
1/25

MapReduce for Data Warehouses

2/25

Data Warehouses: Hadoop and Relational Databases

I In an enterprise setting, a data warehouse serves as a vast repository of
data, holding everything from sales transactions to product inventories.

I Data warehouses form a foundation for business intelligence
applications designed to provide decision support.

I Traditionally, data warehouses have been implemented through
relational databases, particularly those optimized for a specific
workload known as online analytical processing (OLAP).

I A number of vendors offer parallel databases, but customers find that
they often cannot cost-effectively scale to the crushing amounts of
data an organization needs to deal with today. Hadoop is scalable and
low-cost alternative.

I Facebook developed Hive (an open source project), which allows the
data warehouse stored in Hadoop to be accessed via SQL queries (that
get transformed into MapReduce operations under the hood).

I However, in many cases Hadoop and RDBMS co-exist, feeding into
one another.

3/25

Relational MapReduce Patterns

Basic relational algebra operations that form the basis for relational
databases.

I Selection
I Projection
I Union
I Intersection
I Difference
I GroupBy and Aggregation
I Join

Here we will implement them using MapReduce. We will also show
the corresponding SQL database queries.

4/25

Selection

select *
from Table_T
where (predicate is true);

class Mapper
method Map(rowkey key, tuple t)

if t satisfies the predicate
Emit(tuple t, null)

5/25

Projection

Projection takes a relation and a (possibly empty) list of attributes of that
relation as input. It outputs a relation containing only the specified list of
attributes with duplicate tuples removed.

select distinct A1, A2, A3 // where {A1, A2, A3} is a subset
from Table_T; // of the attributes for the table

Projection is just a little bit more complex than selection, since we use a
Reducer to eliminate possible duplicates.

class Mapper
method Map(rowkey key, tuple t)

tuple g = project(t) // extract required fields to tuple g
Emit(tuple g, null)

class Reducer
method Reduce(tuple t, array n) // n is an array of nulls

Emit(tuple t, null)

6/25

Union

select * from Table_T1
Union
select * from Table_T2

Mappers are fed by all records of the two sets to be united.
Reducer is used to eliminate duplicates.

class Mapper
method Map(rowkey key, tuple t)

Emit(tuple t, null)

class Reducer
method Reduce(tuple t, array n) // n is an array of

Emit(tuple t, null) // one or two nulls

7/25

Intersection

select * from Table_T1
Intersection
select * from Table_T2

Mappers are fed by all records of the two sets to be intersected.
Reducer emits only records that occurred twice. It is possible only if
both sets contain this record because the record includes primary
key and can occur in one set only once.

class Mapper
method Map(rowkey key, tuple t)

Emit(tuple t, null)

class Reducer
method Reduce(tuple t, array n) // n is an array of

if n.size() = 2 // one or two nulls
Emit(tuple t, null)

8/25

Difference

select * from Table_T1
Except
select * from Table_T2

Suppose we have two sets of records — R and S. We want to compute
difference R - S. Mapper emits all tuples with a tag, which is a name of the
set this record came from. Reducer emits only records that came from R
but not from S.

class Mapper
method Map(rowkey key, tuple t)

//t.SetName is either 'R' or 'S'
Emit(tuple t, string t.SetName)

//array n can be ['R'], ['S'], ['R','S'], or ['S','R']
class Reducer

method Reduce(tuple t, array n)
if n.size() = 1 and n[1] = 'R'

Emit(tuple t, null)

9/25

Group By and Aggregation

select pub_id, type, avg(price), sum(total_sales)
from titles
group by pub_id, type

I Mapper extracts from each tuple values to group by fields and
aggregate fields and emits them.

I Reducer receives values to be aggregated already grouped and
calculates an aggregation function. Typical aggregation functions like
sum or max can be calculated in a streaming fashion, hence don’t
require handling all values simultaneously.

