
Files
How to write a file copy program in standard C?

#include <stdio.h>
FILE *fopen(const char *path, const char *mode);
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
int fclose(FILE *fp);

We can also use character-based functions such as:

#include <stdio.h>
int fgetc(FILE *stream);
int fputc(int c, FILE *stream);

With either approach, we can write a C program that will work on any operating
system as it is in standard C.
What is the difference between the two approaches?

/* lab/stdc-mycp.c */
/* appropriate header files */
#define BUF_SIZE 65536

int main(int argc, char *argv[])
{

FILE *src, *dst;
size_t in, out;
char buf[BUF_SIZE];
int bufsize;

if (argc != 4) {
fprintf(stderr, "Usage: %s <buffer size> <src> <dest>\n", argv[0]);
exit(1);

}
bufsize = atoi(argv[1]);
if (bufsize > BUF_SIZE) {

fprintf(stderr,"Error: %s: max. buffer size is %d\n",argv[0], BUF_SIZE);
exit(1);

}
src = fopen(argv[2], "r");
if (NULL == src) exit(2);

dst = fopen(argv[3], "w");
if (dst < 0) exit(3);

while (1) {
in = fread(buf, 1, bufsize, src);
if (0 == in) break;
out = fwrite(buf, 1, in, dst);
if (0 == out) break;

}

fclose(src);
fclose(dst);
exit(0);

}

POSIX/Unix File Interface

The system call interface for files in POSIX systems like Linux and
MacOSX.
A file is a named, ordered stream of bytes.

I open(..) Open a file for reading or writing. Also allows a file
to be locked providing exclusive access.

I close(..)
I read(..) The read operation is normally blocking.
I write(..)
I lseek(..) Seek to an arbitrary location in a file.
I ioctl(..) Send an arbitrary control request (specific to a

device). e.g. rewinding a tape drive, resizing a window etc.

Let’s rewrite the file copy program using the POSIX system call
interface.

/* A simple file copy program */
/* lab/files-processes/mycp.c */
#include <sys/types.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#define MODE 0666
#define BUF_SIZE 8192

void main(int argc, char *argv[]) {
int src, dst, in, out;
char buf[BUF_SIZE];
if (argc != 3) exit(1);
src = open(argv[1], O_RDONLY); if (src < 0) exit(2);
dst = creat(argv[2], MODE); if (dst < 0) exit(3);

while (1) {
in = read(src, buf, BUF_SIZE);
if (in <= 0) break;
out = write(dst, buf, in);
if (out <= 0) break;

}
close(src); close(dst); exit(0);

}

Effect of buffer size on I/O speed

I Observe the effect of buffer size on the speed of the copying.
Experiment using the file copy program with different buffer
sizes on a large file and time the copy.

I Buffering helps adjust the data rate between two entities to
avoid overflow.

I Buffering can also improve performance of systems by allowing
I/O to happen ahead of time or to have I/O happen in parallel
with computing.

I Buffering is a widely used concept in Computer Science.

Effect of Buffering on File I/O (System Calls)

The following times are for the file copy program with varying buffer sizes. All
times are in seconds. Total speedup due to buffering is 1455!

buffer size elapsed user system
1 36.387 1.565 34.398
2 17.783 0.757 16.974
4 9.817 0.400 9.393
8 4.603 0.180 4.375

16 2.289 0.093 2.190
32 1.142 0.047 1.091
64 0.581 0.017 0.562
128 0.299 0.012 0.286
256 0.158 0.007 0.150
512 0.090 0.003 0.084

1024 0.054 0.001 0.051
2048 0.035 0.001 0.032
4096 0.025 0.000 0.024

Do we get a similar improvement with the standard C program? Why or why
not?

Effect of Buffering on File I/O (Standard C)

The following times are for the file copy program with varying buffer sizes. All
times are in seconds. Total speedup is around 40.

buffer size elapsed user system
1 0.965 0.945 0.018
2 0.502 0.475 0.026
4 0.267 0.244 0.021
8 0.156 0.136 0.019

16 0.082 0.053 0.028
32 0.056 0.032 0.023
64 0.042 0.014 0.027
128 0.034 0.012 0.021
256 0.033 0.010 0.022
512 0.029 0.008 0.021

1024 0.029 0.006 0.022
2048 0.028 0.004 0.023
4096 0.024 0.001 0.022

Why does the standard C program behave differently?

