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Information Retrieval Example using Map-Reduce

I Information Retrieval is the process of finding information in
response to a query from a source of information.

I “But do you know that, although I have kept the diary [on a
phonograph] for months past, it never once struck me how I
was going to find any particular part of it in case I wanted to
look it up? ”
—Dr Seward, Bram Stoker’s Dracula, 1897

I The source of information can be a text corpus consisting of
structured text files such as books or web pages, or it can be
meta-data stored in structured format such as XML (for
example to search in corpus of sound files or image files).

I In this example, we will look at the calculation of
term-frequency-inverse-document-frequency , which is a basic
problem in information retrieval.
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Term Frequency–Inverse Document Frequency (TF-IDF)

I The tf-idf weight (term frequency–inverse document frequency) is a
statistical measure used to evaluate how important a word is to a
document in a collection or corpus.

I The importance increases proportionally to the number of times a
word appears in the document but is offset by the frequency of the
word in the corpus.

I Variations of the tf-idf weighting scheme are often used by search
engines as a central tool in scoring and ranking a document’s
relevance given a user query. (http://en.wikipedia.org/wiki/Tf-idf)

I The concept of Inverse Document Frequency was introduced by
British computer scientist Karen Spärck Jones.
http://en.wikipedia.org/wiki/Karen_Sp%C3%A4rck_Jones

http://en.wikipedia.org/wiki/Karen_Sp%C3%A4rck_Jones
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TF-IDF Definition (Part 1)

I Let D be the collection of documents in the corpus. Let T be the
collection of terms (unique tokens) in the collection D.

I The term frequency (tf) for a given term ti within a particular document
dj is defined as the number of occurrences of that term in the dj th
document, which is equal to ni ,j : the number of occurrences of the term ti
in the document dj .

tf i ,j = ni ,j

I The term frequency is often normalized to prevent a bias towards larger
documents, as shown below:

tf i ,j =
ni ,j

∑k nk,j

where ni ,j is the number of occurrences of the term ti in the document dj .
Note that we are using the total number of terms for normalization.
Instead we can use the maximum as well.
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TF-IDF Definition (Part 2)

I The inverse document frequency (idf) is obtained by dividing the total
number of documents by the number of documents containing the term ti ,
and then taking the logarithm of that quotient:

idfi = log
|D|

|{d : ti ∈ d}|
with

I |D|: total number of documents in the collection
I |{d : ti ∈ d}|: number of documents where the term ti appears. To avoid

divide-by-zero, we can use 1+ |{d : ti ∈ d}|.

I For a given corpus D, then the tf-idf is then defined as:

(tf-idf )i ,j = tf i ,j × idfi

I A high weight in tf-idf is obtained by a high term frequency and a low
document frequency of the term in the collection.

I For common terms, the ratio in idf approaches 1, bringing the logarithm
closer to 0.
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What do we need to compute?

I Given a corpus of text, we want to calculate tf-idf for every
document and every term.

I We need to calculate, over the corpus, the following:
I number of terms,
I number of unique terms,
I number of documents,
I number of occurrences of every term in every document and
I the number of documents containing each term.
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New Map-Reduce and Hadoop Techniques

I Use of Hadoop counters.

I Use reducers for data pass-through instead of only reducing
the data. This is typically done to add a new dimension to the
data.

I Extending FileInputFormat classes to create custom key/value
pairs rather than the default ones.
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Example Code

See the full code in the code examples repo at:
lab/Hadoop/myExamples/tf-idf

The main class is TfIdfDriver.java and the map/reduce classes are:

I TermFrequency.java
I InverseDocumentFrequency.java
I TfIdf.java
I Supporting I/O classes:

I KeyValueTextIntInputFormat.java,
KeyValueTextIntRecordReader.java

I KeyValueTextTextInputFormat.java,
KeyValueTextTextRecordReader.java
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Step 1: Number of terms and unique terms

I Run the same algorithm as the word count. Output looks like:

the 123455
from 65002
about 33004
.
.
.