I In some cases two phase MapReduce job may be required.

class Mapper
method Map(null, tuple[value GroupBy, value AggregateBy, value ...])

Emit(value GroupBy, value AggregateBy)

class Reducer
method Reduce(value GroupBy, [v1, v2,...])

Emit(value GroupBy, aggregate([v1, v2,...])) //aggregate(): sum, max,...

10/25

Join

I A Join is a means for combining fields from two tables by using values
common to each. ANSI standard SQL specifies four types of JOIN:
INNER, OUTER, LEFT, and RIGHT. As a special case, a table can
JOIN to itself in a self-join.

I An example:

CREATE TABLE department (
DepartmentID INT,
DepartmentName VARCHAR(20));

CREATE TABLE employee (
LastName VARCHAR(20),
DepartmentID INT);

SELECT *
FROM employee
INNER JOIN department ON
employee.DepartmentID = department.DepartmentID;

--implicit join
SELECT *
FROM employee, department
WHERE employee.DepartmentID = department.DepartmentID;

11/25

More on Joins

I Relational databases are often normalized to eliminate
duplication of information when objects may have one-to-many
relationships.

I Joining two tables effectively creates another table which
combines information from both tables. This is at some
expense in terms of the time it takes to compute the join.

I While it is also possible to simply maintain a denormalized
table if speed is important, duplicate information may take
extra space, and add the expense and complexity of
maintaining data integrity if data that is duplicated later
changes.

I Three fundamental algorithms for performing a join operation
are: nested loop join, sort-merge join and hash join.

12/25

Join Examples

I User Demographics.
I Let R represent a collection of user profiles, in which case k could be

interpreted as the primary key (e.g., user id). The tuples might contain
demographic information such as age, gender, income, etc.

I The other dataset, L, might represent logs of online activity. Each tuple
might correspond to a page view of a particular URL and may contain
additional information such as time spent on the page, ad revenue
generated, etc. The k in these tuples could be interpreted as the foreign key
that associates each individual page view with a user.

I Joining these two datasets would allow an analyst, for example, to break
down online activity in terms of demographics.

I Movie Data Mining. Suppose we have three tables show below and we
want to find the top ten movies:

Ratings [UserID::MovieID::Rating::Timestamp]
Users [UserID::Gender::Age::Occupation::Zip-code]
Movies [MovieID::Title::Genres]

13/25

Repartition Join
Join of two sets R and L on some key k.

I Mapper goes through all tuples from R and L, extracts key k from the
tuples, marks tuple with a tag that indicates a set this tuple came from
(‘R’ or ‘L’), and emits tagged tuple using k as a key.

I Reducer receives all tuples for a particular key k and puts them into two
buckets – for R and for L. When the two buckets are filled, Reducer runs
nested loop over them and emits a cross join of the buckets.

I Each emitted tuple is a concatenation R-tuple, L-tuple, and key k.

class Mapper
method Map(null, tuple [join_key k, value v1, value v2,...])

Emit(join_key k, tagged_tuple [set_name tag, values [v1, v2, ...]])

class Reducer
method Reduce(join_key k, tagged_tuples [t1, t2,...])

H = new AssociativeArray : set_name -> values
//separate values into 2 arrays
for all tagged_tuple t in [t1, t2,...]

H{t.tag}.add(t.values)

//produce a cross-join of the two arrays
for all values r in H{'R'}

for all values l in H{'L'}
Emit(null, [k, r, l])

14/25

Replicated Join

I Let’s assume that one of the two sets, say R, is relatively small. This
is fairly typical in practice.

I If so, R can be distributed to all Mappers and each Mapper can load it
and index by the join key (e.g. in a hash table). After this, Mapper
goes through tuples of the set L and joins them with the
corresponding tuples from R that are stored in the hash table.