Script for testing effects of buffering

#!/bin/sh
/bin/rm -f mycp.log
for i in 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
do

echo -n "buffer size = " $i >> mycp.log
(time mycp $i test3.data junk) &>> mycp.log
echo >> mycp.log
/bin/rm -f junk

done

lab/files-processes/test-mycp.sh

Examples of Buffering from “Real-Life"

I Ice cube trays. You have one tray that you get ice cubes from and
another full tray that is not used. When the first tray is empty, you
refill that tray and let it freeze while you get ice cubes from the other
tray.

I Shock absorbers in car, truck or mountain bike.

I Ski lift is a circular buffer

I Two parents buffer a child’s demand for attention.

I Multiple elevators in a hotel lobby. An escalator might be considered a
circular buffer.

I Traffic lights at an intersection buffer the flow of traffic through the
limited resource that is an intersection. A round-about is a
circular-buffer solution to the same problem.

I Formula One tire changing. Person A holds a new tire, person B sits
in place with the torque wrench. There is usually a person C who
collects the old tire – depends on the team and pit lane. When the car
stops and is raised up, person B undoes the tire, person C removes it,
person A puts the new tire in place, person B torques it and then
raises his hand. The whole operation typically is done in under 3
seconds The operation can be thought of as triple buffering.

MS Windows File Interface

A file is a named, ordered stream of bytes.

I OpenFile() or CreateFile(..) Open or create a file for
reading or writing. Returns a HANDLE (reference) toa file
structure used to identify the file for other system calls.

I CloseHandle(..)
I ReadFile(..) The read operation is normally blocking.
I WriteFile(..)
I SetFilePointer(..) Seek to an arbitrary location in a file.

Processes

Components of a process:

I the executable code (also known as program text or text
segment)

I the data on which the program will execute
I status of the process
I resources required by the process: e.g. files, shared libraries

etc.

The data associated with a process is divided into several segments:

I Global and static variables: data segment
I Dynamically allocated variables: heap segment
I Local variables, function/method arguments and return values:

stack segment

The Linux/UNIX Process model

0xFFFFFFFF

0x00000000

Program Binary

Global/Static variables

Dynamically allocated variables

Local variables, function/method arguments
Stack

Heap

Text

Data

Creation of Processes

I To the user, the system is a collection of processes. Some of
them are part of the operating system, some perform other
supporting services and some are application processes.

I Why not just have a single program that does everything?
I Multiplicity example.
I How is a process created?
I How is the operating system created?

Let’s examine the bootup of Linux and Microsoft Windows.

Initializing the Operating System

“Booting” the computer.

Main Entry: bootï£¡strap
Function: noun
Date: 1913
1 plural: unaided efforts -- often used in the phrase by

one’s own bootstraps
2 : a looped strap sewed at the side or the rear top of a boot

to help in pulling it on.

The Linux Bootup Process

 ssh

ooffice

shelllogin

bootstrap kernelgrub getty

getty

getty

kdm X

init

init has been replaced by systemd in some newer distributions

amarok

firefox

konsole bash

 kdeinit kdeinit chrome

konqueror

Microsoft Windows Bootup Process

Control

Native Applications

Service

Local

Logon

Ntdetect

Hal.dll

Ntbootdd.sys

Dialog

Subsystem
Security

Manager

WinlogonSmss
bootstrap

ntoskrnl.exe
BootMgr

Smss: Session Manager SubSystem

Executing Computations

I The Unix model (followed by most operating systems) is to
create a new process every time to execute a new computation.
The system at any time looks like a tree of processes, with one
process being the ancestor of all other processes.

I What’s the advantage of creating a process each time we start
a new computation?

The fork() system call

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

I The fork() system call creates a child process that is a clone of
the parent. The stack, data and heap segments are the same
at the moment of creation. The program text is also logically
copied (but may be physically shared).

I The child process differs from the parent process only in its
process id and its parent process id and in the fact that
resource utilization is set to zero.

