Intermediate MPI (Message-Passing Interface) J




What happens when a process sends a message?

Suppose process 0 wants to send a message to process 1. Three
possibilities:

» Process 0 can stop and wait until Process 1 is ready to receive
the message.



What happens when a process sends a message?

Suppose process 0 wants to send a message to process 1. Three
possibilities:
» Process 0 can stop and wait until Process 1 is ready to receive
the message.

» Process 0 can copy the message into a buffer (internal to the
library or user-specified) and return from the MPI_Send call.



What happens when a process sends a message?

Suppose process 0 wants to send a message to process 1. Three
possibilities:
» Process 0 can stop and wait until Process 1 is ready to receive
the message.

» Process 0 can copy the message into a buffer (internal to the
library or user-specified) and return from the MPI_Send call.

» |t can report failure.

An MPI implementation is allowed to use the first or second
interpretation but is not required to use the second one.



Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?



Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

» Ordered send and receive. For example even processes send
first while odd processes receive first.



Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?
» Ordered send and receive. For example even processes send
first while odd processes receive first.
» Combined send and receive. MPI provides a combined

function MP|_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.



Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?
» Ordered send and receive. For example even processes send
first while odd processes receive first.
» Combined send and receive. MPI provides a combined
function MP|_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

» Use buffered sends. We provide the buffering.



Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

» Ordered send and receive. For example even processes send
first while odd processes receive first.

» Combined send and receive. MPI provides a combined
function MP|_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

» Use buffered sends. We provide the buffering.

» Use nonblocking communication. This can often give the
best performance, especially if we use it to overlap
communication and computation.



Dealing with buffering in MPI

How do we ensure that the parallel program works correctly without
depending upon the amount of buffering, if any, provided by the
message passing system?

>

Ordered send and receive. For example even processes send
first while odd processes receive first.

Combined send and receive. MPI provides a combined
function MP|_Sendrecv that allows us to send and receive data
without worrying about deadlock from a lack of buffering.

Use buffered sends. We provide the buffering.

Use nonblocking communication. This can often give the
best performance, especially if we use it to overlap
communication and computation.

Use synchronous sends. MPI provides MPI Ssend. Send
doesn't return until the destination process starts receiving the
message. However, this can have performance and scalability
issues.



Send communication modes

» Standard Mode - Not assumed that corresponding receive
routine has started. Amount of buffering not defined by MPI.

If buffering provided, send could complete before receive
reached.



Send communication modes

» Standard Mode - Not assumed that corresponding receive
routine has started. Amount of buffering not defined by MPI.
If buffering provided, send could complete before receive
reached.

» Buffered Mode - Send may start and return before a matching

receive. Necessary to specify buffer space via routine
MPI_Buffer attach().



Send communication modes

» Standard Mode - Not assumed that corresponding receive
routine has started. Amount of buffering not defined by MPI.
If buffering provided, send could complete before receive
reached.

» Buffered Mode - Send may start and return before a matching

receive. Necessary to specify buffer space via routine
MPI_Buffer attach().

» Synchronous Mode - Send and receive can start before each
other but can only complete together.



Send communication modes

» Standard Mode - Not assumed that corresponding receive
routine has started. Amount of buffering not defined by MPI.
If buffering provided, send could complete before receive
reached.

» Buffered Mode - Send may start and return before a matching
receive. Necessary to specify buffer space via routine
MPI_Buffer attach().

» Synchronous Mode - Send and receive can start before each
other but can only complete together.

» Ready Mode - Send can only start if matching receive already
reached, otherwise error. Use with care.



More on Send communication modes

» Each of the four modes can be applied to both blocking and
nonblocking send routines.

» Only the standard mode is available for the blocking and
nonblocking receive routines.

» Any type of send routine can be used with any type of receive
routine.



Buffered Send

» Prototypes.

int MPI_BSend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)



Buffered Send

» Prototypes.

int MPI_BSend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)

» MPI Bsend allows the user to send messages without worrying about
where they are buffered (because the user must have provided buffer
space with MPI_Buffer _attach ).



Buffered Send

» Prototypes.

int MPI_BSend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)

» MPI Bsend allows the user to send messages without worrying about
where they are buffered (because the user must have provided buffer
space with MPI_Buffer attach ).

» The buffer size given should be the sum of the sizes of all outstanding
Bsends that you intend to have, plus MPI BSEND OVERHEAD for
each Bsend that will be done.



Buffered Send

» Prototypes.

int MPI_BSend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)

» MPI Bsend allows the user to send messages without worrying about
where they are buffered (because the user must have provided buffer
space with MPI_Buffer attach ).

» The buffer size given should be the sum of the sizes of all outstanding
Bsends that you intend to have, plus MPI BSEND OVERHEAD for
each Bsend that will be done.

» MPI Buffer detach returns the buffer address and size so that nested
libraries can replace and restore the buffer.



MPI Nonblocking routines

» Nonblocking send - MPI_Isend(...) - will return “immediately”
even before source location is safe to be altered.

» Nonblocking receive - MPI_Irecv(...) - will return even there is
no message to accept.



