
1/11

Message Passing Model



2/11

Message Passing Model

The parallel program consists of a collection of processes.
The model relies on two mechanisms:

I A method for creating separate processes on remote nodes.
I Single Program Multiple Data style. Single executable started

statically at all processors. Control statements select different
parts for each process to execute.

I Multiple Program Multiple Data style. Potentially separate
programs for separate processors. Processes created from a
main process: dynamic process creation.

I The ability to send and receive messages.



3/11

Pseudo-code Convention

Synchronous send : waits until the complete message can be
accepted by the receiving process before sending the message.
Synchronous recv : wait until the message arrives.

I send(&variable,. . . , Ppid): Send one or more primitive
variables or arrays to the processor numbered pid . The
ampersand represents the “address-of” operator (like in C or a
reference in Java).

I send(&variable,. . . , Ppid , TAG): Send one or more primitive
variables or arrays to the processor numbered pid in an
message with tag TAG.

I recv(&variable,. . . , Ppid). Receive a message from the
specified process into the specified variable.

I recv(&variable,. . . , Ppid , TAG). Receive a message from the
specified process with the specified tag into the specified
variable.

I Wild cards. Use PANY for any processors and ANY_TAG for
any tag.



4/11

Pseudo-code Convention (contd.)

Asynchronous sends and recvs: These primitives do not wait for the
actions to complete before returning. Usually requires buffering by
library and/or local Operating Systems for messages. Or buffering
could be done in-place using the variables (then we cannot modify
the variables used until the message has transferred).

I async_send(&variable,. . . , Ppid , TAG, &request):
Start an asynchronous send. The request is filled in by an
unique identifier.

I async_recv(&variable,. . . , Ppid , TAG, &request):
Attempt an asynchronous recv.

I async_wait(&request): Wait for asynchronous request to
finish.

I async_test(&request): Test if asynchronous request has
finished. Returns TRUE or FALSE.



5/11

Pseudo-code Convention (contd.)

Group operations

I bcast(&variable,. . . , Psource): Broadcast one or more primitive
variables or arrays to all processes from the process Psource . All
processes call the bcast method.

I reduce(&data, &result, operation, Pdest): Reduce the value of
the variable data across all processes to a single value using
the specified operation. All processes call this method. The
operation must be commutative.

I scatter(&srcArray, &destVariable, Psource): Scatter the ith
element of the source array on the source process Psourceto the
ith process. All processes call this method.

I gather(&srcVariable, &destArray, Pdest): Gather the ith
element of the destination array on the destination process
Pdest from the source variable on the ith process. All processes
call this method.

We will introduce more primitives later.



6/11

Parallel Sum Example-code

I There are p processes with process ids: 0≤ pid ≤ p−1.
I Assume that the n elements are distributed across the p

processes evenly such that each process has n/p elements.
I The sum is to be computed at process 0.



7/11

Parallel Sum Pseudo-code

parallel_sum(A, pid)
//p processes, process number pid is 0≤ pid ≤ p−1
//Input: A[0 . . .n/p] on each process
//Output: sum on process 0
1. sum ← 0
2. for (i=0; i<n/p; i++)
3. do sum ← sum + A[i]

4. if (pid 6= 0)
5. send(&sum, &pid, P0)
6. else
7. partial_sums[0] ← sum
8. for (i=1; i<p; i++)
9. do recv(&sum, &source, PANY)
10. partial_sums[source] ← sum
11. sum ← 0
12. for (i=0; i<p; i++)
13. do sum ← sum + partial_sums[i]
14. return sum



8/11

Evaluating Parallel Programs

We need to estimate the computation time as well as the
communication overhead.

Tp(n) = tcomp(n) + tcomm(n)

I Computational time: In general, this would be the longest
computational time for the processes running the parallel
program.

I Communication time: To send n data words in one message,
we will assume that the time taken is:

tstartup +n× tdata,

where tstartup is time to send a message with no data and tdata
is the transmission time per data word. Both these are
assumed constants.



9/11

Parallel Sum Analysis with Communication Overhead

I Steps 1–3 are done by all processes and take Θ(n/p) computation
time.

I Steps 4–10 involve p−1 processes sending partial sums to process 0.
There are p separate messages with one data word each. Thus the
communication time is:

Θ(ptstartup +ptdata)

I Process 0 adds the partial sums up in Steps 11–13. This takes Θ(p)
computation time.

Thus, the total time is:

Θ(n/p+p+ptstartup +ptdata)

= Θ(n/p+p(1+ tstartup + tdata))

= Θ(n/p+p)

In this case, the startup time didn’t make a significant difference but in
some cases it does. Practically speaking, the startup time does cause
overhead so sending fewer, larger messages will give faster times and better
efficiency.



10/11

NetPipe 3.7.2 Benchmark Details

What does the startup overhead look like in real life?

I The tests were done on two nodes of the onyx cluster. Each node has
one Gigabit Ethernet PCI Express network card and has a quad-core
Intel 64-bit i5 3.1 GHz processor, 8 GB RAM and running
3.15.8-200.fc20.x86_64 Fedora Linux kernel. The version of the gcc
compiler used was 4.8.3 20140624.

I
Test startup time data time
TCP 78 usec 0.001127 usec (887 MBits/sec)

I Note that we can send around 80,000 data words in one startup time!
I The commands that were used are shown below.

(on node01) NPtcp -h node02 -I -b 262144
(on node02) NPtcp -I -b 262144



11/11

Exercises

1. Write pseudo-code for the unordered search problem in parallel. Use
the following function prototype:
parallel_search(A, pid)
//p processes, process number pid is 0≤ pid ≤ p−1
//Input: A[0 . . .n/p] on each process (unsorted)
//Output: (pid,index) if found, otherwise -1

2. Write pseudo-code for two processes that play ping pong with a
message!

3. Write pseudo-code for a a set of processes that pass a message around
in a ring forever.


