
CS 242: Data Structures and Algorithms
Second Examination (November 5th, Wednesday)

Due (in class) on 10th November (Monday)
Name: Total Points: 150

• This is a take home, open book, closed person, open computer, closed Internet
exam. However you may discuss the exam with the instructor. Also you can use a
computer to check your solutions or to use a tool like Maple but you may not use
the Internet to find solutions.
• Show your work, as partial credit will be given. You will be graded not only on the

correctness of your answer, but also on the clarity with which you express it. If your
solution is complex, use examples to help explain your ideas. For each problem, 10%
of the grade will be reserved for clarity.
• Illegible, stream of consciousness answers will not be graded.

I. (25 Points) Assume that you have to sort a sequence of keys where the length of the
sequence is n and each sequence has only lg n distinct keys. It is easy to sort these sequences
in O(n log n) time using a standard sorting algorithm. Suggest a faster algorithm for these
sequences that accomplishes the sorting in worst-case O(n lg lg n) time? Would your answer
change if we only want expected-case O(n lg lg n)? (Your answer for the expected case should
not use hashing.)

II. (25 Points) A concatenate operation takes two sets, such that all the keys in one set
are smaller than all the keys in the other set, and merges them together. Design an algorithm
to concatenate two binary search trees into one binary search tree. The worst-case running
time should be O(h), where h is the larger of the heights of the two trees.

III. (25 Points) Design an algorithm that adds a special key to a binary search tree, such
that the special key is at the root. (Notice that the problem is to split the binary search
tree into two trees, one containing keys less than the special key, and one containing keys
greater than the special key. These two trees can be used as the left and right children of
the root.) The worst-case running time should be O(h), where h is the height of the tree.

IV. (25 Points) Consider the following variation for the 0/1 knapsack problem. We are
given n items with sizes si, 1 ≤ i ≤ n, and associated values vi, 1 ≤ i ≤ n, where the
values are all positive. We want to maximize the total value of the items in the knapsack
(with capacity K), subject to the constraint that there is enough room in the knapsack for
the chosen items. We are no longer restricted to filling the knapsack exactly. Write out the
complete algorithm to solve this variation of the knapsack problem. Your solution should
have as much detail as the one given in class.



CS242 2

V. (25 Points) Recall that double hashing uses probes of the form

h(k, i) = (h1(k) + ih2(k)) mod m,

where h1 and h2 are auxiliary hash functions.

1. Why not let h2 = h1? Describe any advantages or disadvantages.
2. In many cases, there are many more searches performed than insertions. (For exam-

ple, in your dictionary programs, there were many more words than unique words,
and if a search for a word was successful, no insertion was performed.) Assuming
double hashing is used, and that all keys are equally likely, describe how we might
improve the average time for searching by increasing the time for insertion.
(Hint. Consider an insertion that used many probes to find an open address. Could
any elements already in the hash table be moved to result in a smaller average search
time? Which elements, and how?)

VI. (25 Points) Show that any sequence of m Make-Set, Find-Set, and Union opera-
tions, where all the Union operations appear before any of the Find-Set operations, takes
only O(m) time if both path compression and union by rank (that is, size balancing) are
used. What happens in the same situation if only the path-compression heuristic is used?