I One easy way to communicate between a parent and a child is
for the parent to initialize variables and data structures before
calling fork() and the child process will inherit the values.

I The fork() is called once but it returns twice! (one in the
parent process and once in the child process)

Two roads diverged in a wood, and I–
I took the one less traveled by,
and I got lost!

wait and waitpid system calls

I Used to wait for a state change in a child process.
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

I The waitpid() system call suspends the calling process until one of its child
terminates or changes states. Using -1 for pid in waitpid() means to wait for
any of the child processes. Otherwise, pid > 0 provides the specific process id
to wait for.

I It is possible to do a non-blocking wait using the WNOHANG option, as shown
below where the call will return immediately if no child is done or changed state:
waitpid(-1, &status, WNOHANG);

I The wait() system call suspends execution of the calling process until one of
its children terminates. The call wait(&status) is equivalent to:
waitpid(-1, &status, 0);

I Check the man page on how to check the status variable to get more
information about the child process whose pid was returned by waitpid() or
wait() call.

/* lab/files-processes/fork-and-wait.c */
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
void childs_play(), err_sys(char *msg);
int main(void) {

pid_t pid;
if ((pid = fork()) < 0)

err_sys("fork error");
else if (pid == 0) { /* child */

childs_play(); exit(0);
}

/* parent continues concurrently with child */
printf("Created child with pid %d\n",pid);
sleep(2);
printf("Shoo away!\n");
/* wait for normal termination of child process */
if (waitpid(pid, NULL, 0) != pid)

err_sys("waitpid error");
exit(0);

}
void childs_play() {printf("Hey, I need some money! \n");}

void err_sys(char *msg) {
fprintf(stderr, msg);
fflush(NULL); /* flush all output streams */
exit(1); /* exit abnormally */

}

/* lab/files-processes/fork-hello-world.c */
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
void print_message_function(void *ptr), err_sys(char *msg);
int main(void)
{

pid_t pid;
char *message1 = "Goodbye";
char *message2 = "World";

printf("before fork\n");
if ((pid = fork()) < 0)

err_sys("fork error");
else if (pid == 0) { /* first child */

print_message_function(message1);
sleep(2); exit(0);

}
printf("Created child: pid=%d\n",pid);
/* parent continues and creates another child */
if ((pid = fork()) < 0)

err_sys("fork error");
else if (pid == 0) { /* second child */

print_message_function(message2);
sleep(2); exit(0);

}
printf("Created child: pid=%d\n",pid); /* parent */
sleep(2);
exit(0);

}
void print_message_function(void *ptr)
{

char *message;
message = (char *) ptr;
printf("%s ", message);

}
void err_sys(char *msg)
{

fprintf(stderr, msg);
fflush(NULL); /* flush all output streams */
exit(1); /* exit abnormally */

}

/* lab/files-processes/fork-child-grandchild.c */
/* include statements, prototypes, blah blah */
int main(void)
{

pid_t pid;

printf("original process, pid = %d\n", getpid());
if ((pid = fork()) < 0)

err_sys("fork error");
else if (pid == 0) { /* child */

printf("child = %d, parent = %d\n",
getpid(), getppid());

if ((pid = fork()) < 0)
err_sys("fork error");

else if (pid == 0) { /* grandchild */
printf("grandchild = %d, parent = %d\n",

getpid(), getppid());
exit(0);
}

/* child waits for the grandchild */
if (waitpid(pid, NULL, 0) != pid)

err_sys("waitpid error");
exit(0); /* the child can now exit */
}

/* original process waits for its child to finish */
if (waitpid(pid, NULL, 0) != pid)

err_sys("waitpid error");
exit(0);

}

The exec() system call

#include <unistd.h>
int execve(const char *filename, char *const argv [], char *const envp[]);

I The execve() executes the program pointed to by the filename
parameter. It does not return on success, and the text, data and stack
segments of the calling process are overwritten by that of the program
loaded. The program invoked inherits the calling process’s process id. See
the man page for more details.

I The execve() function is called once but it never returns on success! The
only reason to return is that it failed to execute the new program.

