C: A Tutorial Introduction

» The C programming language was designed by Dennis Ritchie
and has been widespread use since the 1970s!

» Initially the standard was defined by the The C Programming
Language book by Kernighan and Ritchie

» Later standardizations:

» ANSI C or C'89 or ISO C'90 all refer to the same language.
This is the most widely used and supported version of the
language

» (C'99 was the next standardization that added several new
feaures However, this is still not fully supported by all
compilers... :~(

» C'11 is the latest standardization in 2011

» Many languages have directly or indirectly borrowed from C.
Examples are C#, Java, Javascript, Objective C, Perl, Python,
and several others

Structure of C Programs

» Header files are usually used for declarations (files named with
extension .h) and source files usually contain function and variable
declarations (files named with extension .c)

» A function in C is similar to a method in Java. Functions have
arguments and a signature (in C, we call them a prototype) like in
Java

» In general, a C program consists of multiple header and source files. A
source file will often refer to header files via the #include directive.
For example:

#include <stdio.h>

» Comments.
» Block comments /* ... */ (same as in Java)

>

Structure of C Programs

» The main function does not have a fixed prototype (signature
in Java). Here is the canonical C program with the
recommended prototype

/* C-examples/intro/hello.c */
#include <stdio.h>

int main(int argc, char *argvl[])

{
printf ("Hello World!\n");
return 0;

Basic types and statements

v

Variable data types. Basic data types are similar to Java. E.g.
char, short, int, long, float, double Note that the
sizes of types are machine dependent unlike in Javal!

Defining constants. Simplest way is shown below. Other ways
will be discussed later

#define E 2.71828182845905

Operators and expressions. These are the same as in Java with
some minor differences

Control-Flow statements. The basic statements if/else,
while, do-while, for, switch are the same as in Java. In
addition, the break/continue statement exit from the
innermost enclosing loop like in Java but cannot use a label to
break to as in Java

C also has a goto statement that Java does not have

C Standard Library

» The C standard library is a collection of useful functions that
we can use by including appropriate header files. Some of the
common header files are <stdio.h>, <stdlib.h>,
<string.h>.

» Some commonly used functions are printf, getchar,
putchar, string functions and memory allocation functions

» You can read the man page for any of the functions in the
standard library. The standard library functions are defined in
the section 3 of the man pages. For example, try the following
command in the terminal:
man 3 printf
Also, try man 3 string

» The standard library is automatically included by the C
compiler but we do have to include the appropriate header file

Character Input and Output

» Text input or output is a stream of characters. A stream is a
sequence of characters divided into lines; each line consists of
zero or more characters followed by a newline character

» A text file is a file consisting of lines of characters separated by
the newline character.

» The C standard library provides two functions for basic
character input/output (in the <stdio.h> header file)

¢ = getchar(); //reads character from standard input
putchar(c); //writes the character to standard output

» Character input and output examples:

File copy
Couting the number of characters
Counting the number of lines

>
>
>
» Counting the number of words

File Copy example

/* C-examples/intro/cpl.c */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int ¢; //why is this int and not char?

c = getchar();
while (c != EOF) {
putchar(c) ;

c = getchar();
}
return O;

}

Test using file redirection in the terminal.
gcc -Wall -o cpl cpl.c
cpl < filel > filel.copy

/* C-examples/intro/cp2.c */

#tinclude <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{

}

int c;

/* The parentheses around c¢ = getchar() are required because
the operator != has higher precedence than = operator */

while ((c = getchar()) != EOF)
putchar(c) ;

return O;

Exercise 1-7(modified). Modify above program to print the value of EOF.
How to simulate EOF in keyboard input? Use Ctrl-d in Linux.

Character Counting

/* C-examples/intro/wcl.c */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

long nc;

nc = 0;

while (getchar() != EOF) {
nc++;

}

printf ("%1ld\n", nc);

return O;

Line Counting

/* C-examples/intro/wc2.c */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{

int c;
long nl;
nl = 0;
while ((c = getchar()) != EOF)
if (¢ == '"\n')
nl++;
printf ("%1ld\n", nl);
return O;

Word Counting

/* C-examples/intro/wc3.c */
#include <stdio.h>
#include <stdlib.h>
const int IN=1; /* inside a word */
const int QUT=0; /* outside a word */
/* count number of characters, words and lines in the standard input */
int main(int argc, char *argv[])
{

int c;

long nc, nw, nl;

int state;

state = 0UT;
nl = nw = nc = 0;
while ((c = getchar()) != EOF) {

if (¢ == "\n")
nl++;
if (¢ =="" |l ¢ == "\n'
state = 0OUT;
else if (state == QUT) {
state = IN;
nu++;

| c=="\t")

}
printf ("%1d %1d %1d\n", nl, nw, nc);
return 0;

i

Exercise 1-11. How would you test the word count program? What kinds
of input are most likely to uncover bugs if there are any?

Arrays

» Write a program to count the number of occurrences of each digit, of
white space characters (blank, tab, newline), and of all other
characters.

» This example illustrates use of simple arrays, character manipulation
and more complex if-else statements.

Arrays

C-examples/intro/count-digits.c

#include <stdio.h>
/* count digits, white space, others */
int main()
{
int ¢, i, nwhite, nother;
int ndigit[10];

nwhite = nother = 0;
for (i = 0; i < 10; ++i)
ndigit[i] = 0;

while ((c = getchar()) !'= EOF)
if (¢ >= '0' && c <= '9")
++ndigit[c-'0'1;
else if (c == "' ' || ¢ == '"\n' || ¢ == '"\t")
++nwhite;
else
++nother;

printf("digits =");
for (i = 0; i < 10; ++i)
printf(" %d", ndigit[il);
printf(", white space = %d, other = %d\n", nwhite, nother);
return 0;

Command Line Arguments

/* C-examples/intro/cmdline.c */

#include <stdio.h>

#include <stdlib.h>

/*
We are expecting 3 command line arguments: the first one a string,
the next an integer and the last a double. The name of the executable
is always passed in as the first command line argument, so we have a
total of 4 command line arguments.

*/
int main(int argc, char *argv([])
{

int i;

if (argc !'= 4) {
fprintf (stderr, "Usage: %s <string> <int> <float>\n", argv[0]);
exit(1);

}

printf ("argument %d = %s\n", i, argv[0]);

printf ("argument %d = %s\n", i, argv[il);

printf ("argument %d = %d\n", i, atoi(argv([2]));

printf ("argument %d = %f\n", i, atof(argv[3]));

return O;

}

Note that atoi and atof are functions in the standard library. Read their
man page to find out more

Recommended Exercises

» Exercise 1-8. Write a program to count blanks, tabs, and
newlines.

» Exercise 1-9. Write a program to copy its input to its output,
replacing each string of one or more blanks by a single blank.

» Exercise 1-12. Write a program that prints its input one word
per line.

» Add a command line options to the third word count program
wc3.c. The options are -1 to print line count only, -w to
word count only, -c to print character count only. If more
than one of these options is passed, then combine the results.
Also add a command line option -help to display an
appropriate help message and exit.

» Exercise 1-23. Write a program to remove all comments from
a C program. Don't forget to handle quoted strings and
character constants properly. C comments do not nest.