I Number of unique terms is simply the number of lines in the
output. Number of terms is the total of the second column.

I Running an entire pass just to calculate these two values is
overkill. These two values can also be calculated as a
by-product of the Step 2 by using global counters that Hadoop
allows a job to increment/decrement.
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Hadoop Global Counters

I Declare an enum to represent the counters. The enum name is the group of the
counter, and each field of the enum is the name of the counter that will be
reported in this same group.

public class TfIdfDriver {
static enum Counters { DOCUMENTS, TERMS }

...
}

I Increment the desired counters from the map and reduce methods through the
Context object. For example (context is an instance of a Context object):

context.getCounter(TfIdfDriver.Counters.TERMS).increment(1);
context.getCounter(TfIdfDriver.Counters.DOCUMENTS).increment(1);

I Access the value of the counter from the Job object. For example:

int numTerms = job.getCounters().findCounter(
TftIdfDriver.Counters.TERMS).getValue();

I For other methods, see the class org.apache.hadoop.mapreduce.Counter
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Step 2: Term Frequency

I Change the output from previous map step to produce “docId-term” pairs.
map1:
1_the 1
1_the 1
1_the 1
1_to 1
.
.
.

map2:
2_the 1
2_the 1
2_from 1
.
.
.

map3:
37_london 1
.
.
.

I Reducer simply adds up the values with the same key and we have the term
frequency.

1_the 3
1_to 1
...
2_the 2
2_from 1
...
37_london 1

I We also get the number of terms and number of documents in this step using
global counters.

I See the code at tf-idf/src/TermFrequency.java
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Step 3: Inverse Document Frequency (Try 1)

I Use the output from the previous step as the input. Take every key from
the input data, split it to (1, the) and write to map’s output that we have
at least one document containing the word the:

the 1
to 1
...
the 1
from 1
...
london 1

I Reduce simply computes the length of the list and outputs:

the 2
to 1
from 1
london 1
...

I Now we have two outputs: one with TF values and another with IDF
values but no way to combine them.... Let’s try another way.
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Step 3: Inverse Document Frequency (Try 2)

I We will use a MapReduce technique known as data pass-through. The
output from the mapper in the previous attempt has more information that
we can pass along for later use. We write docId_tf instead of simply
writing “1” as before.

the 1_3
to 1_3
...
the 2_2
from 2_1
...
london 37_1

I Reduce computes the length of the list and outputs key/value pairs shown
below (where the format of the value is (docCount, docId, countInDoc)):

the 2_1_3
the 2_2_2
to 1_1_3
from 1_2_1
london 1_37_1
...

where the key/value the 2_1_3 reads as: there are 2 documents that
contain the term the, and the document with id 1 contains 3 such terms.

I Note that the reducer didn’t reduce the data but added a new dimension
to it.

I See the code at tf-idf/src/InverseDocumentFrequency.java
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Step 4: Calculating the tf-idf

I Assume we have counted the number of documents (totalDocCount) and
the number of terms (totalTermCount), we can write a mapper (with no
need for reduce) to finish the process.

I Mapper input:
term = key
(docCount, docId, countInDoc) = value.split("_")

I Mapper output:

tf = countInDoc/totalTermCount
idf = log(totalDocCount/docCount)
result = tf * idf
output(key= docId + "_" + term, value = result)

I See the code at tf-idf/src/TfIdf.java
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Supporting I/O Classes

I KeyValueTextIntInputFormat.java,
KeyValueTextIntRecordReader.java. These classes are used by
the InverseDocumentFrequency mapper for input since we
want the first field in the input to be returned as a Text key
(instead of the default, which is the byte offset of current line
in the input file) and the second field to be returned as an
integer value.

I KeyValueTextTextInputFormat.java,
KeyValueTextTextRecordReader.java. These classes are used
by the TfIdf mapper for input since we want the first field in
the input line to be returned as a Text key and the second
filed to be returned as a Text object.

I See Chapter 7 in the Hadoop book for more details.
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