I The following variations are front-ends in the C library. In the first two
variations, we only have to specify the name of the executable (without
any ’/’) and the function searches for its location in the same way as the
shell using the PATH environment variable. In the last three variations we
must specify the full path to the executable.

int execlp(const char *file, const char *arg, ...);
int execvp(const char *file, char *const argv[]);
int execl(const char *path, const char *arg, ...);
int execle(const char *path, const char *arg, ..., char *const envp[]);
int execv(const char *path, char *const argv[]);

How does the shell find an executable?

I When we type the name of a program and hit enter in the shell, it searches for
that executable in a list of directories specified usually by the PATH environment
variable

I We can check the value of the PATH variable with the echo command:

[amit@onyx ~]$ echo $PATH
/bin:/usr/lib64/ccache:/usr/local/bin:/usr/bin:/home/faculty/amit/bin:.:

We get a colon separated list of directories. The search is done in order from
the first to the last directory in the list and chooses the first instance of the
executable it finds

I We can ask the shell which executable it will use with the which command. For
example:

[amit@onyx ~]$ which gcc
/bin/gcc

I A program can find the value of the PATH variable with the system call
getenv("PATH")

Example of exec’ing a process

/* lab/files-processes/fork-and-exec.c */
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
void err_sys(char *msg);
int main(void)
{

pid_t pid;
if ((pid = fork()) < 0)

err_sys("fork error");
else if (pid == 0) { /* child */

execlp("./print-pid","print-pid",0);
err_sys("exec failed");
exit(1);

}
printf("Created child with pid %d\n",pid);
/* parent continues concurrently with child */

/* wait for normal termination of child process */
if (waitpid(pid, NULL, 0) != pid)

err_sys("waitpid error");
exit(0);

}

void err_sys(char *msg) {
fprintf(stderr, msg);
fflush(NULL); /* flush all output streams */
exit(1); /* exit abnormally */

}

/* The exec’ed program */
#include <unistd.h>
#include <stdio.h>
int main() {

printf("after exec pid=%d\n",getpid());
exit(0);

}

A simple shell

/* lab/files-processes/simple-shell.c, need error.c and ourhdr.h to compile */
#include <sys/types.h>
#include <sys/wait.h>
#include "ourhdr.h"
int main(void) {

char buf[MAXLINE];
pid_t pid;
int status;

printf("%% "); /* print prompt (printf requires %% to print %) */
while (fgets(buf, MAXLINE, stdin) != NULL) {

buf[strlen(buf) - 1] = 0; /* replace newline with null */
if ((pid = fork()) < 0)

err_sys("fork error");
else if (pid == 0) { /* child */

execlp(buf, buf, (char *) 0);
err_ret("couldn’t execute: %s", buf);
exit(127);

}
/* parent */
if ((pid = waitpid(pid, &status, 0)) < 0)

err_sys("waitpid error");
printf("%% ");

}
exit(0);

}

Signals: asynchronous events

Linux/Unix signals are a type of event. Signals are asynchronous in
nature and are used to inform processes of certain events
happening.
Examples:

I User pressing the interrupt key (usually Ctl-c or Delete key).
Generates the SIGINT signal.

I User pressing the stop key (usually Ctl-z). Generates the
SIGTSTP signal, which stops (suspends) the process.

I The signal SIGCONT can restart a process if it is stopped.
I Signals are available for alarm (SIGALRM), for hardware

exceptions, for when child processes terminate or stop and
many other events.

I Special signals for killing (SIGKILL) or stopping (SIGSTOP) a
process. These cannot be ignored by a process.

POSIX signals list
Read man signal and man 7 signal for more information.

SIGHUP Hangup detected on controlling terminal
or death of controlling process

SIGINT Interrupt from keyboard
SIGQUIT Quit from keyboard
SIGILL Illegal Instruction
SIGABRT Abort signal from abort
SIGFPE Floating point exception
SIGKILL Kill signal
SIGSEGV Invalid memory reference
SIGPIPE Broken pipe: write to pipe with no readers
SIGALRM Timer signal from alarm
SIGTERM Termination signal
SIGUSR1 User-defined signal 1
SIGUSR2 User-defined signal 2
SIGCHLD Child stopped or terminated
SIGCONT Continue if stopped
SIGSTOP Stop process
SIGTSTP Stop signal from keyboard
SIGTTIN tty input for background process
SIGTTOU tty output for background process

