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Partitioning

I Partition the problem into parts such that each part can be
solved separately.

I At the end the solution to the overall problem may just be the
collection of the solutions to the parts or we may need to
combine the solutions of the parts.

I The effort here often lies in partitioning in such a way that the
combining part at the end is not needed or can be simplified.
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Partitioning Examples

I Parallel prefix sums
I Bottom-up parallel mergesort
I Parallel bucketsort
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Parallel Prefix Sums (a.k.a Parallel Prefix)

The sequential algorithm for computing prefix sums.

prefix_sums(X, Sum)
//input Array: X [0 . . .n−1]
//output Array: Sum[0 . . .n−1]

//Sum[i ] = ∑
i
k=1X [k]

1. Sum[0] ← X[0]
2. for (i=1; i<n; i++)
3. Sum[i] ← Sum[i-1] + X[i]
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Parallel Prefix

Parallel Prefix an useful building block for various parallel algorithms.
In our discussion, we will assume that the n numbers are distributed across
p processes, with each process having n/p numbers.

Step I. Each process computes the prefix sums of its share of
numbers using the sequential algorithm.

Step II. Process i , 1≤ i ≤ p−1, sends its last sum (X [np −1]) to
Process 0.

Step III. Process 0 computes prefix sums of the p partial sums it
receives from other processes.

Step IV. Process 0 ships the ith value from the array it just computed
to Process i +1, 0≤ i ≤ p−2.

Step V. Each process adds the partial value received to each element
of its array of prefix sums.
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Prefix Sums (a.k.a Parallel Prefix)

n/p
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Analysis of Parallel Prefix

tcomm = (p−1)(tstartup + tdata) + (p−1)(tstartup + tdata) = Θ(p)

tcomp =
n

p
+ (p−1) +

n

p
= Θ(

n

p
+p)

Tp(n) = tcomm + tcomp = Θ(
n

p
+p)

T ∗(n) = Θ(n)

Speedup Sp(n) = Θ

(
n

n
p +p

)
= Θ

(
p

p2

n +1

)

lim
n→∞

p
p2

n +1
= p



6/22

Analysis of Parallel Prefix

tcomm = (p−1)(tstartup + tdata) + (p−1)(tstartup + tdata) = Θ(p)

tcomp =
n

p
+ (p−1) +

n

p
= Θ(

n

p
+p)

Tp(n) = tcomm + tcomp = Θ(
n

p
+p)

T ∗(n) = Θ(n)

Speedup Sp(n) = Θ

(
n

n
p +p

)
= Θ

(
p

p2

n +1

)

lim
n→∞

p
p2

n +1
= p



6/22

Analysis of Parallel Prefix

tcomm = (p−1)(tstartup + tdata) + (p−1)(tstartup + tdata) = Θ(p)

tcomp =
n

p
+ (p−1) +

n

p
= Θ(

n

p
+p)

Tp(n) = tcomm + tcomp = Θ(
n

p
+p)

T ∗(n) = Θ(n)

Speedup Sp(n) = Θ

(
n

n
p +p

)
= Θ

(
p

p2

n +1

)

lim
n→∞

p
p2

n +1
= p



6/22

Analysis of Parallel Prefix

tcomm = (p−1)(tstartup + tdata) + (p−1)(tstartup + tdata) = Θ(p)

tcomp =
n

p
+ (p−1) +

n

p
= Θ(

n

p
+p)

Tp(n) = tcomm + tcomp = Θ(
n

p
+p)

T ∗(n) = Θ(n)

Speedup Sp(n) = Θ

(
n

n
p +p

)
= Θ

(
p

p2

n +1

)

lim
n→∞

p
p2

n +1
= p



7/22

Bottom-up Mergesort

I Mergesort is normally written as a top-down recursive
algorithm. However, it can also be expressed as a bottom-up
iterative algorithm. The picture on the next slide demonstrates
how that works.

I A bottom-up mergesort is more amenable to parallelization via
partitioning. Each process starts with roughly n/p elements,
where n is the number of elements to sort and p is the number
of processors. Each process then sorts them independently.
From there the processes merge the sections until Process 0
has the sorted whole.

I Parallel Bottom-Up Mergesort illustrates an iterative tree-like
coding technique, which is a common design pattern in parallel
programs.
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Bottom-up Parallel Mergesort (continued)

−The purple arrows shows the direction of data transfer
−At each level the amount of data sent from one processor doubles
−At each level only half the number of processes remain active

n/p n/p n/p n/p n/p n/pn/pn/p
1 2 3 4 5 6 7

2 60 4

0 4

0

0

height = lg p
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Parallel Mergesort Pseudocode

parallel_mergesort(A, low, high, pid)
//Processes numbered, 0≤ pid ≤ p−1
//Assume that p = 2k

//Each process has n/p numbers at the start.

1. sort n/p elements locally
2. for (h=1; h ≤ lg p; h++)
3. if (pid mod 2h == 0)
4. recv n

p2
h−1elements from process pid +2h−1

5. else
6. send n

p2
h−1 elements to process pid −2h−1

7. break //this process is done
8. merge n

p2
h−1 elements with n

p2
h−1 local elements
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Parallel Mergesort Analysis

I At each stage a total of about n/2 elements are transferred. There are
a total of lgp stages. Hence the communication time is as shown
below.

Tcomm(n) = Θ(n lgp)

I The total computation time includes time to initially sort n/p
elements. The at each stage, half the processes merge elements. The
merging time is linear to the number of elements. So this time doubles
at each stage. The total computation time is shown below.

