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Graph Algorithms using Map-Reduce

Graphs are ubiquitous in modern society. Some examples:

I The hyperlink structure of the web

I Social networks on social networking sites like Facebook,
IMDB, email, text messages and tweet flows (like Twitter)

I Transportation networks (roads, trains, flights etc)
I Human body can be seen as a graph of genes, proteins, cells

etc

Typical graph problems and algorithms:
I Graph search and path planning
I Graph clustering
I Minimum spanning trees
I Bipartite graph matching
I Maximum flow
I Finding “special” nodes
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Big Graphs

I Big graphs are typically sparse so adjacency list representation
is much more space efficient. Typical value may be m = O(n),
where m is the number of links and n is the number of nodes
in the graph.

I Example: Facebook has around 1.3 billion users but each user,
on an average, may only have few hundred friends, so the
graph is very sparse.
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Parallel Depth-First Search

I Assume that all links have unit distance for simplification. Assume
that graph is connected.

I We are interested in finding the shortest distance from a source
vertex to all other vertices. Since the distances are all one, this is
the same as a breadth-first search. The largest shortest distance
(starting from any node) is known as the diameter.

I Each node is represented by a node id n (an integer), its current
distance (initialized to ∞) and its adjacency list data structure N.

I Each mapper emits a key-value pair for each neighbor on the
node’s adjacency list. The key contains the node id of the
neighbor, and the value is the current distance to the node plus
one.

I After shuffle and sort, reducers will receive keys corresponding to
the destination node ids and distances corresponding to all paths
leading to that node.The reducer will select the shortest of these
distances and then update the distance in the node data structure.

I Each iteration of the map-reduce algorithm expands the “search
frontier” by one hop, and, eventually, all nodes will be discovered
with their shortest distances (assuming a fully-connected graph).
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Parallel Breadth-First Search Pseudo-code
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Implementation Tips

I Note that in this algorithm we are overloading the value type,
which can either be a distance (integer) or a complex data
structure representing a node. This can be done in Hadoop by
creating a wrapper object with an indicator variable specifying
the type of the content. Or by creating an abstract class with
two sub-classes.

I Since the graph is connected, all nodes are reachable, and since
all edge distances are one, all discovered nodes are guaranteed
to have the shortest distances (i.e., there is not a shorter path
that goes through a node that hasn’t been discovered).

I Global Hadoop counters can be defined to count the number
of nodes that have distances of ∞. At the end of the job, the
driver program can access the final counter value and check to
see if another iteration is necessary.

I Most real-life graphs have a small diameter. Search for “six
degrees of freedom" or Facebook’s experiment that showed
4.74 degrees of freedom over a large set of users.
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Shortest Paths in Weighted Graphs

I Instead of d +1, the mapper now emits d +w , where w is the
weight of the edge.

I Termination will be different: The algorithm can terminate
when shortest distances at every node no longer change. The
worst-case is that the number of iterations equals the number
of nodes. But most real-life graph will terminate for iterations
somewhere close to the diameter of the graph.
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