MapReduce Design Patterns



MapReduce Restrictions

» Any algorithm that needs to be implemented using MapReduce
must be expressed in terms of a small number of rigidly defined
components that must fit together in very specific ways.

» Synchronization is difficult. Within a single MapReduce job,
there is only one opportunity for cluster-wide
synchronization—during the shuffle and sort stage.

» Developer has little control over the following aspects:

» Where a mapper or reducer runs (i.e., on which node in the
cluster)

» When a mapper or reducer begins or finishes

» Which input key-value pairs are processed by a specific mapper

» Which intermediate key-value pairs are processed by a specific
reducer



MapReduce Techniques

» The ability to construct complex data structures as keys and
values to store and communicate partial results.

» The ability to execute user-specified initialization code at the
beginning of a map or reduce task, and the ability to execute
user-specified termination code at the end of a map or reduce
task.

» The ability to preserve state in both mappers and reducers
across multiple input or intermediate keys.

» The ability to control the sort order of intermediate keys, and
therefore the order in which a reducer will encounter particular
keys.

» The ability to control the partitioning of the key space, and
therefore the set of keys that will be encountered by a
particular reducer.

» The ability to iterate over multiple MapReduce jobs using a
driver program.



Local Aggregation

We will use the wordcount example to illustrate these techniques.

» Use Combiners. In Hadoop, combiners are considered optional
optimizations so they cannot be counted on for correctness or to be
even run at all.

» With the local aggregation technique, we can incorporate combiner
functionality directly inside the mappers (under our control) as
explained below.

» In-Mapper Combining. An associative array (e.g. Map in Java) is
introduced inside the mapper to tally up term counts within a single
document: instead of emitting a key-value pair for each term in the
document, this version emits a key-value pair for each unique term in
the document.



In-Mapper Combining

1: class MapPER

2 method Mapr(docid a, doc d)

3: H < new AsSOCIATIVEARRAY

4 forall term ¢ € doc d do

5: H{t} < H{t} +1 & Tally counts for entire document
6: forall term t € H do

7: Emrt(term ¢, count H{t})



In-Mapper Combining Across Multiple Documents

» Prior to processing any input key-value pairs we initialize an
associative array for holding term counts in the mapper’s
initialize method. For example, in Hadoop's new API, there is
a setup(...) method that is called before processing any
key-value pairs.

» We can continue to accumulate partial term counts in the
associative array across multiple documents, and emit
key-value pairs only when the mapper has processed all
documents.

» This requires an API hook that provides an opportunity to
execute user-specified code after the Map method has been
applied to all input key-value pairs of the input data split to
which the map task was assigned.

» The Mapper class in the new Hadoop API provides this hook
as the method named cleanup(...).



In-Mapper Combining Across Multiple Documents

1: class MaPPER

2 method INITIALIZE

3 H < new AsSOCIATIVEARRAY

4: method Mar(docid a, doc d)

5 for all term 1 € doc d do

6 H{t} < H{t} +1 & Tally counts across documents

7 method CLose
8: forall term ¢ € H do
9 Emir(term 1, count H{t})



In-Mapper Combining Analysis

» Advantages: In-mapper combining will be more efficient than
using Combiners since we have more control over the process
and we save having to serialize/deserialize objects multiple
times.

» Drawbacks.

» State preservation across mappers breaks the MapReduce
paradigm.This may lead to ordering dependent bugs that are
hard to track.

» Scalability bottlenecks if the number of keys we encounter
cannot fit in memory. This can be addressed by emitting
partial results after every n key-value pairs, or after certain
fraction of memory has been used or when a certain amount of
memory (buffer) is filled up.



In-Mapper Combiner: Another Example

Suppose we have a large data set where input keys are strings and
input values are integers, and we wish to compute the mean of all
integers associated with the same key.

A real-world example might be a large user log from a popular
website, where keys represent user ids and values represent some
measure of activity such as elapsed time for a particular
session—the task would correspond to computing the mean session
length on a per-user basis, which would be useful for understanding
user demographics.

» Write MapReduce pseudo-code to solve the problem.
» Modify the solution to use Combiners. Note that

Mean(1,2,3,4,5) # Mean(Mean(1,2),Mean(3,4,5))

» Modify the solution to use in-mapper combining.



