
1/19

Load Balancing

2/19

Load Balancing

Load balancing: distributing data and/or computations across
multiple processes to maximize efficiency for a parallel program.

I Static load-balancing: the algorithm decides a priori how to
divide the workload.

I Dynamic load-balancing: the algorithm collects statistics while
it runs and uses that information to rebalance the workload
across the processes as it runs.

2/19

Load Balancing

Load balancing: distributing data and/or computations across
multiple processes to maximize efficiency for a parallel program.

I Static load-balancing: the algorithm decides a priori how to
divide the workload.

I Dynamic load-balancing: the algorithm collects statistics while
it runs and uses that information to rebalance the workload
across the processes as it runs.

2/19

Load Balancing

Load balancing: distributing data and/or computations across
multiple processes to maximize efficiency for a parallel program.

I Static load-balancing: the algorithm decides a priori how to
divide the workload.

I Dynamic load-balancing: the algorithm collects statistics while
it runs and uses that information to rebalance the workload
across the processes as it runs.

3/19

Static Load Balancing

I Round-robin: Hand the tasks in round robin fashion.

I Randomized: Divide the tasks in a randomized manner to help
load balance.

I Recursive bisection: Recursively divide a problem into
sub-problems of equal computational effort.

I Heuristic techniques: For example, a genetic algorithm to
determine a good static load balanced workload.

3/19

Static Load Balancing

I Round-robin: Hand the tasks in round robin fashion.
I Randomized: Divide the tasks in a randomized manner to help

load balance.

I Recursive bisection: Recursively divide a problem into
sub-problems of equal computational effort.

I Heuristic techniques: For example, a genetic algorithm to
determine a good static load balanced workload.

3/19

Static Load Balancing

I Round-robin: Hand the tasks in round robin fashion.
I Randomized: Divide the tasks in a randomized manner to help

load balance.
I Recursive bisection: Recursively divide a problem into

sub-problems of equal computational effort.

I Heuristic techniques: For example, a genetic algorithm to
determine a good static load balanced workload.

3/19

Static Load Balancing

I Round-robin: Hand the tasks in round robin fashion.
I Randomized: Divide the tasks in a randomized manner to help

load balance.
I Recursive bisection: Recursively divide a problem into

sub-problems of equal computational effort.
I Heuristic techniques: For example, a genetic algorithm to

determine a good static load balanced workload.

4/19

Dynamic Load Balancing

Manages a queue of tasks, known as the workpool.
I Usually more effective than static load balancing.
I Overhead of collecting statistics while the program runs.
I More complex to implement.

Two styles of dynamic load balancing:

I Centralized Workpool: The workpool is kept at a coordinator
process, which hands out tasks and collects newly generated
tasks from worker processes.

I Distributed Workpool: The workpool is distributed across the
worker processes. Tasks are exchanged between arbitrary
processes. Requires a more complex termination detection
technique to know when the program has finished.

4/19

Dynamic Load Balancing

Manages a queue of tasks, known as the workpool.
I Usually more effective than static load balancing.
I Overhead of collecting statistics while the program runs.
I More complex to implement.

Two styles of dynamic load balancing:

I Centralized Workpool: The workpool is kept at a coordinator
process, which hands out tasks and collects newly generated
tasks from worker processes.

I Distributed Workpool: The workpool is distributed across the
worker processes. Tasks are exchanged between arbitrary
processes. Requires a more complex termination detection
technique to know when the program has finished.

4/19

Dynamic Load Balancing

Manages a queue of tasks, known as the workpool.
I Usually more effective than static load balancing.
I Overhead of collecting statistics while the program runs.
I More complex to implement.

Two styles of dynamic load balancing:

I Centralized Workpool: The workpool is kept at a coordinator
process, which hands out tasks and collects newly generated
tasks from worker processes.

I Distributed Workpool: The workpool is distributed across the
worker processes. Tasks are exchanged between arbitrary
processes. Requires a more complex termination detection
technique to know when the program has finished.

5/19

Centralized Workpool

worker processes

Task

2

1

. . .
 task queue

Request task
new tasks/

Return results/ Coordinator
0

P

Centralized Work Pool

p−1

p−2

I The workpool holds a collection of tasks to be performed. Processes
are supplied with tasks when they finish previously assigned task and
request for another task. This leads to load balancing. Processes can
generate new tasks to be added to the workpool as well.

