +++++= −−

+

Linear congruential state calculation

Works great for leap frog but what do you do for
block parallelization where k can be a billion?

−+++
+++

=+
=

=++

−

+−
−

even is)1)(1(

odd is)1)(1(

1)1(

01

)1(

22122

12122
1

kaaaa

kaaa

ka

k

aa

kkkk

kkk
kk

Additionally we allow for negative numbers to be passed to
unrankRand() which requires modular division. That’s it really

Where do we go next...
 Matrix Multiplies can be slow (especially the 63rd degree

polynomial) Can we do better? If we can then we can
add larger supported polynomial sizes to random().

 If you can call unrankRand() and get a state from a
number can you call rankRand() and get a number from a
state.

 What about optimizing the algorithm as it stands (For the
large ALFG’s). The LC is too fast as it is.

 We have evidence that srandom() really sucks…. What
function can be added to improve the situation.

(Basically I want enough so that I can publish…)

 Code must be linked into a library for all to use.

Diagonalization

()
()() ()

() () ()

m modλx Ax

.arithmaticmodular in rseigenvecto theare

columns s U'and seigenvalue ofmatrix diaginal a is

D that showcan you algebralinear little aThrough

such that D and UFind :Goal

) logB)O(n is D computing diagonal is D (Since
1

1 D of multiplesn

1111

1 n times11

diagonal) is (D
1

B

≡

=

=

=

=

=

−

−

−−−−

−−−

−

UUDA

DUUDDA

DUUUUUDUUUDA

UDUUDUUDUA

UDUA

BB

B

B

B

Diagonalization Progress

()

() ()

approach with thissucced tofields

arbitrary over rootsfor searchingfor way a findMust

..... to from of powers all must trackYou

1

...problems.. has choice Obvious

01

root... a inventingby over thisget wealgebraregular In

.2 Mover eirreducabl waspolynomial that thisso

chosen wereparameters generators The s.ALFG' of

analysis in the elsewhere up shows polynomial This

 01-- 0

31.... oforder default thefow

find matrix wen permutatio style Aluru'' a Using

030

331

2

32

equation) istic(Character
331

ααα
αα

λλλ

+=

±=⇒=+

=

=⇒=−

ixx

IA

Optimizing the existing algorithm

 For the large polynomial matrix multiplication is
roughly 2000 times slower than calling
random()...

 Small cases get optimized to calling random()
iterativly (anywhere from about 100 to 10000)

 Make the permutation matrix equivalent to more
than polySize iterations to reduce matrix
multiplies

 Create a function that attempts to find the best
compromise between the 3 stages of the
algorithm

Binary random() calls generated by LC

Basic idea for rankRand() with LC

END

M modn -Return

2nn

)2unrank(x, x

) 2 mod tmp(x if

)2,unrank(p tm

x x while

1 i 0,n

)(_

1

i

1
0

0

i

i

ix

xLCRankRand

+=
=
≡

=

≠
==

−

−

Since the ith bit can only be 2i periodic, we exploit this….

Progress ranking a ALFG
 The least significant bits of the state vector act like a

Linear Feedback Shift Register (LFSR).
 Provided they aren’t all 0 the order is 2lag -1

 The upper bits behave in a way similar to what we saw for
LC generators, and can be ranked()….

 The period of our ALFG’s is (2m-1)(2lag-1) for this reason.
 If I can a fast rank for a LFSR then I’ve got one for ALFG’s
 The details are to involved to discuss here….

 Note: I stole this diagram off the Internet

Monte Carlo calculation of pi

 Generate pairs of random numbers.
 Plug them into the equation to calculate ¼ of pi.
 Multiply final result by 4 to get actual

approximation of pi.

4
1

1

0

2 ∏=−∫ dxx

() () ()12
1

1
lim

2

1

xxxf
N

dxxfArea
N

r

x

x
N

−== ∑∫
−∞→

Parallel Implementation of Monte Carlo

 Each process knows how many random
number to use.

 Each process calculates its portion of pi.
 Each process send partial pi to master.
 Master calculates approximation of pi.

PRNG = SRNG

 Sequential and parallel generated random
numbers are exactly the same.

 Proved this by generating 1 billion random
numbers sequentially, and then generated 1
billion numbers using state calculation
(unrankRand) and the two lists were identical.

 Reproducing same sequence of random
numbers is important.