Other Unix signals (not part of POSIX standard)

SIGTRAP Trace/breakpoint trap
SIGIOT IOT trap. A synonym for SIGABRT
SIGBUS Bus error
SIGSYS Bad argument to routine (SVID)
SIGSTKFLT Stack fault on coprocessor
SIGURG Urgent condition on socket (4.2 BSD)
SIGIO I/O now possible (4.2 BSD)
SIGPOLL A synonym for SIGIO (System V)
SIGCLD A synonym for SIGCHLD
SIGXCPU CPU time limit exceeded (4.2 BSD)
SIGXFSZ File size limit exceeded (4.2 BSD)
SIGVTALRM Virtual alarm clock (4.2 BSD)
SIGPROF Profile alarm clock
SIGPWR Power failure (System V)
SIGINFO A synonym for SIGPWR
SIGLOST File lock lost
SIGWINCH Window resize signal (4.3 BSD, Sun)
SIGUNUSED Unused signal

Signals (contd.)

I For each signal there are three possible actions: default, ignore, or catch. The
system call signal() attempts to set what happens when a signal is received.
The prototype for the system call is:

void (*signal(int signum, void (*handler)(int)))(int);
I The above prototype can be made easier to read with a typedef as shown below.

typedef void sighandler_t(int);
sighandler_t *signal(int, sighandler_t *);

I The header file <signal.h> defines two special dummy functions SIG_DFL and
SIG_IGN for use as signal catching actions. For example:

signal(SIGALRM, SIG_IGN);

To kill or to really kill?

I The system call kill() is used to send a specified signal to a specified process.
For example:
kill(getpid(), SIGSTOP);
kill(getpid(), SIGKILL);
kill(pid, SIGCONT);

I Special signals for killing (SIGKILL) or stopping (SIGSTOP) a process. These
cannot be ignored by a process.

I Linux has a command named kill that invokes the kill() system call.

kill -s signal pid
kill -l --> list all signals
kill -9 --> send SIGKILL

I To kill a process use kill -1 (SIGHUP) or kill -15 (SIGTERM) first to give
the process a chance to clean up before being killed (as those signals can be
caught). If that doesn’t work, then use kill -9 to send SIGKILL signal that
cannot be caught or ignored. In some circumstances, however, even SIGKILL
doesn’t work....

kill -9

Because I could not stop for Death,
He kindly stopped for me;
The carriage held but just ourselves
And Immortality.
...

Emily Dickinson

A bigger example of systems programming

/* lab/files-processes/timeout.c: set time limit on a process.
Usage: timeout [-10] command

*/
#include <stdio.h>
#include <signal.h>
#include <sys/wait.h>
int pid; /* child process id */
char *progname;
static void onalarm(int signo);

int main(int argc, char *argv[])
{

void error(char *msg, char *arg);
int sec=10, status;

progname = argv[0];
if (argc > 1 && argv[1][0] == ’-’) {

sec = atoi(&argv[1][1]); argc--; argv++;
}

if (argc < 2) {
error("Usage: %s [-10] command", progname);

}

continued on next slide...

/* main function continued */
if ((pid=fork()) == 0) {

execvp(argv[1], &argv[1]);
error("couldn’t start %s", argv[1]);

}
signal(SIGALRM, onalarm);
alarm(sec);
if ((wait(&status) == -1) || WIFSIGNALED(status))

error("%s killed", argv[1]);
exit(WEXITSTATUS(status));

}

/* kill child process when alarm arrives */
void onalarm(int signo)
{

kill(pid, SIGKILL);
}

void error(char *msg, char *arg)
{

fprintf(stderr, msg, arg);
fprintf(stderr,"\n");
exit(1);

}

Pedal to the metal: fork test

/* lab/files-processes/fork-test.c: Try to generate a lot of processes */
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <sys/types.h>
void err_sys(char *msg);
#define MAXNUM 258
int main(void) {
pid_t pid;
int i;
for (i=0; i<MAXNUM; i++) {

if ((pid = fork()) < 0)
err_sys("fork error");

else if (pid == 0) { /* ith child */
sleep(20); exit(0);

}
printf("Created child %d with pid %d\n",i,pid);

}
exit(0);

}
void err_sys(char *msg) {
fprintf(stderr, msg);
if (errno == EAGAIN)

fprintf(stderr, "\n Cannot create a task structure\n");
if (errno == ENOMEM)

fprintf(stderr, "\n Not enough memory\n");
fflush(NULL); /* flush all output streams */
exit(1); /* exit abnormally */

}

Pipes

I A pipe allows communication between two processes that have a common
ancestor.