I Termination: The workpool program is terminated when
I the task queue is empty, and
I each worker process has made a request for another task without any

new tasks being generated.

5/19

Centralized Workpool

worker processes

Task

2

1

. . .
 task queue

Request task
new tasks/

Return results/ Coordinator
0

P

Centralized Work Pool

p−1

p−2

I The workpool holds a collection of tasks to be performed. Processes
are supplied with tasks when they finish previously assigned task and
request for another task. This leads to load balancing. Processes can
generate new tasks to be added to the workpool as well.

I Termination: The workpool program is terminated when

I the task queue is empty, and
I each worker process has made a request for another task without any

new tasks being generated.

5/19

Centralized Workpool

worker processes

Task

2

1

. . .
 task queue

Request task
new tasks/

Return results/ Coordinator
0

P

Centralized Work Pool

p−1

p−2

I The workpool holds a collection of tasks to be performed. Processes
are supplied with tasks when they finish previously assigned task and
request for another task. This leads to load balancing. Processes can
generate new tasks to be added to the workpool as well.

I Termination: The workpool program is terminated when
I the task queue is empty, and
I each worker process has made a request for another task without any

new tasks being generated.

6/19

Distributed Workpool

Distributed task queue

Requests/Tasks

I The task of queues is distributed across the processes.
I Any process can request any other process for a task or send it a task.
I Suitable when the memory required to store the tasks is larger than

can fit on one system.

7/19

Distributed Workpool

How does the work load get balanced?

I Receiver initiated: A process that is idle or has light load asks
another process for a task. Works better for a system with
high load.

I Sender initiated: A process that has a heavy load send task(s)
to another process. Works better for a system with a light
load.

How do we determine which process to contact?

I Round robin.
I Random polling.
I Structured : The processes can be arranged in a logical ring or

a tree.

7/19

Distributed Workpool

How does the work load get balanced?

I Receiver initiated: A process that is idle or has light load asks
another process for a task. Works better for a system with
high load.

I Sender initiated: A process that has a heavy load send task(s)
to another process. Works better for a system with a light
load.

How do we determine which process to contact?

I Round robin.
I Random polling.
I Structured : The processes can be arranged in a logical ring or

a tree.

7/19

Distributed Workpool

How does the work load get balanced?

I Receiver initiated: A process that is idle or has light load asks
another process for a task. Works better for a system with
high load.

I Sender initiated: A process that has a heavy load send task(s)
to another process. Works better for a system with a light
load.

How do we determine which process to contact?

I Round robin.
I Random polling.
I Structured : The processes can be arranged in a logical ring or

a tree.

7/19

Distributed Workpool

How does the work load get balanced?

I Receiver initiated: A process that is idle or has light load asks
another process for a task. Works better for a system with
high load.

I Sender initiated: A process that has a heavy load send task(s)
to another process. Works better for a system with a light
load.

How do we determine which process to contact?

I Round robin.
I Random polling.
I Structured : The processes can be arranged in a logical ring or

a tree.

7/19

Distributed Workpool

How does the work load get balanced?

I Receiver initiated: A process that is idle or has light load asks
another process for a task. Works better for a system with
high load.

I Sender initiated: A process that has a heavy load send task(s)
to another process. Works better for a system with a light
load.

How do we determine which process to contact?

I Round robin.

I Random polling.
I Structured : The processes can be arranged in a logical ring or

a tree.

7/19

Distributed Workpool

How does the work load get balanced?

I Receiver initiated: A process that is idle or has light load asks
another process for a task. Works better for a system with
high load.

I Sender initiated: A process that has a heavy load send task(s)
to another process. Works better for a system with a light
load.

How do we determine which process to contact?

I Round robin.
I Random polling.

I Structured : The processes can be arranged in a logical ring or
a tree.

7/19

Distributed Workpool

How does the work load get balanced?

I Receiver initiated: A process that is idle or has light load asks
another process for a task. Works better for a system with
high load.

I Sender initiated: A process that has a heavy load send task(s)
to another process. Works better for a system with a light
load.

How do we determine which process to contact?

I Round robin.
I Random polling.
I Structured : The processes can be arranged in a logical ring or

a tree.

