
Version Control with Subversion

Introduction

I Wouldn’t you like to have a time machine? Software
developers already have one: it is called version control!

I Version control (aka Revision Control System or Source Control

System or Source Code Management) is the art and science of
managing information, which for software projects implies
managing files and directories over time.

I A repository manages all your files and directories. The
repository is much like an ordinary file server, except that it
remembers every change ever made to your files and
directories. This allows you to recover older versions of your
data, or examine the history of how your data changed.

Comparison of some open-source version control systems

I RCS (Revision Control System). Simple, text based system.
Included in Linux and Unix systems by default. No remote
access. No directory level access.

I CVS (Concurrent Versioning System). Built on top of RCS.
Adds directory level access as well as remote access.

I Subversion. A modern CVS “replacement” that isn’t built on
top of RCS. Allows directory access, web access (via an
Apache Web server module), remote access (via ssh or svn
server). Uses a centralized model with mulitple access-control
possibilities.

I Git. A distributed version control system. There is no central
repository like in subversion. Everyone has a copy of the
repository. More complex model to learn. Useful for parallel,
largely shared but permanently somewhat different lines of the
same project.

Subversion Features

I Subversion allows you to attach metadata to an item.
Metadata takes the form of properties. A property is a
key/value pair. Properties are versioned as well.

I Subversion has a client/server architecture. A developer
interacts with a client program, which communicates with a
server program, which accesses repositories.

I A repository contains the versions of your items.

I Multiple clients, communication protocols, repository-access
mechanisms, and repository formats are available.

I Repository formats: Berkeley Database and FSFS (preferred
and default).

Subversion Architecture

Versioning Models

The core mission of a version control system is to enable
collaborative editing and sharing of data. But different systems use
different strategies to achieve this.

I The Lock-Modify-Unlock Solution. The repository allows only
one person to change a file at a time. To change a file, one
must first obtain a lock. After you store the modified file back
in the repository, then we unlock the file. Example: RCS.

I The Copy-Modify-Merge Solution. Each user’s client contacts
the project repository and creates a personal working copy–a
local reflection of the repository’s files and directories. Users
then work in parallel, modifying their private copies. Finally,
the private copies are merged together into a new, final
version. The version control system often assists with the
merging, but ultimately a human being is responsible for
making it happen correctly. Example: CVS, Subversion.
However CVS and subversion still also support locking if it is
needed. Typically locking is used for non-text files.

Downloading/Installing Subversion

We have subversion 1.6.x available in the lab on all workstations.

I On Fedora Linux, check the version with the command:
rpm -qa | grep subversion

I If not using version 1.6 or newer, then get it using yum as
follows:
yum -y update subversion* mod dav svn*

I For other versions of Linux, check out the subversion website
for downloads. (Subversion website:
http://subversion.tigris.org/)

I You can also download the source code from
subversion.tigris.org and compile it directly.

Creating and Populating a Repository

I This is an administrative task. A developer would not normally need to do
this.
svnadmin create ~/svn

cd ~/cs453

mkdir -p project1/branches project1/tags project1/trunk

gvim project1/trunk/hello.c

svn import project1 \

svn+ssh://HOSTNAME/HOME/svn/project1 -m "import the project"

Here HOSTNAME is the Internet name of the server and HOME is the full
path to your home directory on the server. Also, if your local user name is
different than your user name on the server, you will need to use
username@HOSTNAME.

I The branches, tags, and trunk directories are a convention. They are
not required (but highly recommended).

I Repository layouts: Vanilla, Strawberry or Chocolate!
I A single repository with all projects folders in it.
I Separate repository for each project.
I A handful of repositories, each with multiple related projects.

Access Mechanisms

Schema Access Method

file:/// direct repository access (on local disk)
http:// access via WebDAV protocol to Subversion-aware Apache server
https:// same as http://, but with SSL encryption.
svn:// access via custom protocol to an svnserve server
svn+ssh:// same as svn://, but encrypted via an SSH tunnel.

To be able to use svn+ssh:// conveniently, you will need to setup automatic
login with ssh. Here is how to set that up.

