
1/11

Intermediate MPI (Message-Passing Interface)



2/11

What happens when a process sends a message?

Suppose process 0 wants to send a message to process 1. Three
possibilities:

I Process 0 can stop and wait until Process 1 is ready to receive
the message.

I Process 0 can copy the message into a buffer (internal to the
library or user-specified) and return from the MPI_Send call.

I It can report failure.

An MPI implementation is allowed to use the first or second
interpretation but is not required to use the second one.



2/11

What happens when a process sends a message?

Suppose process 0 wants to send a message to process 1. Three
possibilities:

I Process 0 can stop and wait until Process 1 is ready to receive
the message.

I Process 0 can copy the message into a buffer (internal to the
library or user-specified) and return from the MPI_Send call.

I It can report failure.

An MPI implementation is allowed to use the first or second
interpretation but is not required to use the second one.



2/11

What happens when a process sends a message?

Suppose process 0 wants to send a message to process 1. Three
possibilities:

I Process 0 can stop and wait until Process 1 is ready to receive
the message.

I Process 0 can copy the message into a buffer (internal to the
library or user-specified) and return from the MPI_Send call.

I It can report failure.

An MPI implementation is allowed to use the first or second
interpretation but is not required to use the second one.



3/11

Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

I Ordered send and receive. For example even processes send
first while odd processes receive first.

I Combined send and receive. MPI provides a combined
function MPI_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

I Use buffered sends. We provide the buffering.
I Use nonblocking communication. This can often give the

best performance, especially if we use it to overlap
communication and computation.

I Use synchronous sends. MPI provides MPI_Ssend. Send
doesn’t return until the destination process starts receiving the
message. However, this can have performance and scalability
issues.



3/11

Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

I Ordered send and receive. For example even processes send
first while odd processes receive first.

I Combined send and receive. MPI provides a combined
function MPI_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

I Use buffered sends. We provide the buffering.
I Use nonblocking communication. This can often give the

best performance, especially if we use it to overlap
communication and computation.

I Use synchronous sends. MPI provides MPI_Ssend. Send
doesn’t return until the destination process starts receiving the
message. However, this can have performance and scalability
issues.



3/11

Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

I Ordered send and receive. For example even processes send
first while odd processes receive first.

I Combined send and receive. MPI provides a combined
function MPI_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

I Use buffered sends. We provide the buffering.
I Use nonblocking communication. This can often give the

best performance, especially if we use it to overlap
communication and computation.

I Use synchronous sends. MPI provides MPI_Ssend. Send
doesn’t return until the destination process starts receiving the
message. However, this can have performance and scalability
issues.



3/11

Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

I Ordered send and receive. For example even processes send
first while odd processes receive first.

I Combined send and receive. MPI provides a combined
function MPI_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

I Use buffered sends. We provide the buffering.

I Use nonblocking communication. This can often give the
best performance, especially if we use it to overlap
communication and computation.

I Use synchronous sends. MPI provides MPI_Ssend. Send
doesn’t return until the destination process starts receiving the
message. However, this can have performance and scalability
issues.



3/11

Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

I Ordered send and receive. For example even processes send
first while odd processes receive first.

I Combined send and receive. MPI provides a combined
function MPI_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

I Use buffered sends. We provide the buffering.
I Use nonblocking communication. This can often give the

best performance, especially if we use it to overlap
communication and computation.

I Use synchronous sends. MPI provides MPI_Ssend. Send
doesn’t return until the destination process starts receiving the
message. However, this can have performance and scalability
issues.



3/11

Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

I Ordered send and receive. For example even processes send
first while odd processes receive first.

I Combined send and receive. MPI provides a combined
function MPI_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

I Use buffered sends. We provide the buffering.
I Use nonblocking communication. This can often give the

best performance, especially if we use it to overlap
communication and computation.

I Use synchronous sends. MPI provides MPI_Ssend. Send
doesn’t return until the destination process starts receiving the
message. However, this can have performance and scalability
issues.



4/11

Send communication modes

I Standard Mode - Not assumed that corresponding receive
routine has started. Amount of buffering not defined by MPI.
If buffering provided, send could complete before receive
reached.

I Buffered Mode - Send may start and return before a matching
receive. Necessary to specify buffer space via routine
MPI_Buffer_attach().

I Synchronous Mode - Send and receive can start before each
other but can only complete together.

I Ready Mode - Send can only start if matching receive already
reached, otherwise error. Use with care.



4/11

Send communication modes

I Standard Mode - Not assumed that corresponding receive
routine has started. Amount of buffering not defined by MPI.
If buffering provided, send could complete before receive
reached.

I Buffered Mode - Send may start and return before a matching
receive. Necessary to specify buffer space via routine
MPI_Buffer_attach().

