MapReduce Design Patterns
MapReduce Restrictions

- Any algorithm that needs to be implemented using MapReduce must be expressed in terms of a small number of rigidly defined components that must fit together in very specific ways.
- Synchronization is difficult. Within a single MapReduce job, there is only one opportunity for cluster-wide synchronization—during the shuffle and sort stage.
- Developer has little control over the following aspects:
 - Where a mapper or reducer runs (i.e., on which node in the cluster)
 - When a mapper or reducer begins or finishes
 - Which input key-value pairs are processed by a specific mapper
 - Which intermediate key-value pairs are processed by a specific reducer
MapReduce Techniques

- The ability to construct complex data structures as keys and values to store and communicate partial results.
- The ability to execute user-specified initialization code at the beginning of a map or reduce task, and the ability to execute user-specified termination code at the end of a map or reduce task.
- The ability to preserve state in both mappers and reducers across multiple input or intermediate keys.
- The ability to control the sort order of intermediate keys, and therefore the order in which a reducer will encounter particular keys.
- The ability to control the partitioning of the key space, and therefore the set of keys that will be encountered by a particular reducer.
- The ability to iterate over multiple MapReduce jobs using a driver program.
Local Aggregation

We will use the wordcount example to illustrate these techniques.

- **Use Combiners.** In Hadoop, combiners are considered optional optimizations so they cannot be counted on for correctness or to be even run at all.

- **With the local aggregation technique,** we can incorporate combiner functionality directly inside the mappers (under our control) as explained below.

- **In-Mapper Combining.** An associative array (e.g. Map in Java) is introduced inside the mapper to tally up term counts within a single document: instead of emitting a key-value pair for each term in the document, this version emits a key-value pair for each unique term in the document.
In-Mapper Combining

1: class Mapper
2: method Map(docid a, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H{t} ← H{t} + 1
6: for all term t ∈ H do
7: Emit(term t, count H{t})

▷ Tally counts for entire document
Prior to processing any input key-value pairs, we initialize an associative array for holding term counts in the mapper’s initialize method. For example, in Hadoop’s new API, there is a `setup(...)` method that is called before processing any key-value pairs.

We can continue to accumulate partial term counts in the associative array across multiple documents, and emit key-value pairs only when the mapper has processed all documents.

This requires an API hook that provides an opportunity to execute user-specified code after the Map method has been applied to all input key-value pairs of the input data split to which the map task was assigned.

The Mapper class in the new Hadoop API provides this hook as the method named `cleanup(...)`.
In-Mapper Combining Across Multiple Documents

1: class Mapper
2: method Initialize
3: \(H \leftarrow \text{new AssociativeArray} \)
4: method Map(docid \(a \), doc \(d \))
5: for all term \(t \in \text{doc} \ d \) do
6: \(H\{t\} \leftarrow H\{t\} + 1 \) \(\triangleright \) Tally counts across documents
7: method Close
8: for all term \(t \in H \) do
9: Emit(term \(t \), count \(H\{t\} \))
In-Mapper Combining Analysis

- **Advantages**: In-mapper combining will be more efficient than using Combiners since we have more control over the process and we save having to serialize/deserialize objects multiple times.

- **Drawbacks**.
 - State preservation across mappers breaks the MapReduce paradigm. This may lead to ordering dependent bugs that are hard to track.
 - Scalability bottlenecks if the number of keys we encounter cannot fit in memory. This can be addressed by emitting partial results after every n key-value pairs, or after certain fraction of memory has been used or when a certain amount of memory (buffer) is filled up.
In-Mapper Combiner: Another Example

Suppose we have a large data set where input keys are strings and input values are integers, and we wish to compute the mean of all integers associated with the same key.

A real-world example might be a large user log from a popular website, where keys represent user ids and values represent some measure of activity such as elapsed time for a particular session—the task would correspond to computing the mean session length on a per-user basis, which would be useful for understanding user demographics.

- Write MapReduce pseudo-code to solve the problem.
- Modify the solution to use Combiners. Note that

\[\text{Mean}(1, 2, 3, 4, 5) \neq \text{Mean} \left(\text{Mean}(1, 2), \text{Mean}(3, 4, 5) \right) \]

- Modify the solution to use in-mapper combining.
Calculating Mean: Basic Solution

1: class Mapper
2: method MAP(string t, integer r)
3: EMIT(string t, integer r)

1: class Reducer
2: method REDUCE(string t, integers [r₁, r₂, ...])
3: sum ← 0
4: cnt ← 0
5: for all integer r ∈ integers [r₁, r₂, ...] do
6: sum ← sum + r
7: cnt ← cnt + 1
8: r_avg ← sum/cnt
9: EMIT(string t, integer r_avg)
Calculating Mean: With Combiners

