
Make: a build automation tool

What is the problem?

I The lab examples repository for the CS 253 course has 228
files in 54 folders.

I To build them all would requires us to navigate to 54 folders
and compile the files in each folder...

I Imagine a project has 15 million lines of code in 34,690 files
spread over 2386 folders (Linux kernel version 3.11). How
would you compile it?!

I We need a program to manage the compiling of all the files in
our programs!

I Make is such a tool that can automate the build process. E.g.
For the Linux kernel, the entire process is driven by Make

Demo the make for the 253 example programs

What is build automation?

I Build automation involves automating the process of compiling
code into libraries and executables. This can be a very
complex process for large projects.

I For large programs, recompiling all the pieces of the program
can be very time consuming. If we only recompile the files that
have changed, we can save a lot of time.

I But if the program is complex, determining exactly what needs
to be recompiled too can be difficult. Build automation also
helps with this aspect.

I Make is a build automation tool. Make and its variants are
included with Linux, Mac OS X and MS Windows operating
systems

I Other popular build systems include Apache Maven and
Apache Ant. These are used primarily for Java based projects.

http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Apache_Maven
http://en.wikipedia.org/wiki/Apache_Ant

What is Make? (1)

I Make uses a declarative language as opposed to procedural
languages.

I We tell Make what we want (e.g. a particular class file or
executable).

I We provide a set of rules showing dependencies between files.
I Make uses the rules to get the job done.

I The Make program is invoked via the executable named make.

What is Make? (2)

I Make uses a file called Makefile (or makefile), which
contains the set of rules. The recommended name is
Makefile. Why?

I We recommend using the name Makefile because it appears
prominently near the beginning of a directory listing, right near
other important files such as README.

I When we run make, it uses the rules in the Makefile to
determine what needs to be done.

I Make does the minimum amount of work needed to get the
job done.

I Make can be used to execute an arbitrary set of shell
commands and programs so it isn’t limited to build
automation.

Rules in a Makefile (1)

I A typical rule has the form:

target: dependency1 dependency2 ...
command list

I target can be the name of a file that needs to be created or a
“phony” name that can be used to specify what command to
execute.

I The dependency list is a space separated list of files that
the target depends on in some way. The dependencies are built
in the order listed so the order may matter!

I The command list is one or more commands needed to
accomplish the task of creating the target. The commands can
be any shell command or any program in the system.

Rules in a Makefile (2)

I Each command must be indented with a tab.
I Both dependency lists and commands can be continued onto

another line by putting a \ at the end of the first line.
I A # is used to start a comment in a Makefile.

I The comment consists of the remainder of the line.

Doubly-Linked List Example

Dependencies for the doubly-linked list

I SimpleTestList.c includes List.h, Node.h, Job.h, and
common.h

I List.c includes List.h, Node.h, Job.h, and common.h
I Node.c includes Node.h, Job.h, and common.h
I Job.c includes Job.h and common.h

Rules for Doubly-Linked List
A brute-force approach:

SimpleTestList: SimpleTestList.o List.o Node.o Job.o
gcc -Wall -g -o SimpleTestList SimpleTestList.o List.o Node.o Job.o

SimpleTestList.o: SimpleTestList.c List.h Node.h Job.h common.h
gcc -Wall -g -c SimpleTestList.c

List.o: List.c List.h Node.h Job.h common.h
gcc -Wall -g -c List.c

Node.o: Node.c Node.h Job.h common.h
gcc -Wall -g -c Node.c

Job.o: Job.c Job.h common.h
gcc -Wall -g -c Job.c

How make works? (1)

I When we type make without a target name, it will assume that
we mean to build the first real target in the Makefile. This is
often a phony symbolic target named all.

I When we type make target, the make utility will look at the
rule for target

I Make will recursively search through the rules for all the
dependencies to determine what has been modified and rebuild
only those targets

How make works? (2)

I If the current version of target is newer than all the files it
depends on, make will do nothing.

I If a target file is older than any of the files that it depends on,
the command following the rule will be executed

Macros

I Sometimes, we find ourselves using the same sequence of
command line options in lots of commands. Use a macro to
make it simpler and more robust.

I Define macro as shown below:
CC = gcc
CFLAGS = -Wall -g -O
PROGS = SimpleTestList RandomTestList UnitTestList

I Then use the macro by typing $(macroname)
$(CC) $(CFLAGS) -c List.c

Substitution Rules

I Often, we will find that our Makefile has many similar
commands. We can use patterns to define rules and
commands for such cases.