I Synchronous Mode - Send and receive can start before each
other but can only complete together.

I Ready Mode - Send can only start if matching receive already
reached, otherwise error. Use with care.



4/11

Send communication modes

I Standard Mode - Not assumed that corresponding receive
routine has started. Amount of buffering not defined by MPI.
If buffering provided, send could complete before receive
reached.

I Buffered Mode - Send may start and return before a matching
receive. Necessary to specify buffer space via routine
MPI_Buffer_attach().

I Synchronous Mode - Send and receive can start before each
other but can only complete together.

I Ready Mode - Send can only start if matching receive already
reached, otherwise error. Use with care.



4/11

Send communication modes

I Standard Mode - Not assumed that corresponding receive
routine has started. Amount of buffering not defined by MPI.
If buffering provided, send could complete before receive
reached.

I Buffered Mode - Send may start and return before a matching
receive. Necessary to specify buffer space via routine
MPI_Buffer_attach().

I Synchronous Mode - Send and receive can start before each
other but can only complete together.

I Ready Mode - Send can only start if matching receive already
reached, otherwise error. Use with care.



5/11

More on Send communication modes

I Each of the four modes can be applied to both blocking and
nonblocking send routines.

I Only the standard mode is available for the blocking and
nonblocking receive routines.

I Any type of send routine can be used with any type of receive
routine.



6/11

Buffered Send

I Prototypes.

int MPI_BSend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)

I MPI_Bsend allows the user to send messages without worrying about
where they are buffered (because the user must have provided buffer
space with MPI_Buffer_attach ).

I The buffer size given should be the sum of the sizes of all outstanding
Bsends that you intend to have, plus MPI_BSEND_OVERHEAD for
each Bsend that will be done.

I MPI_Buffer_detach returns the buffer address and size so that nested
libraries can replace and restore the buffer.



6/11

Buffered Send

I Prototypes.

int MPI_BSend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)

I MPI_Bsend allows the user to send messages without worrying about
where they are buffered (because the user must have provided buffer
space with MPI_Buffer_attach ).

I The buffer size given should be the sum of the sizes of all outstanding
Bsends that you intend to have, plus MPI_BSEND_OVERHEAD for
each Bsend that will be done.

I MPI_Buffer_detach returns the buffer address and size so that nested
libraries can replace and restore the buffer.



6/11

Buffered Send

I Prototypes.

int MPI_BSend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)

I MPI_Bsend allows the user to send messages without worrying about
where they are buffered (because the user must have provided buffer
space with MPI_Buffer_attach ).

I The buffer size given should be the sum of the sizes of all outstanding
Bsends that you intend to have, plus MPI_BSEND_OVERHEAD for
each Bsend that will be done.

I MPI_Buffer_detach returns the buffer address and size so that nested
libraries can replace and restore the buffer.



6/11

Buffered Send

I Prototypes.

int MPI_BSend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)

I MPI_Bsend allows the user to send messages without worrying about
where they are buffered (because the user must have provided buffer
space with MPI_Buffer_attach ).

I The buffer size given should be the sum of the sizes of all outstanding
Bsends that you intend to have, plus MPI_BSEND_OVERHEAD for
each Bsend that will be done.

I MPI_Buffer_detach returns the buffer address and size so that nested
libraries can replace and restore the buffer.



7/11

MPI Nonblocking routines

I Nonblocking send - MPI_Isend(...) - will return “immediately”
even before source location is safe to be altered.

I Nonblocking receive - MPI_Irecv(...) - will return even there is
no message to accept.



8/11

Nonblocking routine formats

MPI_Isend(buf,count,datatype,dest,tag,comm,request)

MPI_Irecv(buf,count,datatype,source,tag,comm, request)

Completion detected by MPI_Wait() and MPI_Test().

MPI_Wait(MPI_Request *request, MPI_Status *status)

int MPI_Waitall(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

int MPI_Waitany(int count, MPI_Request array_of_requests[], int
*index, MPI_Status *status)

MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)



8/11

Nonblocking routine formats

MPI_Isend(buf,count,datatype,dest,tag,comm,request)

MPI_Irecv(buf,count,datatype,source,tag,comm, request)

Completion detected by MPI_Wait() and MPI_Test().

MPI_Wait(MPI_Request *request, MPI_Status *status)

int MPI_Waitall(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

int MPI_Waitany(int count, MPI_Request array_of_requests[], int
*index, MPI_Status *status)

MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)



8/11

Nonblocking routine formats

MPI_Isend(buf,count,datatype,dest,tag,comm,request)

MPI_Irecv(buf,count,datatype,source,tag,comm, request)

Completion detected by MPI_Wait() and MPI_Test().

