
Debugging with the GDB debugger

I Compiling your program. For C/C++ programs, use the -g
option for the gcc compiler.

I Using the debugger.
I Starting your program under the debugger. Specifying

commandline arguments.
I Stopping your program on specified places and conditions.

Setting breakpoints, setting conditional breakpoints, watching
variables etc.

I Stepping through a program: instruction at a time, line at a
time, over functions etc.

I Examining what has happened, when your program has
stopped. Looking at the stack frames, values of variables etc.

I Modifying variables in your program.
I Attaching the debugger to a program that is already running!

GDB: Demo

All gdb examples and sample debugging sessions are in the lab examples at
C-examples/gdb folder.

I Compile a sample program (function.c) without -g and with -g to
show the difference

I gcc function.c && gdb a.out
I gcc -g function.c && gdb a.out

(gdb) run
(gdb) bt

I Notice that without -g we get no line numbers or source code shown
in the debugger.

GDB: Break Points

I In the file function.c set a breakpoint at the populate function.
(gdb) break populate

Breakpoint 1 at 0x40065e: file function.c, line 16.
I Lets see what is in the array so we can track down the problem

(gdb) run
Breakpoint 1, populate (size=20, b=0x602010) at function.c:16
16 for(i = 0; i < size; b++, i++){

(gdb) p size
$4 = 20

(gdb) p b
$5 = (int *) 0x602010

(gdb) p *b
$6 = 0

(gdb) p *b@size
$7 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

(gdb)

GDB: Conditional Break Points

I Only break when you need to! Set a conditional break point.
(gdb) break populate

Breakpoint 1 at 0x4006de: file function.c, line 19.
(gdb) cond 1 b == 0
(gdb) run

Breakpoint 1, populate (size=20, b=0x0) at function.c:19
19 count++;

(gdb) bt
#0 populate (size=20, b=0x0) at function.c:19
#1 0x0000000000400774 in not_buggy (size=20, b=0x0) at function.c:34
#2 0x00000000004007ae in main () at function.c:42

(gdb)

GDB: Sample Sessions

I gdb/session0. Shows how to access built-in help from inside gdb.
I gdb/session1. Shows basic usage. Shows how to examine arrays.
I gdb/session2. Shows how to examine the stack trace after a

segmentation fault.
I gdb/session3. Shows how to examine the stack trace from a core file

that was dumped after program crashed.
I gdb/session4. Shows the usage of breakpoints.
I gdb/session5. Shows how to stop at a breakpoint only if certain

condition is true. Also shows how to look at structures and
manipulate pointers in the debugger.

I gdb/session6. Shows how to attach to an already running process to
debug it.

Documentation

I The gdb debugger has extensive on-line help that can be
accessed by typing in help at the gdb prompt.

I A two page reference card is available. (Check Amit’s home
page in the section Handouts for Students).

I The complete reference manual is available in HTML.

References

I http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
I http://www.gnu.org/software/gdb/documentation/

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
http://www.gnu.org/software/gdb/documentation/