I This approach is very effective because there is no need for sorting or
transmission of the set L over the network. Also known as
memory-backed join or simple hash join.

class Mapper
method Initialize

H = new AssociativeArray : join_key -> tuple from R
R = loadR()
for all [join_key k, tuple [r1, r2,...]] in R

H{k} = H{k}.append([r1, r2,...])

method Map(join_key k, tuple l)
for all tuple r in H{k}

Emit(null, tuple [k, r, l])

15/25

Join Without Scalability Issues

Suppose we have two relations, generically named S and T .

(k1,s1,S1)
(k2,s2,S2)
(k3,s3,S3)
. . .

where k is the key we would like to join on, sn is a unique id for the tuple,
and the Sn after sn denotes other attributes in the tuple (unimportant for
the purposes of the join).

(k1, t1,T1)
(k3, t2,T2)
(k8, t3,T3)
. . .

where k is the join key, tn is a unique id for the tuple, and the Tn after tn
denotes other attributes in the tuple.

16/25

Reduce-Side Join

I We map over both datasets and emit the join key as the intermediate
key, and the tuple itself as the intermediate value. Since MapReduce
guarantees that all values with the same key are brought together, all
tuples will be grouped by the join key—which is exactly what we need
to perform the join operation.

I This approach is known as a parallel sort-merge join in the database
community.

I There are three cases to consider:
I One to one.
I One to many.
I Many to many.

17/25

Reduce-side Join: one to one

I The reducer will be presented keys and lists of values along the
lines of the following:

k23 → [(s64,S64),(t84,T84)]
k37 → [(s68,S68)]
k59 → [(t97,T97),(s81,S81)]
k61 → [(t99,T99)]
. . .

I If there are two values associated with a key, then we know
that one must be from S and the other must be from T . We
can proceed to join the two tuples and perform additional
computations (e.g., filter by some other attribute, compute
aggregates, etc.).

I If there is only one value associated with a key, this means
that no tuple in the other dataset shares the join key, so the
reducer does nothing.

18/25

Reduce-side Join: one to many

I In the mapper, we instead create a composite key consisting of the join key
and the tuple id (from either S or T). Two additional changes are required:

I First, we must define the sort order of the keys to first sort by the join key,
and then sort all tuple ids from S before all tuple ids from T .

I Second, we must define the partitioner to pay attention to only the join key,
so that all composite keys with the same join key arrive at the same reducer.

I After applying the value-to-key conversion design pattern, the reducer will
be presented with keys and values along the lines of the following:

(k82,s105)→ [(S105)]
(k82, t98)→ [(T98)]
(k82, t101)→ [(T101)]
(k82, t137)→ [(T137)]
. . .

I Whenever the reducer encounters a new join key, it is guaranteed that the
associated value will be the relevant tuple from S . The reducer can hold
this tuple in memory and then proceed to cross it with tuples from T in
subsequent steps (until a new join key is encountered).

I Since the MapReduce execution framework performs the sorting, there is
no need to buffer tuples (other than the single one from S). Thus, we have
eliminated the scalability bottleneck.

19/25

Reduce-side Join: many to many

I All the tuples from S with the same join key will be
encountered first, which the reducer can buffer in memory. As
the reducer processes each tuple from T , it is crossed with all
the tuples from S . Of course, we are assuming that the tuples
from S (with the same join key) will fit into memory, which is
a limitation of this algorithm (and why we want to control the
sort order so that the smaller dataset comes first).

20/25

Hive

I Hive was created at Facebook to make it possible for analysts
with strong SQL skills (but meager Java programming skills)
to run queries on the huge volumes of data that Facebook
stored in HDFS.

I Today, Hive is a successful open source Apache project used by
many organizations as a general-purpose, scalable data
processing platform.

I Hive Query Language is very similar to SQL. The data scientist
can write Hive queries in the hive shell (or Hive web interface
or via an API to a Hive server). The queries get converted into
MapReduce operations and run on Hadoop HDFS file system.

