
COMPSCI 242: Data Structures and Algorithms

Knapsack Problem

The 0/1 Knapsack Problem

Suppose we have n items with sizes si, 1 ≤ i ≤ n. We assume that each value is an integer greater
than zero. We want to find a subset of items that fits the knapsack exactly.

Let P (i, S) be the the problem with the first i items and a knapsack of size S, where S ≤ K.
The following shows a recursive solution.

Base case. P (1, k), 0 ≤ k ≤ K.

k = 0 Then there is always a solution by not choosing any item
k > 0 Then there is a solution iff size of the first item is k (s1 = k)

Hypotheses. Assume that we know how to solve P (n− 1, k) for 0 ≤ k ≤ K.

Inductive Step. We want to solve P (n, K). There are two cases.

1. There is a solution with the first n− 1 items. Then we don’t choose the nth item and use the
solution from P (n− 1,K).

2. There is no solution with the first n− 1 items. The we choose the nth item with size sn and
check if there is solution for P (n− 1,K − sn)

There are nK possible subproblems. To implement the algorithm we can store all the known
results in an n×K table. Each entry in this table is computed from two entries in the row above
that entry. The algorithm is shown on the next page.



Knapsack(S, K)
//Input: S[1..n]: an array containing the sizes of the items.
// K: size of the knapsack.
//
//Output: P[0..n,0..K]:
// P[i,k].exist = true implies that there is a solution to the knapsack
// of size k with the first i items.
// P[i,k].belong = true implies that the solution includes the ith item.
1. P[0,0].exist ← true
2. for k ← 1 to K
3. do P[0,k].exist ← false

//No need to initialize P[i,0], for i > 0,
//as it will be computed from P[0,0]

4. for i ← 1 to n
5. do for k ← 0 to K
6. do P[i,k].exist ← false //default value

// check if there is a solution with the first i-1 items
7. if P[i-1,k].exist
8. then P[i,k].exist ← true
9. P[i,k].belong ← false
10. else if (k-S[i])≥ 0

// there is no solution with the first i-1 items
//check if there is one if we choose the ith item

11. then if P[i-1,k-S[i]].exist
12. then P[i,k].exist ← true
13. P[i,k].belong ← true

The worst-case run time is Θ(nK) and the space utilization is Θ(nK).

2



Some questions to ponder?

• How do we recover the actual solution from the table?

The following code does it in Θ(n + K) time. It basically traces back the belong flag in the
table.

1. if P[n,K].exist
2. then x ← K
3. for i ← n downto 1
4. do if P[i,x].exist
5. then if P[i,x].belong
6. then print i
7. x ← x - s[i]

• What are the characteristics of the solution obtained from the knapsack algorithm? It chooses
the solution with the smallest possible indices.

• What if we prefer to take the ith item over (i− 1)st if a solution exists using both instead of
preferring the (i− 1)st item (as our algorithm above does)? Then we will choose the solution
with the largest possible indices. It will also run slower since it will skip over earlier solutions
to get to the one with items with the largest possible indices.

• Can we improve the space utilization to Θ(n)? Left as an exercise for the reader.

• What if we want to recover all possible solutions to the 0/1 knapsack problem? Keep track
of both flags: for the solution including the ith item as well as for the solution with the first
i− 1 items. Then while tracing back explore both possibilities.

• What if we have unlimited quantities of each item? Left as an exercise for the reader.

• What if each item has an associated value and we want to obtain the maximum value among
all ways of packing the knapsack? Discussed in the next section.

• What if we are allowed to take a fractional part of an item? What if we are allowed to take
a fractional part and we want to maximize the value? Left as an exercise for the reader.

3



The Knapsack problem with values associated with items

Consider the knapsack problem with n items with sizes si, 1 ≤ i ≤ n, and associated values vi,
1 ≤ i ≤ n. We assume that each value is an integer greater than zero. Among all the candidate
solutions to the knapsack problem, we want to find the one with the maximal total value of the
items. A candidate solution is a subset of items that fits the knapsack exactly.

The algorithm is a modification of the original algorithm for the knapsack problem. In the
two-dimensional matrix P , we will also keep track of the total value of a given solution in addition to
the belong and exist flags. Thus P [i, k].value would be the maximal value among all exact solutions
to the knapsack of size k using the first i items. If there is no solution to the P [i, k] knapsack
problem, then P [i, k].value value will be zero.

In order to compute the maximal value, we must examine the following cases:

1. If there is a solution with the first i− 1 items, then there are two sub cases:

(a) If there is also a solution using the ith item, then we must check to see which one has
higher value.

(b) If there is no solution using the ith item, then we simply use the value of the solution
using the first i− 1 items as the best value so far.

2. If there is no solution with the first i− 1 items, then there are again two sub cases.

(a) If there is a solution using the ith item, then we simply use its value as the best so far.

(b) If there is no solution using the ith item, then there is no solution for the P [i, k] knapsack
problem.

The complete algorithm is on the next page.

4



Knapsack(S, K)
//Input: S[1..n]: an array containing the sizes of the items.
// V[1..n]: an array containing the values associated with the items.
// K: size of the knapsack.
//
//Output: P[0..n,0..K]:
// P[i,k].exist = true implies that there is a solution to the knapsack
// of size k with the first i items.
// P[i,k].belong = true implies that the solution includes the ith item.
// P[i,k].value = the maximal value over all possible solutions
// to the knapsack of size k with the first i items.
1. P[0,0].exist ← true
2. P[0,0].value ← 0
3. for k ← 1 to K
4. do P[0,k].exist ← false

5. for i ← 1 to n
6. do for k ← 0 to K
7. do P[i,k].exist ← false //default value
8. P[i,k].value ← 0 // default value

// check if there is a solution with the first i-1 items
9. if P[i-1,k].exist

//There is a solution with the first i-1 items. Assume
//this is the better solution for now and we will update
//this information if it is not

10. then P[i,k].exist ← true
11. P[i,k].belong ← false
12. P[i,k].value ← P[i-1,k].value

// Now check if there is a better solution by choosing the
// ith item to be in the knapsack

13. if (k-S[i]) ≥ 0
14. then if P[i-1,k-S[i]].exist
15. then if ((P[i-1,k-S[i]].value + V[i]) > P[i-1,k].value)
16. then P[i,k].belong ← true
17. P[i,k].value ← P[i-1,k-S[i]].value+V[i]

//there is no solution with the first i-1 items
//check if there is one if we choose the ith item

18. else if (k-S[i]) ≥ 0
19. then if P[i-1,k-S[i]].exist
20. then P[i,k].exist ← true
21. P[i,k].belong ← true
22. P[i,k].value ← P[i-1,k-S[i]].value+V[i]

5