I A pipe is a half-duplex (data flows in only one direction) FIFO buffer with
an API similar to file I/O.

#include <unistd.h>

int pipe(int filedes[2]);
// returns filedes[0] for reading, filedes[1] for writing.

I Reading from a pipe whose write end has been closed causes an End Of
File to be returned. Writing to a pipe whose read end has been closed
causes the signal SIGPIPE to be generated. The write returns with errno
set to EPIPE.

I The size of pipe is limited to PIPE_BUF. A write of PIPE_BUF or less will
not interleave with the writes from other processes. The constant
PIPE_BUF is defined in the file /usr/include/linux/limits.h

The Power Of Pipelines
Find the 10 most frequent words in a given text file (and their respective counts).

cat Shakespeare.txt | tr -cs "[A-Z][a-z][’]" "[\012*]" | tr A-Z a-z |
sort | uniq -c | sort -rn | sed 10q

Hello World with a Pipe

/* lab/files-and-processes/hello-pipe.c */
/* appropriate header files */

int main(void)
{

int n, fd[2];
pid_t pid;
char line[MAXLINE];

if (pipe(fd) < 0)
err_sys("pipe error");

if ((pid = fork()) < 0)
err_sys("fork error");

else if (pid > 0) { /* parent */
close(fd[0]); /* close read end of pipe */
write(fd[1], "hello world\n", 12);

} else { /* child */
close(fd[1]); /* close write end of pipe */
n = read(fd[0], line, MAXLINE);
printf("child read %d characters from the parent in the pipe: %s", n, line);

}
exit(EXIT_SUCCESS);

}

Named Pipes (FIFOs)

I Named Pipes (FIFOs) allow arbitrary processes to communicate.

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo (const char *pathname, mode_t mode);

mkfifo pathname
I If we write to a FIFO that no process has open for reading, the signal

SIGPIPE is generated. When the last writer for a FIFO closes the
FIFO, an end of file is generated for the reader of the FIFO.

I The reads/writes can be made blocking or non-blocking.
I If we have multiple writers for a FIFO, atomicity is guaranteed only for

writes of size no more than PIPE_BUF.

Uses of FIFOs

I Can be used by shell commands to pass data from one shell pipeline
to another, without creating intermediate temporary files.

mkfifo fifo1
prog3 < fifo1 &
prog1 < infile | tee fifo1 | prog2

Another example of a nonlinear pipeline:

wc < fifo1 &
cat /usr/share/dict/words | tee fifo1 | wc -l

I Look at examples:
lab/files-and-processes/hello-fifo.c
lab/files-and-processes/fifo-talk.c

Client Server Communication Using FIFOs

I The server creates a FIFO using a pathname known to the
clients. Clients write requests into this FIFO.

I The requests must be atomic and of size less than PIPE_BUF,
which is defined in limits.h standard header file.

I The server replies by writing to a client-specific FIFO. For
example, the client specific FIFO could be /tmp/serv1.xxxxx
where xxxxx is the process id of the client.

System Calls Introduced

I exit()
I open(), creat(), close(), read(), write()
I fork()
I wait(), waitpid()
I execvp(), execlp()
I alarm()
I signal()
I getpid(), getppid()
I sleep(), kill()
I pipe(), mkfifo()

Exercises

1. Passing data to your progeny? Write a program that creates and fills some
data structure (like an array). Then it forks a child process. Check if the child
process inherits the initialized data structure. What about opening a file in the
child process that was opened in the parent process before the fork?