21/25

Hadoop and Hive: A Local Case Study

I Simulated a business intelligence problem that was given to us by a local
software company. Currently they solve the problem using a traditional
database. If we were to store the data in HDFS, we could exploit the
parallel processing capability of MapReduce/Hive.

I Setup. A $5000 database server with 8 cores and 8G of memory versus
four commodity dual-core nodes with 2G of memory and worth about
$1200 each for the HDFS cluster.

I Results. Increase data size until Hadoop/Hive outperforms the database
solution.
Data size Hadoop Speedup Hive Speedup

3G 0.6 0.1
4G 2.6 0.4

10G 17.5 2.5
20G 23.9 3.8

I The Hive-based solution required no programming! The MapReduce
solution did require programming but was simpler than traditional parallel
programming.

22/25

HBase

I HBase is a distributed column-oriented database built on top
of HDFS. HBase is the Hadoop application to use when you
require real-time read/write random access to very large
datasets.

I HBase is not relational and does not support SQL but it can
support very large, sparsely populated tables on clusters made
from commodity hardware.

I Integrated with Hadoop MapReduce for powerful access.

23/25

RDBMS Story

I Initial public launch.
Move from local workstation to shared, remotely hosted MySQL instance
with a well-defined schema.

I Service becomes more popular; too many reads hitting the database.
Add memcached to cache common queries. Reads are now no longer
strictly ACID (Atomicity, Consistency, Isolation, Durability); cached data
must expire.

I Service continues to grow in popularity; too many writes hitting the
database.
Scale MySQL vertically by buying a beefed-up server with 16 cores, 128
GB of RAM, and banks of 15k RPM hard drives. Costly.

I New features increases query complexity; now we have too many joins.
Denormalize your data to reduce joins. (That’s not what they taught me
in DBA school!)

I Rising popularity swamps the server; things are too slow.
Stop doing any server-side computations.

I Some queries are still too slow.
Periodically prematerialize the most complex queries, and try to stop
joining in most cases.

I Reads are OK, but writes are getting slower and slower.
Drop secondary indexes and triggers (no indexes?)

At this point, there are no clear solutions for how to solve your scaling
problems. In any case, you’ll need to begin to scale horizontally. You can
attempt to build some type of partitioning on your largest tables, or look into
expensive solutions that provide multiple master capabilities.

24/25

HBase Story

I No real indexes.
Rows are stored sequentially, as are the columns within each row. Therefore,
no issues with index bloat, and insert performance is independent of table size.

I Automatic partitioning.
As your tables grow, they will automatically be split into regions and
distributed across all available nodes.

I Scale linearly and automatically with new nodes.
Add a node, point it to the existing cluster, and run the regionserver. Regions
will automatically rebalance, and load will spread evenly.

I Commodity hardware.
Clusters are built on $1,000–$5,000 nodes rather than $50,000 nodes.
RDBMSs are I/O hungry, requiring more costly hardware.

I Fault tolerant.
Lots of nodes means each is relatively insignificant. No need to worry about
individual node downtime.

I Batch processing.
MapReduce integration allows fully parallel, distributed jobs against your data
with locality awareness.

If you stay up at night worrying about your database (uptime, scale, or speed), you
should seriously consider making a jump from the RDBMS world to HBase.

25/25

References

I Jimmy Lin and Chris Dyer. Chapter 3 in Data-Intensive Text
Processing with MapReduce.

I Ilya Katsov. MapReduce Patterns, Algorithms, and Use Cases.
http://highlyscalable.wordpress.com/2012/02/01/
mapreduce-patterns/

I Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam
Madden, Erik Paulson, Andrew Pavlo, and Alexander Rasin.
MapReduce and parallel DBMSs: Friends or foes?
Communications of the ACM, 53(1):64–71, 2010.

I Jeffrey Dean and Sanjay Ghemawat. MapReduce: A flexible
data processing tool. Communications of the ACM,
53(1):72–77, 2010.