I Look in your ~/.ssh directory on your local machine. There should be two
files, id rsa and id rsa.pub. If not, create them using the command
ssh-keygen -t rsa.

I Append your local id rsa.pub to the remote host’s
~/.ssh/authorized keys. If the remote host doesn’t have a ~/.ssh

folder, then create one and then create the authorized keys file in it.

I Change the permissions on ~/.ssh/authorized keys using chmod 600

~/.ssh/authorized keys

Checking-Out a Working Copy

This is a development task. A working copy is a private workspace in
which you can make changes.

cd ~/cs453

svn checkout svn+ssh://HOSTNAME/HOME/svn/project1/trunk project1

Notes:

I The URL identifies the version to checkout.
I The last argument names the destination folder.
I Note that we are specifying trunk because we want to work on the

main line of development. Do not use
svn+ssh://HOSTNAME/HOME/svn/project1/ or you will be
checking out all the branches as well!

Working on a Working Copy

You can now change your working copy. Let’s change hello.c

and add a Makefile.

cd project1

gvim hello.c # format nicely

gvim Makefile

svn add Makefile

svn status -u

svn diff

svn commit -m "make it nice"

gvim hello.c

svn status -u

svn diff

svn commit -m "add stdio.h"

Notes:

I The whole tree we check-in gets a new version number.

Subversion Properties

I Properties are name/value pairs associated with files. The names and
values of the properties can be whatever you want them to be, with
the constraint that the names must be human-readable text. And the
best part about these properties is that they, too, are versioned, just
like the textual contents of your files.

I Subversion Special Properties always start with the keyword svn:. An
useful one is svn:keywords. Some keywords are Date, Revision,

URL, Author, Id. Including the keywords as $keyword$ in your files
allows Subversion to auto-magically expand them.

cd ~/cs453/hw

gvim hello.c # add Id and Revision keywords

svn commit -m "Add svn id keywords"

svn propset svn:keywords "Id Revision" hello.c

svn diff

svn commit -m "commit properties"

gvim hello.c

Checking subversion version from your code

Add the following to the top of your file.

/* Id */

static char *svnid = "Id";

Then, each time you commit subversion expands Id to the
subversion id. You need to set the property on the file for this to
work as discussed in the previous slide.
Note that the Rev or Id property only shows the last subversion
revision number in which the current file was modified. It is not
the same as the global revision number for the whole repository.

Incorporating global revision numbers

To find the global revision number of a working copy, use the svnversion command.
The following example shows how to automate this to include the version number in
your code.

##

on every build, record the working copy revision string

##

svn_version.c: FORCE

echo -n ’const char* svn_version(void) { const char* SVN_Version = "’ \

> svn_version.c

svnversion -n . >> svn_version.c

echo ’"; return SVN_Version; }’ >> svn_version.c

FORCE:

##

Then any executable that links in svn_version.o will be able

to call the function svn_version() to get a string that

describes exactly what revision was built.

Basic Work Cycle

I Get a working copy
I svn checkout (co)

I Update your working copy
I svn update (up)

I Make changes
I gvim
I svn add
I svn mkdir
I svn delete (rm)
I svn copy (cp)
I svn move (mv)

I Examine your changes

I svn status (st)
I svn diff
I svn revert

I Merge others’ changes into your
working copy

I svn update (up)
I svn resolved

I Commit your changes
I svn commit (ci)

I Getting help on svn options.
I svn help commit

Changing repositories

I Sometimes we want to move our repository from one machine to
another. First commit any changes from all working copies. Then
pack up the repository as shown below and unpack it on the new
server.

tar czvf subversion.tar.gz subversion

scp subversion.tar.gz newserver://newpath/

ssh newserver

cd newpath

tar xzvf subversion.tar.gz

I Now repoint your working copies to the new URL with the switch
command.

svn switch –relocate OLD-URL NEW-URL

I The switch (without the relocate option) command can also be
used to reflect changing the name of a repository.