2. Waiting for Godot! Write a program that creates as many processes as the
number of CPUs on your system (using the fork system call). Each created
process generates one billion random integers using the random() function. Set
the seed on each process using srandom() with the process id (obtained using
getpid()). Use the random numbers for something: for example, count how
many numbers were within the range 90..110 or some other inane property.
After generating one billion random numbers, each process sleeps for 10
seconds. This behavior is repeated in an infinite loop. Watch the load using the
system monitor. The number of CPUs can be determined via the following
system call:
sysconf(_SC_NPROCESSORS_CONF)

3. Struck by lightning while waiting for Godot!. Take the same program and
add an alarm interval as a command line argument, where godot is the name of
the program executable:
godot <alarm interval>
The program now sets up a signal handler and an alarm. When alarm arrives, it
kills all the running child processes using the kill() system call. Also add a
loop at the end of the main program that uses the waitpid() system call to
determine what signal caused the child process to terminate. Note that the
alarm timer isn’t inherited by the child processes.

Exercises (contd.)

4. Walkie-Talkie. Write a program that uses two pipes to allow two-way
communication between a parent and child process. May be they can
finally have a real conversation. . ..

5. Chit Chat. Write a server program that creates two named pipes
(FIFOs) and then waits for a client program to write a request to one
of the named pipes. Then it uses the other named pipe to reply to the
client. Since we are using named pipes, you will be able to run these
two programs in two separate windows and watch them communicate!

6. Multi-process Chat Server. This generalizes the solution from the
last problem. Write a multi-process server that can chat with multiple
clients simultaneously by forking multiple copies of itself. Also develop
a client program to test the server. This will use named pipes for the
communication.

MS Windows API for Processes

In MS Windows, the system call interface is not documented. Instead the
MS Windows API is documented, which helps with being able to run
programs portably across multiple versions of the MS Windows operating
systems.
Creating a process gives a handle that is used to refer to the actual object
that represents a process/thread.

I CreateProcess(...). Fork-and-exec a new process.
I CloseHandle(...).
I ExitProcess(...), TerminateProcess(...), GetExitCodeProcess(...),

GetCurrentProcessId(), GetCurrentProcess().
I WaitForSingleObject(...), WaitForMultipleObjects(...). These can be

used to wait for either a process or a thread.

Get detailed information from http://msdn.microsoft.com/library/

CreateProcess Call in MS Windows API

BOOL WINAPI C r e a t eP ro c e s s (
LPCTSTR lpApp l i ca t ionName ,
LPTSTR lpCommandLine ,
LPSECURITY_ATTRIBUTES l pP r o c e s sA t t r i b u t e s ,
LPSECURITY_ATTRIBUTES l pTh r e adA t t r i b u t e s ,
BOOL b I nh e r i tHand l e s ,
DWORD dwCreat ionF lags ,
LPVOID lpEnv i ronment ,
LPCTSTR l pCu r r e n tD i r e c t o r y ,
LPSTARTUPINFO l pS t a r t u p I n f o ,
LPPROCESS_INFORMATION l pP r o c e s s I n f o rma t i o n

) ;

Processes Related Calls in MS Windows API

Wai tFo rS i ng l eOb j e c t (hProcess , INFINITE) ;

C lo seHand l e (p i . hProce s s) ;

DWORD WINAPI Ge tCu r r e n tP r o c e s s I d (void) ;
HANDLE WINAPI Ge tCu r r en tP roc e s s (void) ;

VOID WINAPI E x i t P r o c e s s (
UINT uExi tCode

) ;
BOOL WINAPI Termina teProce s s (

HANDLE hProcess ,
UINT uExi tCode

) ;
BOOL WINAPI GetEx i tCodeProce s s (

HANDLE hProcess ,
LPDWORD lpEx i tCode

) ;

MS Windows API for Processes

typedef s t ruc t _PROCESS_INFORMATION {
HANDLE hProce s s ;
HANDLE hThread ;
DWORD dwProces s Id ;
DWORD dwThreadId ;

} PROCESS_INFORMATION,
∗LPPROCESS_INFORMATION;

typedef s t ruc t _SECURITY_ATTRIBUTES {
DWORD nLength ;
LPVOID l p S e c u r i t y D e s c r i p t o r ;
BOOL b I n h e r i tH and l e ;

} SECURITY_ATTRIBUTES ,
∗LPSECURITY_ATTRIBUTES ;

Checking Errors in System Calls

I DWORD GetLastErrorCode(void). Retrieves the calling
thread’s last-error code value. The last-error code is
maintained on a per-thread basis. Multiple threads do not
overwrite each other’s last-error code. This function should be
called right after a system call returns an error (usually we
know that from a negative return value from the system call).