8/19

Distributed Workpool Termination

Two conditions must be true to be able to terminated a distributed
workpool correctly:

I local termination conditions exist on each process, and
I no messages are in transit.

This is tricky....here are two ways to deal with it:

I Tree-based termination algorithm. A tree order is imposed on the
processes based on who sends a message for the first time to a
process. At termination the tree is traversed bottom-up to the root.

I Dual-pass token ring algorithm. A separate phase that passes a token
to determine if the distributed algorithm has finished. The algorithm
specifically detects if any messages were in transit.

8/19

Distributed Workpool Termination

Two conditions must be true to be able to terminated a distributed
workpool correctly:

I local termination conditions exist on each process, and
I no messages are in transit.

This is tricky....here are two ways to deal with it:

I Tree-based termination algorithm. A tree order is imposed on the
processes based on who sends a message for the first time to a
process. At termination the tree is traversed bottom-up to the root.

I Dual-pass token ring algorithm. A separate phase that passes a token
to determine if the distributed algorithm has finished. The algorithm
specifically detects if any messages were in transit.

8/19

Distributed Workpool Termination

Two conditions must be true to be able to terminated a distributed
workpool correctly:

I local termination conditions exist on each process, and
I no messages are in transit.

This is tricky....here are two ways to deal with it:

I Tree-based termination algorithm. A tree order is imposed on the
processes based on who sends a message for the first time to a
process. At termination the tree is traversed bottom-up to the root.

I Dual-pass token ring algorithm. A separate phase that passes a token
to determine if the distributed algorithm has finished. The algorithm
specifically detects if any messages were in transit.

9/19

Dual-pass Token Ring Termination

Pj Pi Pn−1

Task

Pi turns white token black

P 0

white token white token

I Process 0 becomes white when terminated and passes a “white” token
to process 1.

I Processes pass on the token after meeting local termination
conditions. However, if a process sends a message to a process earlier
than itself in the ring, it colors itself black. A black process colors a
token “black" before passing it on. A white process passes the token
without any change.

I If process 0 receives a “white” token, termination conditions have been
met. If it receives a “ ‘black” token, it starts a new ring with another
“white token.”

9/19

Dual-pass Token Ring Termination

Pj Pi Pn−1

Task

Pi turns white token black

P 0

white token white token

I Process 0 becomes white when terminated and passes a “white” token
to process 1.

I Processes pass on the token after meeting local termination
conditions. However, if a process sends a message to a process earlier
than itself in the ring, it colors itself black. A black process colors a
token “black" before passing it on. A white process passes the token
without any change.

I If process 0 receives a “white” token, termination conditions have been
met. If it receives a “ ‘black” token, it starts a new ring with another
“white token.”

9/19

Dual-pass Token Ring Termination

Pj Pi Pn−1

Task

Pi turns white token black

P 0

white token white token

I Process 0 becomes white when terminated and passes a “white” token
to process 1.

I Processes pass on the token after meeting local termination
conditions. However, if a process sends a message to a process earlier
than itself in the ring, it colors itself black. A black process colors a
token “black" before passing it on. A white process passes the token
without any change.

I If process 0 receives a “white” token, termination conditions have been
met. If it receives a “ ‘black” token, it starts a new ring with another
“white token.”

10/19

Example: Shortest Paths

I Given a directed graph with n vertices and m weighted edges, find the
shortest paths from a source vertex to all other vertices.

I For two given vertices i and j , the weight of the edge between the two
is given by the weight function w(i , j). The distance is infinite if there
is no edge between i and j .

I Graph can be represented in two different ways:
I Adjacency matrix: A two dimensional array w [0 . . .n−1][0 . . .n−1]

holds the weight of the edges.
I Adjacency lists: An array adj [0 . . .n−1] of lists, where the ith list

represents the vertices adjacent to the ith vertex. The list stores the
weights of the corresponding edges.

I Sequential shortest paths algorithms
I Dijstkra’s shortest paths algorithm: Uses a priority queue to grow the

shortest paths tree one edge at a time: has limited opportunities for
parallelism.

I Moore’s shortest path algorithm: Works by finding new shorter paths
all over the graph. Allows for more parallelism but can do extra work
by exploring a given vertex multiple times.

