
1/33

What is Parallel Computing?

Parallel Computing is several processing elements working
simultaneously to solve a problem faster. The primary
consideration is elapsed time, not throughput or sharing of
resources at remote locations.

2/33

Who Needs Parallel Computing?

I Googling (one of the largest parallel cluster installations)
I Facebook
I Databases
I Weather prediction
I Picture generation (movies!)
I Economics Modeling (Wall Street :-()
I Simulations in a wide range of areas ranging from science to

arts
I Air traffic control
I Airline Scheduling
I Testing (Micron...)
I You!

3/33

Serial Computer Model: The von Neumann Model

A von Neumann computer consists of a random-access memory
(RAM), a read only tape, a write only output tape, and a central
processing unit (CPU) that stores a program that cannot modify
itself. A RAM has instructions like load, store, read, write, add,
subtract, test, jump, and halt. There is a uniform cost criterion in
that each instruction takes only one unit of time. The CPU
executes instructions of the program sequentially.

4/33

How to classify Parallel Computers?

Parallel computers can be classified by:
I type and number of processors
I interconnection scheme of the processors
I communication scheme
I input/output operations

5/33

Models of Parallel Computers

There is no single accepted model primarily because the
performance of parallel programs depends on a set of
interconnected factors in a complex fashion that is machine
dependent.

I Flynn’s classification
I Shared memory model
I Distributed memory model (a.k.a. Network model)

6/33

Flynn’s classification

I SISD: Single Instruction Single Data
I SIMD: Single Instruction Multiple Data
I MIMD: Multiple Instruction Multiple Data
I MISD: Multiple Instruction Single Data

7/33

Shared Memory Model

I Each processor has its own local memory and can execute its
own local program.

I The processors can communicate through shared memory.
I Each processor is uniquely identified by an index called a

processor number or processor ID, which is available locally.
I Two models of operation:

I Synchronous → All processors operate synchronously under
the control of a common clock. (Parallel Random Access
Machine, PRAM)

I Asynchronous → Each processor operates under a separate
clock. In this mode its the programmers responsibility to
synchronize, or set the appropriate synchronization points.

I This model is MIMD

8/33

Variations of the Shared Memory Model

I Algorithms for the PRAM model are usually of SIMD type,
that is all processors are executing the same program such that
during each time unit all processors execute the same
instruction but with different data in general.

I Variations of the PRAM:
I EREW(exclusive read, exclusive write)
I CREW(concurrent read, exclusive write)
I CRCW(concurrent read, concurrent write)

I Common CRCW: All processors in a machine using CRCW
writing to a certain location must write the same data or there
is an error.

I Priority CRCW: The processor, among all processors
attempting to write to the same location at the same time,
with the highest priority succeeds in writing.

I Arbitrary CRCW: Arbitrary processor succeeds in writing.

9/33

Distributed Memory Model (a.k.a Network Model)

A network is a graph G = (N,E), where N and E are sets, with
each node i ∈ N and each edge (i,j) ∈ E represents a two way
communication link between processors i and j . There is no shared
memory, though each processor has local memory. The operation of
the network may be synchronous or asynchronous.
Message passing model: Processors coordinate activity by
sending and receiving messages. A pair of communicating
processors do not have to be adjacent. Each processor “acts” as a
network node. The process of delivering messages is called routing.
The network model incorporates the topology of the underlying
network.

10/33

Characteristics of Network Model

Diameter Maximum distance between any two processors in the network.
Distance is the number of links (hops) in between the two processors
along the shortest path.

Connectivity Minimum number of links that must be cut before a processor becomes
isolated. (same as minimum degree)

Maximum degree - Maximum number of links that any processor has. This would
also be the number of ports that a processor must have.

Cost Total number of links in the network. This is more important than
number of processors because connections are what make up the bulk
of the cost in a network. (Can be found by summing the degrees of all
nodes, then dividing by two.)

Bisection width - Minimum number of links that have to be cut to bisect the
network, that is, into two components, one with bn/2c nodes and the
other with dn/2e nodes.

Symmetry Does the graph look the same at ALL nodes? Helpful in reliability and
code writing. A qualitative rather than a quantitative measure.

I/O bandwidth Number of processors with I/O ports. Usually “outer” processors are
the only ones with I/O capabilities to reduce cost.

11/33

bus−based

star

linear array

ring

12/33

An 8 x 8 mesh

13/33

An 8 x 8 torus (a.k.a. wrap−around mesh)

14/33

a 15−node fat treea 15−node complete binary tree

1 1 1 1 1 1 1 1

2 2 2 2

44

15/33

dim=0 dim=1

dim=2

dim=3

dim=4

Hypercubes with dimensions 0 through 4

16/33

Crossbars (or completely−connected networks)

17/33

How to define a good network parallel computer?

For a “good” parallel machine the diameter should be low,
connectivity should be high, max. degree low, bisection width high,
symmetry should be present and cost low!