Times Speedup

Times speedup faster than sequential

Processes TYPE
0 1 2 3 4

2 2.0 1.8 1.9 1.7 1.9

4 3.8 3.8 3.6 3.9 3.6

6 5.3 5.7 5.2 5.7 5.4

8 7.3 6.8 7.0 6.8 7.5

10 8.5 8.7 8.3 8.5 7.3

12 10.5 10.4 9.6 9.9 8.4

14 11.5 11.6 11.8 11.8 11.4

PRNG Timing Results

0.0

10.0

20.0

30.0

40.0

50.0

60.0

SEQ 2 4 6 8 10 12 14

Numbe r of P r oc e sse s

TYPE 0

TYPE 1

TYPE 2

TYPE 3

TYPE 4

Speedup Graph

Larger problem sizes
Type 3 Speedup 10 Billion Random Numbers

Sequential time was 688 Seconds.
This leads to '19.7' times speedup for 16 processors

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

8 9 10 11 12 13 14 15 16

N umber o f Pro cesses

Type 3

User Interface
Goal 1: Provide a simpler way to initialize parallel

bucket sort

int* createProcessRandomTable(int me, int numProc, unsigned long n,
 unsigned long* myRange);

me - a name I call myself
n - the total number of randoms to be distributed over the cluster
numProc - number of processors that will be participating

RETURNS:

An array of integers initialized so that the union of all number on the cluster is
the same as would be for a serial call

On error the errno value is set and 0 is returned

myRange is populated with the number of integers assigned to this slave.
It is not assumed that n is divisible by numProc

Example Results: (serial and parallel match exactly)
SERIAL createProcessRandomTable(0, 1, 123,0)
0x1c2a96f3 0x5210418e 0x2f3e66fd 0x4124a372 0x23417bb3 0x1630e4f3 0x56165e02 0x396b0f5f 0x446fe8f1
0x7215ab58 0x68d36f75 0x440a2931 0x47078833 0x54390614 0x56b21e49 0x295e1c93 0x3c7dab41 0x3251b478
0x44935bb2 0x4f58ea54 0x12450236 0x9997771 0x3a10bd76 0x48f92344 0x3b041923 0x292fa451 0x7a5c608f
0x3d953e5 0x5b976632 0x292f7967 0x646e55ea 0x77c1fd25 0x7b3fbaf5 0x13acbce8 0x38e6a098 0x1e8136a9
0x29dda1db 0xefcfe9a 0x57ec4608 0x6e4d8acc 0x112a9f2 0x40bfb57d 0x3257b3fd 0x481a3225 0x14f8bb91
0x909d246 0x71784eb9 0x517666d3 0x3b5b86be 0x360baa6b 0x20cf5127 0x4da088f4 0x3fa521dc 0x5ae00e9e
0x1699ac38 0x7aa93aff 0x40fb2ef 0x10f60cc8 0x7e828ee5 0x5fa71921 0x3a25862f 0x62f0e4cf 0x57691647
0x35654125 0x769da1b7 0x104fb6df 0x53e677ce 0x207b4392 0x1f4cb579 0x2bd2bdd6 0xec8ce5f 0x205f5f6c
0x6c927354 0x4120825c 0x68799191 0x18b2ee5 0x4a2a54a3 0x59f1e04a 0x530195b8 0x585db61 0xffd8ab5
0x73d0e6e0 0x53266456 0x4fa2ac92 0x4eb0f57e 0x69c0108e 0x4a4be791 0x52c0a86d 0x7ab61d56 0x48ce7676
0x3267c18f 0x34dba386 0x2bbf5b46 0x9d0d7d6 0x6a40e4ab 0x225cfcfd 0x1a208eb5 0x3e275c79 0x42d84090
0x396d442e 0x69fa1a4f 0x51a10eef 0x59cca39a 0x568c8da3 0x12c1914b 0x4246352c 0x5817bc89 0x5cebe5ee
0x1c381576 0x2b195241 0x6271c150 0x2c35a02c 0x1eea3921 0x359825a6 0x7bd84cbe 0x6d9b2e9f 0x1f583634
0x4624344f 0x405bd70d 0x1a0e538b 0xef2aac6 0x72c3989c 0x4ee9f711

PARALLEL 15 calls createProcessRandomTable(0 through 15 , 1, 123, &range)
0: 0x1c2a96f3 0x5210418e 0x2f3e66fd 0x4124a372 0x23417bb3 0x1630e4f3 0x56165e02 0x396b0f5f 0x446fe8f1
1: 0x7215ab58 0x68d36f75 0x440a2931 0x47078833 0x54390614 0x56b21e49 0x295e1c93 0x3c7dab41 0x3251b478
2: 0x44935bb2 0x4f58ea54 0x12450236 0x9997771 0x3a10bd76 0x48f92344 0x3b041923 0x292fa451 0x7a5c608f
3: 0x3d953e5 0x5b976632 0x292f7967 0x646e55ea 0x77c1fd25 0x7b3fbaf5 0x13acbce8 0x38e6a098
4: 0x1e8136a9 0x29dda1db 0xefcfe9a 0x57ec4608 0x6e4d8acc 0x112a9f2 0x40bfb57d 0x3257b3fd
5: 0x481a3225 0x14f8bb91 0x909d246 0x71784eb9 0x517666d3 0x3b5b86be 0x360baa6b 0x20cf5127
6: 0x4da088f4 0x3fa521dc 0x5ae00e9e 0x1699ac38 0x7aa93aff 0x40fb2ef 0x10f60cc8 0x7e828ee5
7: 0x5fa71921 0x3a25862f 0x62f0e4cf 0x57691647 0x35654125 0x769da1b7 0x104fb6df 0x53e677ce
8: 0x207b4392 0x1f4cb579 0x2bd2bdd6 0xec8ce5f 0x205f5f6c 0x6c927354 0x4120825c 0x68799191
9: 0x18b2ee5 0x4a2a54a3 0x59f1e04a 0x530195b8 0x585db61 0xffd8ab5 0x73d0e6e0 0x53266456
10: 0x4fa2ac92 0x4eb0f57e 0x69c0108e 0x4a4be791 0x52c0a86d 0x7ab61d56 0x48ce7676 0x3267c18f
11: 0x34dba386 0x2bbf5b46 0x9d0d7d6 0x6a40e4ab 0x225cfcfd 0x1a208eb5 0x3e275c79 0x42d84090
12: 0x396d442e 0x69fa1a4f 0x51a10eef 0x59cca39a 0x568c8da3 0x12c1914b 0x4246352c 0x5817bc89
13: 0x5cebe5ee 0x1c381576 0x2b195241 0x6271c150 0x2c35a02c 0x1eea3921 0x359825a6 0x7bd84cbe
14: 0x6d9b2e9f 0x1f583634 0x4624344f 0x405bd70d 0x1a0e538b 0xef2aac6 0x72c3989c 0x4ee9f711