MPI_Wait(MPI_Request *request, MPI_Status *status)

int MPI_Waitall(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

int MPI_Waitany(int count, MPI_Request array_of_requests[], int
*index, MPI_Status *status)

MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)



9/11

MPI_Isend example

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0) {

int x;
MPI_Isend(&x,1,MPI_INT, 1, msgtag, MPI_COMM_WORLD, req1);
compute();
MPI_Wait(req1, status);

} else if (myrank == 1) {
int x;
MPI_Recv(&x,1,MPI_INT,0,msgtag, MPI_COMM_WORLD, status);

}



10/11

Sending/Receiving structures (Part 1)

I We can send a structure by packing it as an array of bytes:

struct test {
int n;
double x[3], y[3];

};

if (pid == source) {
struct test test1;
MPI_Send(&test1, sizeof(struct test), MPI_BYTE, destination,

tag, MPI_COMM_WORLD);
} else (pid == destination) {

struct test test2;
MPI_Recv(&test2, sizeof(struct test), MPI_BYTE, source, tag,

MPI_COMM_WORLD, status);
}

I However, this relies on the layout of the structure being the same on all nodes.
It also obfuscates the code and introduces platform dependency so it is not a
recommended practice for MPI programs.



10/11

Sending/Receiving structures (Part 1)

I We can send a structure by packing it as an array of bytes:

struct test {
int n;
double x[3], y[3];

};

if (pid == source) {
struct test test1;
MPI_Send(&test1, sizeof(struct test), MPI_BYTE, destination,

tag, MPI_COMM_WORLD);
} else (pid == destination) {

struct test test2;
MPI_Recv(&test2, sizeof(struct test), MPI_BYTE, source, tag,

MPI_COMM_WORLD, status);
}

I However, this relies on the layout of the structure being the same on all nodes.
It also obfuscates the code and introduces platform dependency so it is not a
recommended practice for MPI programs.



11/11

Sending/Receiving structures (Part 2)

I We can send a structure by creating a custom MPI data type for the structure

struct test {
int n;
double x[3], y[3];

};
const int nitems = 3;
int blocklengths[3] = {1, 3, 3}; //lengths of i, x and y as #items
MPI_Datatype types[3] = {MPI_INT, MPI_DOUBLE, MPI_DOUBLE};
MPI_Aint offsets[3];
MPI_Datatype mpi_test_type;
offsets[0] = offsetof(struct test, n);
offsets[1] = offsetof(struct test, x);
offsets[2] = offsetof(struct test, y);
MPI_Type_create_struct(nitems, blocklengths, offsets, types,

&mpi_test_type);
MPI_Type_commit(&mpi_test_type);

I See example lab/MPI/send-struct/ for a working example. This is the
recommended way of sending a structure in MPI.

I Note that there is no way to send a structure that has variable length (because
of pointers stored in it) in one message. We have to use two messages.



11/11

Sending/Receiving structures (Part 2)

I We can send a structure by creating a custom MPI data type for the structure

struct test {
int n;
double x[3], y[3];

};
const int nitems = 3;
int blocklengths[3] = {1, 3, 3}; //lengths of i, x and y as #items
MPI_Datatype types[3] = {MPI_INT, MPI_DOUBLE, MPI_DOUBLE};
MPI_Aint offsets[3];
MPI_Datatype mpi_test_type;
offsets[0] = offsetof(struct test, n);
offsets[1] = offsetof(struct test, x);
offsets[2] = offsetof(struct test, y);
MPI_Type_create_struct(nitems, blocklengths, offsets, types,

&mpi_test_type);
MPI_Type_commit(&mpi_test_type);

I See example lab/MPI/send-struct/ for a working example. This is the
recommended way of sending a structure in MPI.

I Note that there is no way to send a structure that has variable length (because
of pointers stored in it) in one message. We have to use two messages.



11/11

Sending/Receiving structures (Part 2)

I We can send a structure by creating a custom MPI data type for the structure

struct test {
int n;
double x[3], y[3];

};
const int nitems = 3;
int blocklengths[3] = {1, 3, 3}; //lengths of i, x and y as #items
MPI_Datatype types[3] = {MPI_INT, MPI_DOUBLE, MPI_DOUBLE};
MPI_Aint offsets[3];
MPI_Datatype mpi_test_type;
offsets[0] = offsetof(struct test, n);
offsets[1] = offsetof(struct test, x);
offsets[2] = offsetof(struct test, y);
MPI_Type_create_struct(nitems, blocklengths, offsets, types,

&mpi_test_type);
MPI_Type_commit(&mpi_test_type);

I See example lab/MPI/send-struct/ for a working example. This is the
recommended way of sending a structure in MPI.

I Note that there is no way to send a structure that has variable length (because
of pointers stored in it) in one message. We have to use two messages.