Tcomp(n) = Θ(
n

p
lg
n

p
+ (

n

p
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n

p
+4

n

p
+ . . .+p

n

p
))
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n

p
lg
n

p
+

n

p
(1+2+4+ . . .+p/4+p/2+p))

= Θ(
n

p
lg
n

p
+

n(2p−1)

p
)

= Θ(
n

p
lg
n

p
+n)

I Notes. Moderate to poor speedup because of large communication
and because a large number of processes idle in the second phase.
More sophisticated versions that use all the idle processes to make the
merge operations faster in each stage give better speedups, especially
on shared memory machines.
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Sequential Bucketsort

I We have n key values distributed uniformly in the range
[0..k−1].

I The algorithm uses m buckets, with the ith bucket
representing key values in the range [i km . . .(i +1) k

m −1], for
0≤ i ≤m−1.

I The sequential bucketsort algorithm is as follows.
1. Place a key value x in the bucket bx/(k/m)c.
2. Sort each bucket using an optimal sorting algorithm.
3. Concatenate the results together into one array or list.
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[(m−1)k/m..k−1)[0..k/m) [k/m..2k/m) [2k/m..3k/m−1)

.      .      .

.      .      .
Unsorted numbers

Place in buckets

Sort each bucket

Concatenate 
buckets

Sorted numbers after concatenating the buckets

Sequential Bucketsort

0 1 2 m−1
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Analysis of Sequential Bucketsort

I Step 1. This step requires Θ(n) time to walk through the list
and place each key value into the appropriate bucket. At the
the end of Step 1, each bucket has Θ(n/m) elements
(assuming uniform distribution).

I Step 2. Using an optimal sort in Step 2 would then take
Θ( n

m lg n
m ) time per bucket. Since we have m buckets to sort,

the time for Step 2 is Θ(m n
m lg n

m ) = Θ(n lg n
m ).

I Step 3. This step takes Θ(n) time.

I The sequential time for bucketsort is: T ∗(n) = Θ(n+n lg n
m )

I If we choose the number of buckets to be linear to n, say
m = rn, where r is a constant between 0 and 1, then the
sequential run time for bucketsort is
T ∗(n) = Θ(n lg n

rn ) = Θ(n)
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Non-uniformly Distributed Input

The bucketsort algorithm assumes that the input is uniformly
distributed over a certain range. How can we use bucketsort if that
is not the case? Here are some ideas.

I If the input fits some standard distribution (like Normal
distribution, Zipf distribution etc.) then we can divide the
range using the probability density function to make the
buckets be approximately balanced.

I Use a universal hash function to randomize the data. An
example of when this would be useful is if the key values are
Internet URL’s.
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Parallel Bucketsort

I Assume that the n input elements are distributed across the p
processes, with each process initially holding n/p unsorted
elements. Further assume that each elements is in the range
[0 . . .k−1].

I The goal is that at the end of the sorting, process i has
elements that are sorted and any element on process i is
greater than or equal to any element on process j , where j < i
and any element on process i is less than or equal to any
element on process k , where k > i .
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Parallel Bucketsort (contd.)

Each process now has multiple little buckets (one per process that
it may receive data from): we refer to these little buckets as a box .
Set the number of boxes on each process to be m = p.

Step 1. Each process places its n/p key values into p boxes
with key value x going to the box number bx/(k/p)c.

Step 2. For each process i , where 0≤ i ≤ p−1, send the jth
box to process j , 0≤ j ≤ p−1, j 6= i .

Step 3. Each process receives p−1 boxes. It combines them
with its box and then sorts all of them together using
sequential bucketsort to make one list of
approximately n/p key values.
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0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

process 0 process 1 process 2 process 3

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

n/p

Parallel Bucketsort

n/p n/p n/p

process 0 process 1 process 2 process 3

sort together sort togethersort together sort together

Step 2: all−to−all 
 communication

Step 3

~n/p ~n/p ~n/p ~n/p

Step 1
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Parallel Bucketsort Implementation

I Step 2 involves an all-to-all communication pattern (a.k.a
gossip).

I The next frame shows a space-time visualization of an
all-to-all communication. The example shows a parallel
bucketsort program in action on a Beowulf Cluster.
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Parallel Bucketsort Analysis

Step 1. tcomp = Θ(np ) tcomm = Θ(1)

Step 2. Assuming uniform distribution. Each box will have about n/p2

key values. Each process send p−1 such boxes.

tcomp = Θ(1)

tcomm = Θ(p(p−1)(tstartup +
n

p2 tdata))

Step 3.

tcomp = Θ(
n

p
lg
n

p
)

tcomm = Θ(1)

Total: The overall runtime for parallel bucketsort:

Tp(n) = Θ(
n

p
+p(p−1)(tstartup +

n

p2 tdata) +
n

p
lg
n

p
)

= Θ(
n

p
lg
n

p
+

problem...︷ ︸︸ ︷
p2tstartup +ntdata)

Can we cut down on the startup time?
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Can we cut down on the startup time?
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All-to-All Communication

I Note that we can break the all-to-all communication into p rounds as
shown below.
round 0 P0→ P0 P1→ P1 P2→ P2 P3→ P3

round 1 P0→ P1 P1→ P2 P2→ P3 P3→ P0
round 2 P0→ P2 P1→ P3 P2→ P0 P3→ P1
round 3 P0→ P3 P1→ P0 P2→ P1 P3→ P2

I Note that in each round each process is sending out one message and
receiving one message. If the processes are on nodes connected via a
switch (completely connected network), then each round can be done
simultaneously. This does assume that the network interface is
capable of sending/receiving at the same time (which is true for most
network interfaces but not all).

I Further improvement can be made by making use of multicasting (if
supported in the underlying hardware). With multicasting, we will
have p−1 messages, each one a multicast message. This would cut
down the parallel time to:
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n
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lg
n
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+ptstartup +ntdata)
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