
C: A Tutorial Introduction

I The C programming language was designed by Dennis Ritchie
and has been widespread use since the 1970s!

I Initially the standard was defined by the The C Programming
Language book by Kernighan and Ritchie

I Later standardizations:
I ANSI C or C’89 or ISO C’90 all refer to the same language.

This is the most widely used and supported version of the
language

I C’99 was the next standardization that added several new
feaures However, this is still not fully supported by all
compilers... :-(

I C’11 is the latest standardization in 2011

I Many languages have directly or indirectly borrowed from C.
Examples are C#, Java, Javascript, Objective C, Perl, Python,
and several others

Structure of C Programs

I Header files are usually used for declarations (files named with
extension .h) and source files usually contain function and variable
declarations (files named with extension .c)

I A function in C is similar to a method in Java. Functions have
arguments and a signature (in C, we call them a prototype) like in
Java

I In general, a C program consists of multiple header and source files. A
source file will often refer to header files via the #include directive.
For example:

#include <stdio.h>
I Comments.

I Block comments /* ... */ (same as in Java)
I Line comments (C99, C++) // (same as in Java)

Structure of C Programs

I The main function does not have a fixed prototype (signature
in Java). Here is the canonical C program with the
recommended prototype

/* C-examples/intro/hello.c */
#include <stdio.h>

int main(int argc, char *argv[])
{

printf("Hello World!\n");
return 0;

}

Basic types and statements

I Variable data types. Basic data types are similar to Java. E.g.
char, short, int, long, float, double Note that the
sizes of types are machine dependent unlike in Java!

I Defining constants. Simplest way is shown below. Other ways
will be discussed later

#define E 2.71828182845905

I Operators and expressions. These are the same as in Java with
some minor differences

I Control-Flow statements. The basic statements if/else,
while, do-while, for, switch are the same as in Java. In
addition, the break/continue statement exit from the
innermost enclosing loop like in Java but cannot use a label to
break to as in Java

I C also has a goto statement that Java does not have

C Standard Library

I The C standard library is a collection of useful functions that
we can use by including appropriate header files. Some of the
common header files are <stdio.h>, <stdlib.h>,
<string.h>.

I Some commonly used functions are printf, getchar,
putchar, string functions and memory allocation functions

I You can read the man page for any of the functions in the
standard library. The standard library functions are defined in
the section 3 of the man pages. For example, try the following
command in the terminal:
man 3 printf
Also, try man 3 string

I The standard library is automatically included by the C
compiler but we do have to include the appropriate header file

Character Input and Output

I Text input or output is a stream of characters. A stream is a
sequence of characters divided into lines; each line consists of
zero or more characters followed by a newline character

I A text file is a file consisting of lines of characters separated by
the newline character.

I The C standard library provides two functions for basic
character input/output (in the <stdio.h> header file)

c = getchar(); //reads character from standard input
putchar(c); //writes the character to standard output

I Character input and output examples:
I File copy
I Couting the number of characters
I Counting the number of lines
I Counting the number of words

File Copy example

/* C-examples/intro/cp1.c */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int c; //why is this int and not char?

c = getchar();
while (c != EOF) {

putchar(c);
c = getchar();

}
return 0;

}

Test using file redirection in the terminal.
gcc -Wall -o cp1 cp1.c
cp1 < file1 > file1.copy

/* C-examples/intro/cp2.c */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int c;

/* The parentheses around c = getchar() are required because
the operator != has higher precedence than = operator */

while ((c = getchar()) != EOF)
putchar(c);

return 0;
}

Exercise 1-7(modified). Modify above program to print the value of EOF.
How to simulate EOF in keyboard input? Use Ctrl-d in Linux.

Character Counting

/* C-examples/intro/wc1.c */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

long nc;

nc = 0;
while (getchar() != EOF) {

nc++;
}
printf("%ld\n", nc);
return 0;

}

Line Counting

/* C-examples/intro/wc2.c */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int c;
long nl;

nl = 0;
while ((c = getchar()) != EOF)

if (c == '\n')
nl++;

printf("%ld\n", nl);
return 0;

}

Word Counting

/* C-examples/intro/wc3.c */
#include <stdio.h>
#include <stdlib.h>
const int IN=1; /* inside a word */
const int OUT=0; /* outside a word */
/* count number of characters, words and lines in the standard input */
int main(int argc, char *argv[])
{

int c;
long nc, nw, nl;
int state;

state = OUT;
nl = nw = nc = 0;
while ((c = getchar()) != EOF) {

nc++;
if (c == '\n')

nl++;
if (c == ' ' || c == '\n' || c == '\t')

state = OUT;
else if (state == OUT) {

state = IN;
nw++;

}
}
printf("%ld %ld %ld\n", nl, nw, nc);
return 0;

}

Exercise 1-11. How would you test the word count program? What kinds
of input are most likely to uncover bugs if there are any?

Arrays

I Write a program to count the number of occurrences of each digit, of
white space characters (blank, tab, newline), and of all other
characters.

I This example illustrates use of simple arrays, character manipulation
and more complex if-else statements.

Arrays
C-examples/intro/count-digits.c

#include <stdio.h>
/* count digits, white space, others */
int main()
{

int c, i, nwhite, nother;
int ndigit[10];

nwhite = nother = 0;
for (i = 0; i < 10; ++i)

ndigit[i] = 0;

while ((c = getchar()) != EOF)
if (c >= '0' && c <= '9')

++ndigit[c-'0'];
else if (c == ' ' || c == '\n' || c == '\t')

++nwhite;
else

++nother;

printf("digits =");
for (i = 0; i < 10; ++i)

printf(" %d", ndigit[i]);
printf(", white space = %d, other = %d\n", nwhite, nother);
return 0;

}

Command Line Arguments

/* C-examples/intro/cmdline.c */
#include <stdio.h>
#include <stdlib.h>
/*

We are expecting 3 command line arguments: the first one a string,
the next an integer and the last a double. The name of the executable
is always passed in as the first command line argument, so we have a
total of 4 command line arguments.

*/
int main(int argc, char *argv[])
{

int i;
if (argc != 4) {

fprintf(stderr, "Usage: %s <string> <int> <float>\n", argv[0]);
exit(1);

}
printf("argument %d = %s\n", i, argv[0]);
printf("argument %d = %s\n", i, argv[1]);
printf("argument %d = %d\n", i, atoi(argv[2]));
printf("argument %d = %f\n", i, atof(argv[3]));
return 0;

}

Note that atoi and atof are functions in the standard library. Read their
man page to find out more

Recommended Exercises

I Exercise 1-8. Write a program to count blanks, tabs, and
newlines.

I Exercise 1-9. Write a program to copy its input to its output,
replacing each string of one or more blanks by a single blank.

I Exercise 1-12. Write a program that prints its input one word
per line.

I Add a command line options to the third word count program
wc3.c. The options are -l to print line count only, -w to
word count only, -c to print character count only. If more
than one of these options is passed, then combine the results.
Also add a command line option –help to display an
appropriate help message and exit.

I Exercise 1-23. Write a program to remove all comments from
a C program. Don’t forget to handle quoted strings and
character constants properly. C comments do not nest.