I To obtain an error string for system error codes, use the
FormatMessage function.

DWORD FormatMessage (
DWORD dwFlags ,
LPCVOID lpSource ,
DWORD dwMessageId ,
DWORD dwLanguageId ,
LPTSTR l pBu f f e r ,
DWORD nSize ,
v a_ l i s t ∗ Arguments

) ;

Sample Error Code

void ErrSys(char *szMsg)
{

LPVOID lpMsgBuf;

// Try to format the error message from the last failed call
// (returns # of TCHARS in message -- 0 if failed)
if (FormatMessage(

FORMAT_MESSAGE_ALLOCATE_BUFFER | // source and processing options
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, // message source
GetLastError(), // message identifier
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // language (Default)
(LPTSTR) &lpMsgBuf, // message buffer
0, // maximum size of message buffer

// (ignored with FORMAT_MESSAGE_ALLOCATE_BUFFER set)
NULL // array of message inserts

))
{

// Display the formatted string with the user supplied string at front.
fprintf(stderr, "%s: %s\n", szMsg, (LPSTR)lpMsgBuf);
LocalFree(lpMsgBuf); // Free the buffer.

} else {
fprintf(stderr, "%s: Could not get the error message!\n", szMsg);

}
fflush(NULL); /* flush all output streams */
ExitProcess(1); /* exit abnormally */

}

Using MS Visual Studio

I Visual Studio is available via the Dream Spark program from
the college.

I Start up Visual Studio. Choose New Project → Visual C++
→ Win32 → Win32 Console Project.

I In the Wizard window, choose Application Settings → Empty
Project → Finish.

I Right click on the project in the right pane (Solution Explorer)
and then choose Add → Add Existing Item.... Note that this
doesn’t copy the file into the Visual Studio project folder.

I Also note that, Visual Studio uses Unicode by default. For
now, we will simply turn this off. Press ALT+F7 to open the
project properties, and navigate to Configuration Properties →
General . Switch Character Set to Multi-Byte Character
Setting from the drop-down menu.

I Tip. If you want to know definition of MS Windows API
typedefs, right-click on the type (e.g. LPVOID) and select “go
to definition” from the drop down menu.

MS Windows API Examples

I lab/ms-windows/files-processes/fork-and-exec.c
I lab/ms-windows/files-processes/fork-and-wait.c
I lab/ms-windows/files-processes/fork-hello-world.c
I lab/ms-windows/files-processes/fork-test.c
I lab/ms-windows/files-processes/file-copy.c
I and others in the ms-windows/files-processes examples

folder....

Microsoft PowerShell

Powershell is a shell with a command-line and scripting language available
on Microsoft platforms.

I Aliases are built-in for common commands used in bash with
Unix/Linux/Mac OSX systems. For example, TAB is used for
command completion and aliases exist for ls, cp, man, date etc.

I Pipes are also supported but they pass objects instead of unstructured
text streams.

I Includes a dynamically typed scripting language with .NET
integration. Here is a simple example of a loop:

while ($true) {.\fork-hello-world; echo ""}
I The following shows how to time a command or script in powershell:

Measure-Command {sleep 2}
I Powershell script files are text files with a .ps1 extension. By default,

you cannot run scripts unless they are signed. To enable it, use the
following command:

Set-ExecutionPolicy RemoteSigned

Use the command Get-Help About_Signing to learn more about
signing.

Exercises

1. Setup Visual Studio and play with the examples from the class repository to
familiarize yourself with the environment.

2. Waiting for Godot! Write a program that creates as many processes as the
number of CPUs on your system (using fork system call). Each created process
generates one billion random numbers and then sleeps for 5 seconds. This
behavior is repeated in an infinite loop. Watch the load using the task manager.
The number of CPUs can be determined via the following MS Windows API call:
GetSystemInfo(...)