I For example, we could use the rule:
%.o : %.c

$(CC) $(CFLAGS) -c $<
I Which says that every .o file depends on the corresponding .c

file and can be created from it with the command below the
rule.

Substitution Rules - Internal macros

I % - any name (the same in all occurrences)
I $@ - The name of the current target
I $< - The first dependency for the current target
I $? - The dependencies that are newer than the current target
I $^ - All the dependencies for the current target

%.o : %.c
$(CC) $(CFLAGS) -c $<

hello: hello.o
$(CC) $(CFLAGS) $< -o $@

Suffix Rules

I A suffix rule identifies suffixes that make should recognize. For
example:
.SUFFIXES: .o .c

I Another rule shows how files with suffixes are related:

.c.o :
$(CC) $(CFLAGS) -c $<

I Think of this as saying the .o file is created from the
corresponding .c file using the given command.

I Note the above suffix rule for C files to object files is already
built into make.

Phony Targets

I Phony targets are targets that do not correspond to a file
all: SimpleTestList RandomTestList

clean:
rm -force *.o $(PROGS)

I Phony targets can be used to create a recursive makefile that
can build a project spanning a complex directory structure.

Example: Phony Targets

From C-example/doublyLinkedList/Makefile

all: subdirs

subdirs:
cd bad; make
cd almost-generic; make
cd generic-with-library; make
cd generic; make

clean:
cd bad; make clean
cd almost-generic; make clean
cd generic-with-library; make clean
cd generic; make clean

Doubly-Linked List Example Makefile

I With macros, suffix rules, and phony targets. Note that the suffix rule shown below is
built-in to make, so we can drop the first three lines.

.SUFFIXES: .o .c

.c.o :
$(CC) $(CFLAGS) -c $<

CC=gcc
CFLAGS=-Wall -g -O -I.
LFLAGS=
PROGS=SimpleTestList UnitTestList RandomTestList
OBJECTS=List.o Node.o Job.o

all: $(PROGS) dox
SimpleTestList: SimpleTestList.o $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $^ $(LFLAGS)
RandomTestList: RandomTestList.o $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $^ $(LFLAGS)
dox:

echo "Generating documentation using doxygen..."
doxygen doxygen-config > doxygen.log
echo "Use konqueror docs/html/index.html to see docs (or another browser)"

clean:
/bin/rm -f $(PROGS) *.o a.out
/bin/rm -fr docs doxygen.log

Taking the drudgery out of dependencies

I Dependencies for a .o file should include all the user written
header files that it includes. The previous Makefile didn’t do
that....

I For a big project, getting all of these right can take some time
I The gcc command has an option -MMD that tells it to compute

the dependencies.
I These are stored in a file with the suffix .d
I Include the .d files into the Makefile using

-include *.d

The Final Makefile for Doubly-Linked List

CC=gcc
CFLAGS=-Wall -g -O -I. -MMD
LFLAGS=
PROGS=SimpleTestList UnitTestList RandomTestList
OBJECTS=List.o Node.o Job.o

all: $(PROGS)
SimpleTestList: SimpleTestList.o $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $^ $(LFLAGS)
UnitTestList: UnitTestList.o $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $^ $(LFLAGS)
RandomTestList: RandomTestList.o $(OBJECTS)

$(CC) $(CFLAGS) -o $@ $^ $(LFLAGS)

-include *.d

dox:
echo "Generating documentation using doxygen..."
doxygen doxygen-config > doxygen.log
echo "Use konqueror docs/html/index.html to see docs (or any other browser)"

clean:
/bin/rm -f $(PROGS) *.o a.out
/bin/rm -fr docs doxygen.log

Additional features

I Multiple rules for a target.
I If there is more that one rule for a given target, make will

combine them.
I The rules can be specified in any order in the Makefile

I Parallel make. Use the -j option to have make generate your
project using multiple CPUs to speed up the building process!
Make will build multiple dependencies for a rule in parallel.
Note that this does require you to check that the various
dependencies can be built simulatenously.

I Try the following commands in sequence on the class examples
on a machine in the lab (or any machine with at least 4 cores):

time make
make clean
time make -j 4

I Did it build faster? If not, why not?

References

I Wikipedia entry on Make:
http://en.wikipedia.org/wiki/Make_(software)

I GNU Make homepage:
https://www.gnu.org/software/make/

I Managing projects with GNU Make.
http://www.wanderinghorse.net/computing/make/
(downloadable book)

http://en.wikipedia.org/wiki/Make_(software)
https://www.gnu.org/software/make/
http://www.wanderinghorse.net/computing/make/