10/19

Example: Shortest Paths

I Given a directed graph with n vertices and m weighted edges, find the
shortest paths from a source vertex to all other vertices.

I For two given vertices i and j , the weight of the edge between the two
is given by the weight function w(i , j). The distance is infinite if there
is no edge between i and j .

I Graph can be represented in two different ways:
I Adjacency matrix: A two dimensional array w [0 . . .n−1][0 . . .n−1]

holds the weight of the edges.
I Adjacency lists: An array adj [0 . . .n−1] of lists, where the ith list

represents the vertices adjacent to the ith vertex. The list stores the
weights of the corresponding edges.

I Sequential shortest paths algorithms
I Dijstkra’s shortest paths algorithm: Uses a priority queue to grow the

shortest paths tree one edge at a time: has limited opportunities for
parallelism.

I Moore’s shortest path algorithm: Works by finding new shorter paths
all over the graph. Allows for more parallelism but can do extra work
by exploring a given vertex multiple times.

10/19

Example: Shortest Paths

I Given a directed graph with n vertices and m weighted edges, find the
shortest paths from a source vertex to all other vertices.

I For two given vertices i and j , the weight of the edge between the two
is given by the weight function w(i , j). The distance is infinite if there
is no edge between i and j .

I Graph can be represented in two different ways:
I Adjacency matrix: A two dimensional array w [0 . . .n−1][0 . . .n−1]

holds the weight of the edges.
I Adjacency lists: An array adj [0 . . .n−1] of lists, where the ith list

represents the vertices adjacent to the ith vertex. The list stores the
weights of the corresponding edges.

I Sequential shortest paths algorithms
I Dijstkra’s shortest paths algorithm: Uses a priority queue to grow the

shortest paths tree one edge at a time: has limited opportunities for
parallelism.

I Moore’s shortest path algorithm: Works by finding new shorter paths
all over the graph. Allows for more parallelism but can do extra work
by exploring a given vertex multiple times.

10/19

Example: Shortest Paths

I Given a directed graph with n vertices and m weighted edges, find the
shortest paths from a source vertex to all other vertices.

I For two given vertices i and j , the weight of the edge between the two
is given by the weight function w(i , j). The distance is infinite if there
is no edge between i and j .

I Graph can be represented in two different ways:
I Adjacency matrix: A two dimensional array w [0 . . .n−1][0 . . .n−1]

holds the weight of the edges.
I Adjacency lists: An array adj [0 . . .n−1] of lists, where the ith list

represents the vertices adjacent to the ith vertex. The list stores the
weights of the corresponding edges.

I Sequential shortest paths algorithms
I Dijstkra’s shortest paths algorithm: Uses a priority queue to grow the

shortest paths tree one edge at a time: has limited opportunities for
parallelism.

I Moore’s shortest path algorithm: Works by finding new shorter paths
all over the graph. Allows for more parallelism but can do extra work
by exploring a given vertex multiple times.

11/19

Moore’s Algorithm

I A FIFO queue of vertices to explore is maintained. Initially it contains
just the source vertex.

I A distance array dist[0 . . .n−1] represents the current shortest
distance to the respective vertex. Initially the distance to the source
vertex is zero and all other distances are infinity.

I Remove the vertex i in the front of the queue and explore edges from
it. Suppose vertex j is connected to vertex i . Then compare the
shortest distance from the source that is currently known to the
distance going through vertex i . If the new distance is shorter, update
the distance and add vertex j into the queue (if not in queue already).

ji

d[j]

d[i]

w(i,j)

I Repeat until the vertex queue is empty.

11/19

Moore’s Algorithm

I A FIFO queue of vertices to explore is maintained. Initially it contains
just the source vertex.

I A distance array dist[0 . . .n−1] represents the current shortest
distance to the respective vertex. Initially the distance to the source
vertex is zero and all other distances are infinity.

I Remove the vertex i in the front of the queue and explore edges from
it. Suppose vertex j is connected to vertex i . Then compare the
shortest distance from the source that is currently known to the
distance going through vertex i . If the new distance is shorter, update
the distance and add vertex j into the queue (if not in queue already).

ji

d[j]

d[i]

w(i,j)

I Repeat until the vertex queue is empty.

