
1/23

Introduction to OpenMP

I OpenMP is a portable, scalable model with a simple and
flexible interface for developing parallel applications on
platforms from the desktop to the supercomputer.

I OpenMP is a specification that compilers can implement. The
latest version is 4.0. GCC implements version 3.1.
VisualStudio C/C++ implements version 2.0.

I Relatively easy way to get moderate parallelism on
shared-memory machines.

2/23

What is OpenMP?

I OpenMP is a collection of compiler directives and library
functions that are used to create parallel programs for
shared-memory computers.

I OpenMP combined with C, C++ or Fortran creates a
multithreaded program where the threads share the address
space.

I The goal of OpenMP was to make it easier for programmers to
convert single-threaded code to multithreaded. The two key
concepts are:

I sequential equivalence: yields the same results whether it
executes using one thread or many threads.

I incremental parallelism: a style of parallel programming where
a program evolves incrementally from a sequential program to
a parallel program.

I OpenMP is an explicit parallel programming approach so the
compiler doesn’t guess how to exploit concurrency.

3/23

OpenMP Basics

I To create threads, the programmer designates blocks of code that are to
be run in parallel with the pragma
#pragma omp parallel
(See Wikipedia page on pragmas)

I The environment variable OMP_NUM_THREADS determines the number
of threads used at run time.

I Here is an example program that uses the pragma.
/* OpenMP/hello_1/hello_1.c */
#include <stdio.h>
#include <omp.h>
int main(int argc, char **argv)
{

#pragma omp parallel
{

printf("hello world\n");
}

}
I Compile with the -fopenmp flag for the GCC compiler

http://en.wikipedia.org/wiki/Directive_(programming)

4/23

Shared/private variables

I A variable allocated prior to a parallel region is shared between
the threads (in most cases).

I If a variable is declared inside a parallel region, then it is
private or local to a thread.

I The number of threads can also be specified by the
programmer via an OpenMP runtime library call
omp_set_num_threads(). Or it can also be set by the
num_threads() clause as shown below.
#pragma omp parallel num_threads(4)

5/23

hello_2 example

/* lab/OpenMP/hello_2/hello_2.c */
#include <stdio.h>
#include <omp.h>
int main(int argc, char **argv)
{

int i=100; //this becomes a shared variable
omp_set_num_threads(4);//OpenMP library call
#pragma omp parallel
{

int id; //private to each thread
id = omp_get_thread_num(); //OpenMP library call
printf("i = %d on thread %d\n", i, id);

}
}

6/23

OpenMP pragmas

An OpenMP construct is defined to be a directive(pragma) plus a
block of code with the following conditions:

I The block of code must be structured: one point of entry at
the top and a single point of exit at the bottom.

I No branching into or out of the structured block is allowed.
I No return statement is allowed inside the structured block.
I The only branching statement allowed is one that ends the

program (exit()).

#pragma omp <directive-name> [<clause> [<clause>] ...]

7/23

Work-Sharing

Different code to map to different threads. Common examples are loop
splitting and separate sections.
Loop splitting:

I The programmer identifies the most time-consuming loops in their
program.

I The loops are then restructured, if necessary, so that the loop
iterations are largely independent.

I The program is then parallelized by mapping different groups of loop
iterations into different threads.

Sections
I The programmer identifies separate sections of code that can be done

by separate threads.

8/23

Pragmas for Work-Sharing

I for directive:
#pragma omp for [<clause> [<clause>] ...]
<for-loop statement>

I section directive:
#pragma omp sections [<clause> [<clause>] ...]
{

[#pragma omp section]
<C/C++ structured block executed by processor i>
[#pragma omp section]
<C/C++ structured block executed by processor j>

...
}

I single directive: The first thread that encounters the block of code
executes it, other threads skip the block and wait at the end of the
single construct.

#pragma omp single
{<structured block>}

9/23

How Work-Sharing Pragmas Work

I There is an implicit barrier at the end of any work sharing
pragma. This can be removed by appending the nowait clause
at the end of the for pragma.