Other functions
 int seedParallel(unsigned long seed, int me, unsigned long long int

 numsPerProc)
Basically this places random()s state for each process so that if
each process calls random() numsPerProc times the result is the
same as the serial code starting with srandom()

unsigned long long seedParallelTotal(unsigned long seed,
 int me,
 int p,
 unsigned long long int itr,
 unsigned int grain);
Similar to seedParallel() but it divides the range for you and tells
you where each split is. Also takes ‘grain’ for users whose loops
consume more than 1 random number per iteration (like ours)….

int unrankRand(long long int stride)
All other functions are based off of this one. Duplicate the action of
stride calls to random(). Erase the effect of -stride many random()
calls if stride is passes as a negative number

Threaded Interface
(currently half re-implemented….)

•Make multiple sources of random numbers available so
that a user does not have to worry about what thread
gets what random number

•Fully interlock the random objects so that nothing funny
happens even if the user tries silly things

•Allow seamless converting of state from random()s
internal state to a randomObject to a wrapped up array
that works with glibs setstate

•Do so without slowing down random() itself

Threaded functions
 par_initialize() - Initialize the thread safe version. There is the small possibility of a memory
 leak if you don't call this function but the thread interface will work
 without it. There is also the chance of a mis-synchronization.
 This function is not needed if you don't use the par_* interface
 par_generateRandomObject() - create a random number stream. All of the other par_
 functions use this parameter to alter their values. If NULL is
 passed into any of the par_ function for the stream field then
 they operate on glibc's random state.
 par_setsate() - Thread safe version of the corresponding glibc function
 par_initstate() - Thread safe version of the corresponding glibc function
 par_srandom() - Thread safe version of the corresponding glibc function
 par_unrankRand() - Thread safe version of unrank()
 par_random() - Not recommended. Thread safe, but slow. If you're not calling
 random() while your calling any of the setstate(), etc functions
 this is not needed. See wait_random() instead.
 wait_random() - This function will block until par_unrank() is called. After this
 has occurred there is no time penalty for using wait_random() vs.
 random().
 random_rollback() - Function to help figure out what numbers were received from random
 if you did not use the thread safe interface and you called
 random() from one thread at the same time that unrankRand() was
 being called from another
 par_getSem() - These function get and take the semaphore that protects the par_ interface
 when a user has this semaphore he/she knows that any of the par_ functions
 will block. This does not prevent the none par_ functions from executing.
 NOTE: The wait_random()
 par_releaseSem() - This function will release the semaphore received by par_getSem()

Current Status
 Released code under the GNU lesser license
 Student interface is working and is very polished
 Threaded code is still under development. An Onyx crash

made it impossible to finish this before submit. Will do so
ASAP post semester recovery

 Library interface has changed to modify random()’s state
instead of our own internal copy called t_random().

 Cluster would not fire up from a telnet session so have no
way to verify that this change did not break the parallel
Monte Carlo code

 I (Jason Main) have made myself available for supporting
the library

Research Findings Summary
 The general idea was known since the early 90’s.
 Most people focus on Mascagni’s distinct subsequence formulation.

Each processor gets its own independent source of random
numbers. This is implemented in the complex ANSI funded library
SPRNG.

 No implementations of this or similar algorithms was found.
 Future plans: Rank()

 Optimize
 Publish?

 QUESTION: Does srandom() work well for initializing ALFG’s?
Further inquiry is needed.

 Leapfrog may be impossible. Aluru ‘proved’ that a communication-
less leapfrog implementation was. What he may have actually
proven is that you cant use the same sized ALFG

 Timing woes were caused by using timeofday() in the lab
environment. Our 10 Billion number case got ‘super linear’ speedup
by 30 % and our 1 billion number case got 70% of linear speedup.Questions ?