11/19

Moore’s Algorithm

I A FIFO queue of vertices to explore is maintained. Initially it contains
just the source vertex.

I A distance array dist[0 . . .n−1] represents the current shortest
distance to the respective vertex. Initially the distance to the source
vertex is zero and all other distances are infinity.

I Remove the vertex i in the front of the queue and explore edges from
it. Suppose vertex j is connected to vertex i . Then compare the
shortest distance from the source that is currently known to the
distance going through vertex i . If the new distance is shorter, update
the distance and add vertex j into the queue (if not in queue already).

ji

d[j]

d[i]

w(i,j)

I Repeat until the vertex queue is empty.

11/19

Moore’s Algorithm

I A FIFO queue of vertices to explore is maintained. Initially it contains
just the source vertex.

I A distance array dist[0 . . .n−1] represents the current shortest
distance to the respective vertex. Initially the distance to the source
vertex is zero and all other distances are infinity.

I Remove the vertex i in the front of the queue and explore edges from
it. Suppose vertex j is connected to vertex i . Then compare the
shortest distance from the source that is currently known to the
distance going through vertex i . If the new distance is shorter, update
the distance and add vertex j into the queue (if not in queue already).

ji

d[j]

d[i]

w(i,j)

I Repeat until the vertex queue is empty.

12/19

Shortest Paths using Centralized Workpool

I Task (for Shortest paths): One vertex to be explored.
I Coordinator process (process 0): Holds the workpool, which

consists of the queue of vertices to be explored. This queue
shrinks and grows dynamically.

13/19

Centralized Workpool Pseudo-Code

centralized_shortest_paths(s, w, n, p, id)
// id: current process id, total p processes, numbered 0, . . . ,p−1
// s - source vertex, w[0..n-1][0..n-1] - weight matrix, dist[0..n-1] shortest distance
// Q - queue of vertices to explore, initially empty
coordinator ← 0
bcast(w, &n, coordinator);
// the coordinator part
if (id = coordinator)

numWorkers ← 0
enqueue(Q, s)
do recv(Pany, &worker, ANY_TAG, &tag)

if (tag = NEW_TASK_TAG)
recv(&j, &newdist, Pany, &worker, NEW_TASK_TAG)
dist[j] ← min(dist[j], newdist[j])
enqueue(Q, j)

else if tag = INIT_TAG or tag = REQUEST_TAG
if (tag = REQUEST_TAG)

numWorkers ← numWorkers - 1
if (queueNotEmpty(Q))

v ← dequeue(Q)
send(&v, Pworker , TASK_TAG)
send(dist, &n, Pworker , TASK_TAG)
numWorkers ← numWorkers + 1

while (numWorkers > 0)
for i ← 1 to p-1
do send(&dummy, Pi , TERMINATE_TAG)

14/19

Centralized Workpool Pseudo-Code (contd.)

else
//the worker part
send(&id, Pcoordinator , INIT_TAG)
recv(&v, Pcoordinator , ANY_TAG, &tag)
while tag 6= TERMINATE_TAG)

recv(dist, &n, Pcoordinator , TASK_TAG)
for j ← 0 to n-1
do if w[v][j] 6= ∞

newdist_j ← dist[v] + w[v][j]
if newdist_j < dist[j]

dist[j] ← newdist_j
send(&id, Pcoordinator , NEW_TASK_TAG)
send(&j, &newdist_j, Pcoordinator , NEW_TASK_TAG)

send(&id, Pcoordinator , REQUEST_TAG)
recv(&v, Pcoordinator , ANY_TAG, &tag)

15/19

Improvements to the Centralized Workpool Solution

I Make the task contain multiple vertices to make the
granularity be more coarse.

I Instead of sending a new task every time a lower distance is
found, wait until all edges out of a vertex have been explored
and then send results together in one message.

I Updating local copy of distance array would eliminate many
tasks from being created in the first place. This would give
further improvement.

I Use a priority queue instead of a FIFO queue for workpool.
This should give some more improvement for large enough
graphs.

15/19

Improvements to the Centralized Workpool Solution

I Make the task contain multiple vertices to make the
granularity be more coarse.

I Instead of sending a new task every time a lower distance is
found, wait until all edges out of a vertex have been explored
and then send results together in one message.