I The loop index is automatically made private for each thread.
I The loop iterations are divided among the threads in an order

decided by the system. This, however, can be controlled by the
programmer.

I It is common to have parallel construct followed by a for
construct. We can combine the two as follows:
#pragma omp parallel for

10/23

Work Sharing Example

I Sequential code. Assume that the combine function doesn’t take long
and must be called sequentially.
double result;
double answer = 0.0;
for (i=0; i<N; i++) {

result = bigcomputation(i);
combine(answer, result);

}
I The parallelized version. Notice how we divided the loop into two

independent loops.
double result[N];
double answer = 0.0;
#pragma omp parallel for
for (i=0; i<N; i++)

result[i] = bigcomputation(i);

for (i=0; i<N; i++)
combine(answer, result);

11/23

Data Environment Clauses

I The private(<variable-list>) clause directs the compiler to create a
private or local variable for each name included in the list. The names
in the list must have been defined and bound to shared variables prior
to the the parallel region. The initial values of these new private
variables are undefined. Furthermore, the values of these variables
after the parallel region are undefined as well.

I The reduction(<operator>:<variables>) clause combines a set of
values into a single value using the specified binary, associative
operator. The variables are initialized with the identity value, and then
each thread gets a private copy to work on. At the end of the parallel
region, the values are combined and assigned to the respective variable
after the parallel region. Operators (in C/C++): +, /, *, -, &, |, ∧,
&&, ||.

I Other clauses: firstprivate(<variable-list>) and
lastprivate(<variable-list>). The firstprivate clause takes the value
prior to the parallel region as the initial value in the region. The
lastprivate clause takes the value assigned in the last loop iteration
and makes that the value of the variable after the parallel region.

12/23

Work Sharing Example - OpenMP Sum

/* lab/OpenMP/sum/openmp_sum.c */
/* appropriate header files */
int main(int argc, char **argv)
{

int i;
int n;
int *array;
long int sum = 0;

if (argc < 2) {
fprintf(stderr, "Usage: %s <n>\n", argv[0]);
exit(1);

}
n = atoi(argv[1]);
printf("Number of elements to add = %d\n", n);
array = (int *) malloc(sizeof(int)*n);

#pragma omp parallel for
for (i=0; i<n; i++)

array[i] = 1;

#pragma omp parallel for reduction(+:sum)
for (i=0; i<n; i++) {

sum += array[i];
}
printf(" sum = %ld\n", sum);
exit(0);

}

13/23

Work Sharing Example - OpenMP Pi

/* lab/OpenMP/pi/pi.c */
/* appropriate header files */
int main(int argc, char **argv)
{

int i;
int num_steps = 100000000;
double x, pi, step, sum = 0.0;
if (argc > 1) {

num_steps = atoi(argv[1]);
}
step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)
for (i=0; i<num_steps; i++) {

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
pi = step * sum;
printf(" pi = %.9lf\n", pi);
exit(0);

}

14/23

Function calls in loops

I In general, the compiler will not parallelize a loop that involves a
function call unless it can guarantee that there are no dependencies
between iterations.

I A good strategy is to inline function calls within loops. If the compiler
can inline the function, it can usually verify lack of dependencies.

I See example OpenMP/parallel-for/ex1.c for one that does parallelize.
See example OpenMP/parallel-for/ex2.c for one that doesn’t
parallelize. Relevant code snippets shown below.

#pragma omp parallel for
for (i = 0; i < n; i++)

a[i] = sqrt(2 * i * 3.14159) ;

#pragma omp parallel for
for (i = 0; i < n; i++)

a[i] = sqrt(2 * i * 3.14159) * random() ;

15/23

OpenMP Runtime Library

I omp_set_num_threads(int)
I omp_get_num_threads()
I omp_get_thread_num()
I Lock functions for explicit manipulation of locks.