1: class Mapper
2: method MAP(string t, integer r)
3: Emit(string t, pair (r, 1))

1: class Combiner
2: method COMBINE(string t, pairs [(s1, c1), (s2, c2) ...])
3: sum ← 0
4: cnt ← 0
5: for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) ...] do
6: sum ← sum + s
7: cnt ← cnt + c
8: Emit(string t, pair (sum, cnt))
Calculating Mean: Modified Reducer

1: class Reducer
2: method Reduce(string t, pairs [(s₁, c₁), (s₂, c₂) ...])
3: sum ← 0
4: cnt ← 0
5: for all pair (s, c) ∈ pairs [(s₁, c₁), (s₂, c₂) ...] do
6: sum ← sum + s
7: cnt ← cnt + c
8: r_{avg} ← sum/cnt
9: Emit(string t, integer r_{avg})
Calculating Mean: With In-Mapper Combining

```java
1: class Mapper
2:     method Initialize
3:         S ← new AssociativeArray
4:         C ← new AssociativeArray
5:     method Map(string t, integer r)
6:         S{t} ← S{t} + r
7:         C{t} ← C{t} + 1
8:     method Close
9:         for all term t ∈ S do
10:             Emit(term t, pair (S{t}, C{t}))
```
Another example: Unique Items Counting

There is a set of records. Each record has field F and arbitrary number of category labels $G = \{G_1, G_2, \ldots\}$. Count the total number of unique values of field F for each subset of records for each value of any label.

Record 1: $F=1$, $G=\{a, b\}$
Record 2: $F=2$, $G=\{a, d, e\}$
Record 3: $F=1$, $G=\{b\}$
Record 4: $F=3$, $G=\{a, b\}$

Result:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
</tr>
</tbody>
</table>

- Come up with a two-pass solution.
- Come up with a one-pass solution that uses combining in the reducer.
Cross-Correlation

- There is a set of tuples of items. For each possible pair of items calculate the number of tuples where these items co-occur. If the total number of items is n, then $n^2 = n \times n$ values should be reported.

- This problem appears in text analysis (say, items are words and tuples are sentences), market analysis (customers who buy this tend to also buy that). If n^2 is quite small and such a matrix can fit in the memory of a single machine, then implementation is straightforward.

- We will study two ways to solving this problem that illustrate two patterns: *pairs* versus *stripes.*
Pairs and Stripes Patterns

- **Pairs pattern.** The mapper finds each co-occurring pair and outputs it with a count of 1. The reducer just adds up the frequencies for each pair. This requires the use of complex keys (a pair of words).

- **Stripes pattern.**
 - Instead of emitting intermediate key-value pairs for each co-occurring word pair, co-occurrence information is first stored in an associative array, denoted H. The mapper emits key-value pairs with words as keys and corresponding associative arrays as values.
 - The reducer performs an element-wise sum of all associative arrays with the same key, accumulating counts that correspond to the same cell in the co-occurrence matrix. The final associative array is emitted with the same word as the key.
 - In contrast to the pairs approach, each final key-value pair encodes a row in the co-occurrence matrix.
Calculating Co-occurrences: With Pairs Pattern

1: **class** Mapper
2: **method** Map(docid a, doc d)
3: **for all** term w ∈ doc d **do**
4: **for all** term u ∈ Neighbors(w) **do**
5: Emit(pair (w, u), count 1) \[\text{ Emit count for each co-occurrence}\]

1: **class** Reducer
2: **method** Reduce(pair p, counts [c₁, c₂, ...])
3: s ← 0
4: **for all** count c ∈ counts [c₁, c₂, ...] **do**
5: s ← s + c \[\text{ Sum co-occurrence counts}\]
6: Emit(pair p, count s)
Calculating Co-occurrences: With Stripes Pattern

1: class Mapper
2: method Map(docid a, doc d)
3: for all term w ∈ doc d do
4: H ← new AssociativeArray
5: for all term u ∈ Neighbors(w) do
6: H{u} ← H{u} + 1 ▷ Tally words co-occurring with w
7: Emit(Term w, Stripe H)

1: class Reducer
2: method Reduce(term w, stripes [H₁, H₂, H₃, ...])
3: H_f ← new AssociativeArray
4: for all stripe H ∈ stripes [H₁, H₂, H₃, ...] do
5: Sum(H_f, H) ▷ Element-wise sum
6: Emit(term w, stripe H_f)
Pairs versus Stripes

- *Stripes* generates fewer intermediate keys than *Pairs* approach.
- *Stripes* benefits more from combiners and can be done with in-memory combiners.
- *Stripes* is, in general, faster.
- *Stripes* requires more complex implementation.
References

- Jimmy Lin and Chris Dyer. Chapter 3 in *Data-Intensive Text Processing with MapReduce*.