18/33

Comparison of network models

Type Diameter Min. Max. Bisection Width Cost Sym.
deg. deg.

bus 1 1 1 1 n-1 (?) yes
star 2 1 n-1 bn/2c n-1 no
linear array n-1 1 2 1 n-1 no
ring bn/2c 2 2 2 n yes
mesh 2

√
n−2 2 4

√
n+ (
√
n mod 2) 2n−2

√
n no

torus
√
n− (
√
n mod 2) 4 4 2

√
n+2(

√
n mod 2) 2n yes

binary tree 2 lg(n+1)−2 1 3 1 n−1 no
fat tree 2 lg(n+1)−2 1 (n+1)/2 (n+1)/4 (lgn−1)(n+1)/2 no
hypercube lgn lgn lgn n/2 (n lgn)/2 yes
crossbar 1 n-1 n-1 bn/2cdn/2e n(n−1)/2 yes

Notes:
I Assume that there are a total of n processors in each network model.
I The mesh and the torus each have n = m×m nodes, that is, n is a square.

19/33

node01
192.168.0.101

Per Node:

NVIDIA Qudaro 600: 96 cores, 1 GB memory

8GB RAM
250 GB disk

64−bit Intel Xeon quad−core 3.1−3.2 GHz

~19TB raw disk space

528 GB memory

260 cores

Total:

24−port HP switch

24−port HP switch

(12 core 2.6 GHz Xeons, 32GB RAM, SCSI RAID disk drives)

To Internet
onyx

132.178.208.159 1000 MBits/sec

node00

192.168.0.1

1000 MBits/sec link

node32
192.168.0.132

Linux Cluster Lab

node33 node62
192.168.0.133 192.168.0.133 192.168.0.133

node47 node48

24−port HP switch24−port HP switch

192.168.0.162

ENGR 111

.

48 −port HP switch

ENGR 213/214

20/33

Linux Channel
Bonding

.

To Internet

1000 MBits/sec link

Gigabit Switch Gigabit SwitchGigabit Switch

node01 node20 node21 node40 node41 node60

beowulf

1000 MBits/sec to
campus backbone

 32000 MBits/sec link

node00

192.168.1.1

192.168.1.120 192.168.1.121 192.168.1.140 192.168.1.141 192.168.1.160192.168.1.101

 Beowulf Cluster Architecture

(dual 2.4 GHz Xeons, 4GB RAM, RAID disk drives)

Each Compute Node:

Gigabit Switch: Cisco 24−port Gigabit stacking cluster switch

 32−bit dual 2.4 GHz Xeons, 1−4GB RAM, 300GB disk

21/33

32

32

32

crossbar

crossbar

crossbar

20−node

20−node

20−node

 Beowulf Cluster Network

22/33

Local Research Clusters

I Genesis Cluster.
I 64 cores: 16 quad core Intel i7 CPUs in 16 nodes. Configured as 8

compute and 8 I/O nodes
I 192GB memory: 12 GB memory per node
I 100TB of raw disk space
I 3 GigE channel bonded network on each node (4 GigE channel on head

node)
I Infiniband Mellanox Technologies MT25208: 10 Gig/s network

I Boise State R1 Cluster
I 272 cores: 1 Head node + 16 compute nodes with Dual AMD Opteron

6128 8 core 2.0 Ghz
I 576GB memory: Head node: 64GB memory, Compute nodes: 32GB

memory
I Eight nodes have dual NVIDIA Tesla 2070 (or GTX 680) cards with

448 cores each
I Around 50TB of raw disk space
I InfiniBand: Mellanox MT26428 [ConnectX VPI PCIe 2.0 5GT/s – IB

QDR / 10GigE]
I Kestrel Cluster.

I 1024 cores: 32 nodes with 2 Intel Xeon E5-2600 series processors – 16
cores

I 2048GB memory: 32 GB memory per node
I 64TB Panasas Parallel File Storage
I Infiniband Mellanox Technologies ConnectX-3FDR

23/33

The Top 500 Supercomputer List

I Check the list of top 500 supercomputers on the website:
http://www.top500.org/

I Check out various statistics on the top 500 supercomputers?
For example, what operating system is used the most? What
is the most number of cores per CPU? Which vendors are the
dominant players?

http://www.top500.org/

24/33

Intel iPSC

Parallel
machines

MIMD

SIMD

message
passing

shared
memory

fixed inter−
connection

shared
memory

PRAM
(Exclusive Read Exclusive Write)
EREW

CREW

CRCW
(Concurrent Read Concurrent Write)

(Concurrent Read Concurrent Write)

MasPar MP−1, MP−2 (torus interconnection)

bus based

crossbar

multistage
network

various companies

IBM RP−3
BBN GP1000 (butterfly network)

Cmmp

LAN based

NCUBE

NOW (Network of Workstations)
Beowulf clusters

 Access Machine)
(Parallel Random

hypercube

SMP machines from

Connection Machine CM−1, CM−2 (hypercube)

Many−core or multi−core systems

GPUs

Types of parallel machines (with historical machines)

25/33

Evaluating Parallel Programs

Parallelizing problems involves dividing the computation into tasks
or processes that can be executed simultaneously.