I Updating local copy of distance array would eliminate many
tasks from being created in the first place. This would give
further improvement.

I Use a priority queue instead of a FIFO queue for workpool.
This should give some more improvement for large enough
graphs.

15/19

Improvements to the Centralized Workpool Solution

I Make the task contain multiple vertices to make the
granularity be more coarse.

I Instead of sending a new task every time a lower distance is
found, wait until all edges out of a vertex have been explored
and then send results together in one message.

I Updating local copy of distance array would eliminate many
tasks from being created in the first place. This would give
further improvement.

I Use a priority queue instead of a FIFO queue for workpool.
This should give some more improvement for large enough
graphs.

15/19

Improvements to the Centralized Workpool Solution

I Make the task contain multiple vertices to make the
granularity be more coarse.

I Instead of sending a new task every time a lower distance is
found, wait until all edges out of a vertex have been explored
and then send results together in one message.

I Updating local copy of distance array would eliminate many
tasks from being created in the first place. This would give
further improvement.

I Use a priority queue instead of a FIFO queue for workpool.
This should give some more improvement for large enough
graphs.

16/19

Shortest Paths using Distributed Workpool

I Process i searches around vertex i and stores if vertex i is in
the queue or not.

I Process i keeps track of the ith entry of the distance array.
I Process i stores the adjacency matrix row or adjacency list for

vertex i .

If a process receives a message containing a distance, it checks with
its stored value and if it is smaller, it updates distances to its
neighbors and send messages to the corresponding processes

16/19

Shortest Paths using Distributed Workpool

I Process i searches around vertex i and stores if vertex i is in
the queue or not.

I Process i keeps track of the ith entry of the distance array.

I Process i stores the adjacency matrix row or adjacency list for
vertex i .

If a process receives a message containing a distance, it checks with
its stored value and if it is smaller, it updates distances to its
neighbors and send messages to the corresponding processes

16/19

Shortest Paths using Distributed Workpool

I Process i searches around vertex i and stores if vertex i is in
the queue or not.

I Process i keeps track of the ith entry of the distance array.
I Process i stores the adjacency matrix row or adjacency list for

vertex i .

If a process receives a message containing a distance, it checks with
its stored value and if it is smaller, it updates distances to its
neighbors and send messages to the corresponding processes

17/19

Improvements to the Distributed Workpool Solution

I Make the task contain multiple vertices to make the
granularity be more coarse.

I Combine messages and only send known minimums by keeping
a local estimate of the distance array.

I Maintain the local copy of the distance array as a priority
queue.

In actual implementation, the distributed workpool solution (with
the optimizations) was able to scale much more than the
centralized solution.

17/19

Improvements to the Distributed Workpool Solution

I Make the task contain multiple vertices to make the
granularity be more coarse.

I Combine messages and only send known minimums by keeping
a local estimate of the distance array.

I Maintain the local copy of the distance array as a priority
queue.

In actual implementation, the distributed workpool solution (with
the optimizations) was able to scale much more than the
centralized solution.

17/19

Improvements to the Distributed Workpool Solution

I Make the task contain multiple vertices to make the
granularity be more coarse.

I Combine messages and only send known minimums by keeping
a local estimate of the distance array.

I Maintain the local copy of the distance array as a priority
queue.

In actual implementation, the distributed workpool solution (with
the optimizations) was able to scale much more than the
centralized solution.

17/19

Improvements to the Distributed Workpool Solution

I Make the task contain multiple vertices to make the
granularity be more coarse.

I Combine messages and only send known minimums by keeping
a local estimate of the distance array.

I Maintain the local copy of the distance array as a priority
queue.

In actual implementation, the distributed workpool solution (with
the optimizations) was able to scale much more than the
centralized solution.

18/19

Comparison of Various Implementations

$�����
������������������	
������
�����
����

19/19

Further Reading

I Pencil Beam Redefinition Algorithm: A dynamic load
balancing scheme that is adaptive in nature. The statistics are
collected centrally but the data is rebalanced in a distributed
manner! This is based on an actual medical application code.

I Parallel Toolkit Library : Masters project by Kirsten Allison.
This library gives a centralized and distributed workpool design
pattern that any application programmer can use without
having to implement the same complex patterns again and
again.

Notes on both are on the class website under lecture notes.