/* lab/OpenMP/hello_3/hello_3.c */
/* appropriate */
int main(int argc, char **argv) {

int id, numThreads;
#pragma omp parallel private (id, numThreads)
{

id = omp_get_thread_num(); //OpenMP library call
numThreads = omp_get_num_threads();
printf("I am thread %d out of %d threads\n", id, numThreads);

}
}

16/23

Synchronization Constructs

I flush defines a synchronization point where memory consistency is
enforced.
#pragma omp flush [(<variable-list>)]
If the variable list is omitted, then flush operates on all variables
visible to the calling thread.

I critical implements a critical section for mutual exclusion. An optional
name can be provided to support disjoint sets of critical sections.
#pragma omp critical [(<variable-name>)]
<structured block>

I barrier provides a synchronization point at which the threads wait until
every member of the team has arrived before any threads continue.
#pragma omp barrier

17/23

Critical Section: Example 1

/* lab/OpenMP/hello_4/hello_4.c */
/* appropriate header files */
int main(int argc, char **argv)
{

int i=100; //this becomes a shared variable
#pragma omp parallel
{

#pragma omp critical
{ i++; }

}
printf("i = %d after parallel section\n", i);

}

18/23

Critical Section: Example 2

double result;
double answer = 0.0;
#pragma omp parallel for private(result)
for (i=0; i<N; i++) {

result = bigcomputation(i);
#pragma omp critical
combine(answer, result);

}

Assumes that calls to combine can be made in any order.

19/23

Low Level Synchronization

I void omp_init_lock(omp_lock_t *lock)
I void omp_destroy_lock(omp_lock_t *lock)
I void omp_set_lock(omp_lock_t *lock)
I void omp_unset_lock(omp_lock_t *lock)
I int omp_test_lock(omp_lock_t *lock)

The lock functions guarantee that the lock variable is consistently updated
between threads, but do not imply a flush of other variables. Therefore,
programmers using locks must call flush explicitly.

20/23

Load Balancing in Loops

Load balancing is achieved via the schedule clause to the for construct.
The syntax is: schedule (<sched> [, <chunk>])

I schedule (static [, chunk]): Static load balancing by iterations.
I schedule (dynamic [, chunk]): Dynamic load balancing. Similar to a

centralized workpool queue.
I schedule (guided [, chunk]): Dynamic load balancing with decreased

number of scheduling decisions. Number of iterations assigned
decrease exponentially down to chunk size.

I schedule (runtime): Get scheduling at runtime from environment
variable OMP_SCHEDULE

See example OpenMP/load-balancing/lb_demo.c.

21/23

Schedule Clause: Example

#define N 1000
double result;
double answer = 0.0;
#pragma omp parallel for private(result) schedule(dynamic, 10)
for (i=0; i<N; i++) {

result = bigcomputation(i);
#pragma omp critical
combine(answer, result);

}

22/23

Case Study: Wave Simulation

I Initially added a parallel and for pragmas around the inner
doubly-nested loop as it updates the matrix in parallel. However that
gave poor performance (slower than serial!) because of contention for
variables.

I Then added private clauses for relevant variables. That finally gave a
speedup of about 1.6 with 4 threads on the ghost row based wave
program. This was on a system with a four core processor.

I Also experimented with schedule but got no further improvement.
I The pragma used was:

#pragma omp parallel for private (i, j, iS, iN, jE, jW)

23/23

References

I OpenMP: Simple, portable, scalable SMP programming.
http://www.openmp.org

I Parallel Programming in OpenMP by Rohit Chandra, Leonardo
Dagum, Dave Kohr, Dror Maydan, Jeff McDonald and Ramesh
Menon. Morgan Kaufmann Publishers, 2000.

I Appendix A in Patterns for Parallel Programming by Timothy G.
Mattson, Beverly A. Sanders and Berna L. Massingill. Addison Wesley,
2005.

I Reap the Benefits of Multithreading without All the Work by Kang Su
Gatlin and Pete Isensee, MSDN Magazine, October 2005.