I speedup = Sp(n) = T ∗(n)
Tp(n)

= best sequential time
time with p processors

I linear speedup: a speedup of p with p processors.
I superlinear speedup: An anomaly that usually happens due to

I using a sub-optimal sequential algorithm,
I unique feature of the parallel system,
I or only on some instances of a problem.

(e.g. searching in an unordered database.)

26/33

Evaluating Parallel Programs

I cost = Cp(n) = Tp(n)×p = parallel runtime × number of
processors.

I efficiency = Ep(n) = T ∗(n)
Cp(n)

,0< Ep(n)≤ 1
I A cost-optimal parallel algorithm has efficiency equal to Θ(1),

which implies linear speedup. What causes efficiency to be less
than 1?

I all processes may not be performing useful work (load
balancing problem)

I extra computations are present in the parallel program that
were not there in the best serial program

I communication time for sending messages (communication
overhead)

27/33

Granularity of parallel programs

I Granularity can be described as the size of the computation
between communication or synchronization points.

I The granularity can be measured by looking at the ratio of
computation time to communication time in a parallel
program. A coarse-grained program has high granularity,
leading to lower communication overhead. A fine-grained
program has a low ratio, which implies a lot of communication
overhead.

28/33

Scalability

I Scalability is the effect of scaling up hardware on the
performance of a parallel program

I Scalability can be architectural or algorithmic. Here we are
concerned with more with algorithmic scalability.

I The idea is that the efficiency of a parallel program should not
deteriorate as the number of processors being used increases.
Scalability can be measured for either:

I a fixed total problem size, or
I In this case efficiency always tends to zero as number of

processors gets larger.
I a fixed problem size per processor. :

I This is more relevant, especially for the network model.
This is saying that if we use twice as many processors to
solve a problem of double the size, then it should take the
same amount of time as the original problem.

29/33

Parallel Summation on a Shared memory machine

Assume that we have an input array A[0..n−1] of n numbers in
shared memory. Assume that we have p processors indexed from 0
to p−1.
The simple algorithm partitions the numbers among the p
processors such that the ith processor gets roughly n/p numbers.

I ith process add its share of n/p numbers an stores the partial
sum in shared memory.

I process 0 adds the p partial sums to get the total sum.
Tp(n) = Θ(n/p+p), T ∗(n) = Θ(n)

Sp(n) = Θ
(

p
1+p2/n

)
Ep(n) = Θ

(
1

1+p2/n

)
limn→∞Ep(n) = Θ(1)
Good speedup is possible if p << n, that is, the problem is very
large and the number of processors is relatively few.

30/33

Parallel Summation on a Distributed memory machine

I Assume that process 0 initially has the n numbers.
1. Process 0 sends n/p numbers to each processor.
2. Each processor adds up its share and sends partial sum back to

process 0.
3. Process 0 adds the p partial sums to get the total sum.

No speedup :-(Step 1 itself takes as much time as a sequential
algorithm!

I Assume that each processor has its share (that is n/p)
numbers to begin with. Then we only Step 2 and 3 above.
The speedup and efficiency then is the same as in the shared
memory case.

31/33

Limitations of Parallel Computing?

Amdahl’s Law. Assume that the problem size stays fixed as we
scale up the number of processors. Let ts be the fraction of the
sequential time that cannot be parallelized and let tp be the
fraction that can be be run fully in parallel. Let ts + tp = 1 be a
constant. Then, the speedup is:

Sp(n) =
ts + tp

ts +
tp
p

=
p

ts(p−1) +1

Ep(n) =
ts + tp

p(ts +
tp
p)

=
1

ts(p−1) +1

lim
p→∞

Sp(n) =
1
ts

lim
p→∞

Ep(n) = 0

32/33

Limitations of Parallel Computing?

Gustafson’s Law. Assume that the problem size grows in proportion to
the scaling of the number of processors. The idea is to keep the running
time constant and increase the problem size to use up the time available.
Let ts be the fraction of the sequential time that cannot be parallelized and
let tp be the fraction that can be be run fully in parallel. Let ts + tp = 1 be
a constant.
If we keep the run time constant, then the problem needs to be scaled
enough such that the parallel run time is still ts + tp, which implies that the
serial time would be ts +ptp. Thus the speedup would be:

Sp(n) =
ts +ptp
ts + tp

= ts +ptp

= ts + (1− ts)p

= p+ (1−p)ts

lim
p→∞

Sp(n) = ∞

33/33

Exercises

1. Read Wikipedia entries for “Multi-core", “Computer Cluster" and
“Supercomputer"

2. What is the diameter, connectivity, cost and bisection width of a
3-dimensional torus with n = m×m×m nodes?

3. Draw the layout of a 6-dimensional hypercube with 64 processors. The
goal is to make the wiring pattern systematic and neat.

4. A parallel computer consists of 10000 processors, each capable of a
peak execution rate of 10 GFLOPs. What is the performance of the
system in GFLOPS when 20% of the code is sequential and 80% is
parallelizable. (Assume that the problem is not scaled up on the
parallel computer)