Calculating Mean: Basic Solution

1: class MAPPER

2: method Map(string 7, integer r)

3 Emrr(string 1, integer r)

1: class REDUCER

2 method REDUCE(string 1, integers [r, r2, .. .])
3: sum < 0

4 cnt < 0

5 for all integer r € integers [r1.r2,...] do
6 sum < sum—+r

7: cnt < cnt + 1

8 Tayg <— sumjcnt

9 EmrT(string 1, integer r4,,)



Calculating Mean: With Combiners

1: class MaPPER
2 method Mapr(string 1, integer »)
3: Emrt(string 1, pair (r, 1))

. class CoMBINER
method CoMmBINE(string 7, pairs [(s1, ¢1), (52, ¢2) .. .])
sum < 0

1

2

3

4: cnt < 0
5 for all pair (s, ¢) € pairs [(s1, ¢1), (52, ¢2)...] do
6 SUm <— sum + s

7 cnt < cnt + ¢

8

Emrt(string ¢, pair (sum, cnt))



Calculating Mean: Modified Reducer

1: class REDUCER
2 method REDUCE(string ¢, pairs [(s1, ¢1), (52, ¢2) ...])
3: sum < ()

4 cnt < (0

5 for all pair (s, ¢) € pairs [(s1, 1), (52, ¢2)...] do
6 sum < sum —+ s

7: cnt < cnt + ¢

3 Favg < sumjcnt

9: EmiT(string 1, integer ryyg)



Calculating Mean: With In-Mapper Combining

1: class MAPPER

2 method INITIALIZE

3 S <« new AsSSOCIATIVEARRAY

4 C < new ASSOCIATIVEARRAY

5 method Mar(string 7, integer r)

6 S{t} < S{t}+r

7 Clt} « C{1} +1

8 method CLosE

9: forall term 7 € S do

10: Emrr(term ¢, pair (§{r}, C{t}))



Another example: Unique Items Counting

There is a set of records. Each record has field F and arbitrary
number of category labels G ={G1,G2,...}. Count the total
number of unique values of field F for each subset of records for
each value of any label.

={a, b}
d, e}

Record 1: F=1, G

Record 2: F=2, G={a,
Record 3: F=1, G={b}
Record 4: F=3, G={a, b}
Result:
a -> 3
b ->2
d > 1
e > 1

» Come up with a two-pass solution.
» Come up with a one-pass solution that uses combining in the
reducer.



Cross-Correlation

» There is a set of tuples of items. For each possible pair of
items calculate the number of tuples where these items
co-occur. If the total number of items is n, then n2 =nx n

values should be reported.

» This problem appears in text analysis (say, items are words and
tuples are sentences), market analysis (customers who buy this
tend to also buy that). If n? is quite small and such a matrix
can fit in the memory of a single machine, then
implementation is straightforward.

» We will study two ways to solving this problem that illustrate
two patterns: pairs versus stripes.



Pairs and Stripes Patterns

» Pairs pattern. The mapper finds each co-occurring pair and
outputs it with a count of 1. The reducer just adds up the
frequencies for each pair. This requires the use of complex
keys (a pair of words).

» Stripes pattern.

» Instead of emitting intermediate key-value pairs for each
co-occurring word pair, co-occurrence information is first
stored in an associative array, denoted H . The mapper emits
key-value pairs with words as keys and corresponding
associative arrays as values.

» The reducer performs an element-wise sum of all associative
arrays with the same key, accumulating counts that correspond
to the same cell in the co-occurrence matrix. The final
associative array is emitted with the same word as the key.

> In contrast to the pairs approach, each final key-value pair
encodes a row in the co-occurrence matrix.



Calculating Co-occurrences: With Pairs Pattern

1: class MAPPER

2 method Mar(docid a, doc d)

3: forall term w € doc d do

4 for all term u € NEIGHBORS(w) do

v

Emrr(pair (w, ), count 1) > Emit count for each co-occurrence
1: class REpUCER
2 method REDUCE(pair p, counts [c1, c2, .. .])
3: s<0
4 for all count ¢ € counts [¢y, ¢5,...] do
s<—s+c > Sum co-occurrence counts

5
6: Emrt(pair p, count s)



Calculating Co-occurrences: With Stripes Pattern

1: class MAPPER

2 method Mar(docid a, doc d)

3: forall term w € doc d do

4 H <« new ASSOCIATIVEARRAY

5: forall term u € NeicuBors(w) do

6: H{u} < H{u}+1 > Tally words co-occurring with w
7: Emir(Term w, Stripe H)

1: class REDUCER

2 method REDUCE(term w, stripes [Hi, H>, H3, ...])

3 Hy < new AsSSOCIATIVEARRAY

4 for all stripe H € stripes [H,, Hy, Hs, ...] do

5 SuM(Hy, H) > Element-wise sum

6: Emrr(term w, stripe H )



Pairs versus Stripes

v

Stripes generates fewer intermediate keys than Pairs approach.

v

Stripes benefits more from combiners and can be done with
in-memory combiners.

v

Stripes is, in general, faster.

Stripes requires more complex implementation.

v



References

» Jimmy Lin and Chris Dyer. Chapter 3 in Data-Intensive Text
Processing with MapReduce.

» llya Katsov. MapReduce Patterns, Algorithms, and Use Cases.
http://highlyscalable.wordpress.com/2012/02/01/

mapreduce-patterns/