Nonblocking routine formats

MPI _Isend(buf,count,datatype,dest,tag,comm,request)

MPI _Irecv(buf,count,datatype,source,tag,comm, request)



Nonblocking routine formats

MPI _Isend(buf,count,datatype,dest,tag,comm,request)
MPI _Irecv(buf,count,datatype,source,tag,comm, request)

Completion detected by MPI_Wait() and MPI_Test().



Nonblocking routine formats

MPI _Isend(buf,count,datatype,dest,tag,comm,request)
MPI _Irecv(buf,count,datatype,source,tag,comm, request)
Completion detected by MPI_Wait() and MPI_Test().
MPI_Wait(MPI_Request *request, MPI| _Status *status)

int MPI_Waitall(int count, MP| Request array of requests[],
MPI_Status array_of _statuses[])

int MPI_Waitany(int count, MPI _Request array of requests[], int
*index, MPI_Status *status)

MPI Test(MPI_Request *request, int *flag, MP|_Status *status)



MPI Isend example

MPI_Comm_rank (MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0) {
int x;
MPI_Isend(&x,1,MPI_INT, 1, msgtag, MPI_COMM_WORLD, reql);
compute() ;
MPI_Wait(reql, status);
} else if (myrank == 1) {
int x;
MPI_Recv(&x,1,MPI_INT,0,msgtag, MPI_COMM_WORLD, status);



Sending/Receiving structures (Part 1)

» We can send a structure by packing it as an array of bytes:

struct test {

int n;

double x[3], y[3];
};

if (pid == source) {
struct test testil;
MPI_Send(&testl, sizeof (struct test), MPI_BYTE, destination,
tag, MPI_COMM_WORLD) ;
} else (pid == destination) {
struct test test2;
MPI_Recv(&test2, sizeof (struct test), MPI_BYTE, source, tag,
MPI_COMM_WORLD, status);



Sending/Receiving structures (Part 1)

» We can send a structure by packing it as an array of bytes:

struct test {

int n;

double x[3], y[3];
};

if (pid == source) {
struct test testil;
MPI_Send(&testl, sizeof (struct test), MPI_BYTE, destination,
tag, MPI_COMM_WORLD) ;
} else (pid == destination) {
struct test test2;
MPI_Recv(&test2, sizeof (struct test), MPI_BYTE, source, tag,
MPI_COMM_WORLD, status);
}
» However, this relies on the layout of the structure being the same on all nodes.

It also obfuscates the code and introduces platform dependency so it is not a
recommended practice for MPI programs.



Sending/Receiving structures (Part 2)

» We can send a structure by creating a custom MPI data type for the structure

struct test {
int n;
double x[3], y[3];
};
const int nitems = 3;
int blocklengths[3] = {1, 3, 3}; //lengths of i, x and y as #items
MPI_Datatype types[3] = {MPI_INT, MPI_DOUBLE, MPI_DOUBLE};
MPI_Aint offsets[3];
MPI_Datatype mpi_test_type;
offsets[0] = offsetof(struct test, n);
offsets[1] = offsetof(struct test, x);
offsets[2] = offsetof(struct test, y);
MPI_Type_create_struct(nitems, blocklengths, offsets, types,
&mpi_test_type);
MPI_Type_commit (&mpi_test_type);



Sending/Receiving structures (Part 2)

» We can send a structure by creating a custom MPI data type for the structure

struct test {
int n;
double x[3], y[3];
};
const int nitems = 3;
int blocklengths[3] = {1, 3, 3}; //lengths of i, x and y as #items
MPI_Datatype types[3] = {MPI_INT, MPI_DOUBLE, MPI_DOUBLE};
MPI_Aint offsets[3];
MPI_Datatype mpi_test_type;
offsets[0] = offsetof(struct test, n);
offsets[1] = offsetof(struct test, x);
offsets[2] = offsetof(struct test, y);
MPI_Type_create_struct(nitems, blocklengths, offsets, types,
&mpi_test_type);
MPI_Type_commit (&mpi_test_type);

> See example lab/MPI/send-struct/ for a working example. This is the
recommended way of sending a structure in MPI.



Sending/Receiving structures (Part 2)

» We can send a structure by creating a custom MPI data type for the structure

struct test {
int n;
double x[3], y[3];
3
const int nitems = 3;
int blocklengths[3] = {1, 3, 3}; //lengths of i, x and y as #items
MPI_Datatype types[3] = {MPI_INT, MPI_DOUBLE, MPI_DOUBLE};
MPI_Aint offsets[3];
MPI_Datatype mpi_test_type;
offsets[0] = offsetof(struct test, n);
offsets[1] = offsetof(struct test, x);
offsets[2] = offsetof(struct test, y);
MPI_Type_create_struct(nitems, blocklengths, offsets, types,
&mpi_test_type);
MPI_Type_commit (&mpi_test_type);
> See example lab/MPI/send-struct/ for a working example. This is the
recommended way of sending a structure in MPI.
> Note that there is no way to send a structure that has variable length (because
of pointers stored in it) in one message. We have to use two messages.



