
Re-entrant code and Libraries

I A library is a collection of code that implements commonly
used methods or patterns with a public API. Libraries
facilitate code reuse.

I Libraries can be shared (also known as dynamically linked
libraries or DLLs) or be static.

I Is a shared library) part of the process or is it a resource? It
should be viewed as a resource since a system utility has to
find it on the fly.

I A static library, on the other hand, becomes part of the
program text (at least, appropriate parts of it.)

I The concept of re-entrant code,i.e., programs that cannot
modify themselves while running. Re-entrant code is necessary
to write libraries.

���������	
�������

��

��

��

�� �� ��

����������

����������

����������

Re-entrant Code

Useful for shared libraries (also known as Dynamically Linked
Libraries or DLLs).

Creating a Shared Library
I Suppose we have three C files: f1.c, f2.c, and f3.c that we want to

compile and add into a shared library that we will name mylib. First, we can
compile the C files with the flags -fPIC -shared to the gcc compiler.

gcc -Wall -fPIC -shared -c -o f1.o f1.c

gcc -Wall -fPIC -shared -c -o f2.o f2.c

gcc -Wall -fPIC -shared -c -o f3.o f3.c

I Then we can combine, the three object files into one shared library using the
ld linker/loader.
ld -fPIC -shared -o libmylib.so f1.o f2.o f3.o

I Now we can compile a program that invokes functions from the library by
linking it with the shared library.
gcc test1.c -o test1 -lmylib

The compiler will search for the shared library named libmylib.so in the
current folder as well as a set of system library folders.

I If your shared library is in some other folder, you can specify that folder with
the -L option. For example, if your library is in the sub-folder lib underneath
the current folder, you can use
gcc test1.c -o test1 -Llib -lmylib

I When you run the executable, again the system has to be able to find the
shared library. If it is not in the current folder (or installed in a system folder),
then use the environment variable LD LIBRARY PATH to specify what set of
folders to search in. For example:
export LD LIBRARY PATH=.:lib:$LD LIBRARY PATH

Creating a Static Library
Suppose we have three C files: f1.c, f2.c, and f3.c that we want to compile and
add into a static library that we will name mylib.

First, we can compile the C files with the flag -fPIC to the gcc compiler.

gcc -Wall -fPIC -c -o f1.o f1.c

gcc -Wall -fPIC -c -o f2.o f2.c

gcc -Wall -fPIC -c -o f3.o f3.c

Then we can combine, the three object files into one static library using the ar

archive program.

ar rcv libmylib.a f1.o f2.o f3.o

At this point, we can write a test program that invokes functions from the library
and link it with the static library.

gcc -Wall -static -L. test1.c -lmylib -o test1.static

The rules for finding a static library are the same as for shared libraries. Note that
for the above command to work, you will need to have a static version of the
standard C library. You can install that with the command (on Fedora Linux):

yum install glibc-static

How to check for library dependency?
I Linux: Use the tool ldd.
I MS Windows: Use the tool depends (available from

http://www.dependencywalker.com).
I MacOSX: Use the tool otool.

Plugins

Plugins are pieces of code that be loaded into or unloaded from a
program upon demand without having to restart the program.

Device drivers are a type of plugin for the operating system that
deals with hardware devices.

Examples of plugin use: Web browsers, Windows Media Player,
Amarok, Eclipse etc.

Plugin Example

/* lab/plugins/ex1/runplug.c */

#include <stdio.h>

#include <string.h>

/* dll include file */

#include <dlfcn.h>

#define MAX_BUF 1024

/* dll variables */

void *handle; /* handle of shared library */

void (*function)(void); /* pointer to the plug-in function */

const char *dlError; /* error string */

int main(int argc, char **argv)

{

char buf[MAX_BUF];

char plugName[MAX_BUF];

while (1) {

/* get plug-in name */

printf("Enter plugin name (exit to exit): ");

fgets(buf, MAX_BUF, stdin);

buf[strlen(buf)-1] = ’\0’; /* change \n to \0 */

sprintf(plugName, "./%s", buf); /* start from current dir */

/* ... next page ... */

Plugin Example (contd.)

/* checks for exit */

if (!strcmp(plugName, "./exit"))

return 0;

/* open a library */

handle = dlopen(plugName, RTLD_LAZY);

if ((dlError = dlerror())) {

printf("Opening Error: %s\n", dlError);

continue;

}

/* loads the plugin function */

function = dlsym(handle, "plugin");

if ((dlError = dlerror()))

printf("Loading Error: %s\n", dlError);

/* execute the function */

(*function)();

if ((dlError = dlerror()))

printf("Execution Error: %s\n", dlError);

/* close library 1 */

dlclose(handle);

if ((dlError = dlerror()))

printf("Closing Error: %s\n", dlError);

}

exit(0);

}

Plugin Example (contd.)

/* lab/plugins/ex1/plugin1.c */

#include <stdio.h>

void plugin(void)

{

printf("This is plug-in 1\n");

}

/* lab/plugins/ex1/plugin2.c */

#include <stdio.h>

void plugin(void)

{

printf("This is the second plug-in\n");

}

Plugin Example (contd.)

[amit@kohinoor ex1]$ ls

Makefile plugin1.c plugin2.c runplug.c

[amit@kohinoor ex1]$ make

gcc runplug.c -g -ldl -o runplug

gcc -fpic -shared plugin1.c -o plugin1.so

gcc -fpic -shared plugin2.c -o plugin2.so