Merges and Conflicts
Suppose two people are working on the same file.

cd project1

#add comment on top/bottom

gvim hello.c

svn commit -m "made some changes"

svn checkout svn+ssh://HOSTNAME/HOME/svn/project1/trunk project2

cd project2

gvim hello.c # add comment on top/bottom

svn commit -m "made some changes"

---fails due to conflict---

svn update

gvim hello.c # fix conflict

svn resolved program.c

svn commit -m "made some changes"

Branches

A developer typically wants to work on a task without interference from other
people and without interfering with other people. A task may take days or weeks to
complete. While working on task a developer should check-in intermediate versions,
because:

I A repository typically resides on a high-quality storage device (e.g., RAID).
I A repository typically is backed-up carefully.
I A developer may want to work on different computers, on different network

segments.

The solution is to work on a branch. Subversion uses directories for branches. To
Subversion, there is nothing special about a “branch” directory.
When Subversion makes a copy, it is a “cheap copy” requiring a constant amount of
space. When you change one of the copies, it really makes the copy. This technique
is also called copy-on-write.
Recall that our hello-world project directory had three subdirectories: branches,
tags, and trunk. This is just a convention. The branches directory is for
branches.

Branch Example

svn copy svn+ssh://HOSTNAME/HOME/svn/project1/trunk \

svn+ssh://HOSTNAME/HOME/svn/project1/branches/mytask \

-m "a real big task"

svn checkout svn+ssh://HOSTNAME/HOME/svn/project1/branches/mytask mytask

cd mytask

svn info

Merging from a Branch

Now, we can work on our branch in isolation, checking-in our
changes, for as long as we like.

cd project1

gvim hello.c # add new function

svn status -u

svn diff

svn ci -m "add new function"

gvim hello.c # call it

svn ci -m "call new function"

Merging from a Branch (contd.)

Eventually, we may want to merge our changes from our branch back to the trunk, so others
may benefit from them.

svn co svn+ssh://HOSTNAME/HOME/svn/project1/trunk project1

cd project1

#what is the earliest revision on the branch?

svn log --verbose --stop-on-copy \

svn+ssh://HOSTNAME/HOME/svn/project1/branches/mytask

svn merge -r 8:10 svn+ssh://HOSTNAME/HOME/svn/project1/branches/mytask

gvim project1.c #check merge result

svn ci -m "merged -r 8:10 from mytask branch"

svn info

Notes on Merging

I We created a trunk working copy, to merge to.

I We needed to determine, and specify, the starting and ending
versions on our branch, so the right changes are merged.

I We merge from our branch, in the repository.

I We mention the merge versions in the check-in message, so
we won’t accidentally merge those changes again, if we keep
working on my branch.

I Now, the trunk has our changes.

GUIs for Subversion

There are many GUI tools available for subversion. However, I
would recommend the following.

I Subclipse plugin. First, check if you already have the
Subclipse plugin under Help → Software Updates → Manage
Configuration. Otherwise go to
http://subclipse.tigris.org/install.html for
step-by-step instructions on how to install the Subclipse
plugin from Eclipse. The installation of Subclispe plugin
requires that you have write access to the folder that contains
the Eclipse installation.

I TortoiseSVN is a nice stand-alone GUI for subversion that
works for Linux and MS Windows.

Subclipse Plugin for Eclipse

The subclipse plugin gives you most of the subversion functionality
in Eclipse.

I We can use the SVN perspective to browse repositories. From
there we can checkout a subversion project as an Eclipse
project.

I Subclipse supports the https:// and svn+ssh:// protocols
but does not support the file:// protocol.

I A new menu Team gives you access to subversion commands
from your project. All of the concepts we have covered can be
accessed from the subclipse plugin except for the
administrative commands.

I You can share a existing project in Eclipse using the menu
items Team → Share project.... To share a projects, you need
to know the URL of an existing repository.

References

I http://subversion.tigris.org/ Homepage for the
subversion project.

I http://svnbook.red-bean.com Excellent book for
subversion.

I Thanks to Jim Buffenbarger for providing me notes on
subversion from his Software Engineering class. His
notes/examples were used extensively in this document.

