
Chapter 7: Arrays
CS 121

Department of Computer Science
College of Engineering
Boise State University

November 2, 2015

Chapter 7: Arrays CS 121 1 / 41

Topics

I Array declaration and use Go to part 0

I Bounds checking Go to part 1

I Arrays as objects Go to part 2

I Arrays of objects Go to part 3

I Arrays as Method Parameters Go to part 4

I Command-line arguments Go to part 5

I Multi-dimensional arrays Go to part 6

Chapter 7: Arrays CS 121 2 / 41

Arrays

I An array is an ordered list of values.

I Each array has a name by which it can be referenced.
I Each value (or element), of an array has a numeric index.

Chapter 7: Arrays CS 121 3 / 41

Arrays

I In Java, arrays are indexed from 0 to n−1, where n is the
number of elements in the array.

I For example, our scores array has 5 elements that are indexed
from 0−4.

I Values stored in the same array must be of the same type –
the element type.

I The element type can be a primitive type (e.g. int, double,
boolean etc.) or an object reference (e.g. String, Song,
Card, etc.)

I In Java, the array itself is an object that must be instantiated
using the new operator.

Chapter 7: Arrays CS 121 4 / 41

Declaring Arrays

I The scores array could be declared as follows.

int [] scores = new int[5] ;

array
type array

name

creates a new
array object

type and size

I LHS – Declares the type of the scores variable as int[]

(meaning, an array of int values).
I RHS – Instantiates a new int[] (integer array) object of size 5.

Chapter 7: Arrays CS 121 5 / 41

Declaring Arrays

I An array of letters
char[] letters;
letters = new char [26];

I An array of String objects
String [] dictionary = new String [480000];

I An array of Song objects
Song[] playlist = new Song [3];

I An array of Card objects
Card[] deckOfCards = new Card [52];

I An array of boolean objects
boolean [] lightSwitches = new boolean [100];

Chapter 7: Arrays CS 121 6 / 41

Accessing Array Elements

I A particular value in an array can be referenced using its index
in the array.

I For example, to access the second element of our scores array,
we would use the expression

scores [2]

I The value returned by the expression scores[i] is just an int.
So, we can have expressions like,
totalScore += scores [2];
scores [2] = 89; // Updates the value in the array
scores[count] = scores[count] + 2;
System.out.println("High score: " + scores [3]);

Chapter 7: Arrays CS 121 7 / 41

Using Arrays

I Typically, array elements are accessed using a for loop:
// every array has a public constant called length
// that stores the size of the array
int totalScore = 0;
for (int i = 0; i < scores.length; i++)
{

totalScore += scores[i];
}

I Or a for-each loop:
int totalScore = 0;
for (int score: scores)
{

totalScore += score;
}

Chapter 7: Arrays CS 121 8 / 41

Using Arrays: Example
/**
* BasicArray.java - Demonstrates basic array declaration and use.
* @author Java Foundations
*/

public class BasicArray
{

/**
* Creates an array , fills it with various integer values ,
* modifies one value , then prints them out.
*/

public static void main(String [] args)
{

final int LIMIT = 15, MULTIPLE = 10;

int[] list = new int[LIMIT];

// Initialize the array values
for (int index = 0; index < LIMIT; index ++)

list[index] = index * MULTIPLE;

list [5] = 999; // change one array value

// Print the array values
for (int value: list)

System.out.print(value + " ");
}

}

Chapter 7: Arrays CS 121 9 / 41

Using Arrays: Example

Chapter 7: Arrays CS 121 10 / 41

Bounds Checking

I When an array is created, it has a fixed size. The size of the
array is provided by a public constant named length.

I When accessing an element of an array, we must use a valid
index. For example, for an array scores, the range of valid
indexes is 0 to scores.length - 1.

I What happens when we try to access something out of
bounds? The Java interpreter throws an
ArrayIndexOutOfBoundsException.

I This is called automatic bounds checking.

Chapter 7: Arrays CS 121 11 / 41

Bounds Checking

I Recall our scores array. The valid index range is 0 to 4.

I Now, we want to print all values in our array using this loop:
for (int i = 0; i <= scores.length; i++) {

System.out.println(scores[i]);
}

I Will this work? NO. The last iteration of our loop is trying to
access the element at index 5. But it doesn’t exist!

I We will get an exception...
java ScoresArray
10 20 30 40 50 Exception in thread "main" java.

lang.ArrayIndexOutOfBoundsException: 5
at ScoresArray.main(ScoresArray.java :10)

Chapter 7: Arrays CS 121 12 / 41

Bounds Checking

I Off-by-one errors are common when using arrays.
I Remember, the length constant stores the size of the array,

not the largest index.
I The correct loop condition is

for (int i = 0; i < scores.length; i++) {
System.out.println(scores[i]);

}

Chapter 7: Arrays CS 121 13 / 41

Examples

I Example: ReverseOrder.java
I Reads a list of numbers from a user and prints it in the

opposite order.
I Example: LetterCount.java

I Reads a sentence and prints the counts of lowercase and
uppercase letters.

Chapter 7: Arrays CS 121 14 / 41

In-class Exercise

I Write an array declaration for the ages of 100 children.
I Write a for loop to print the ages of the children
I Write a for-each loop to print the ages of the children
I Write a for loop to find the average age of these children,

assuming that the array has been initialized.

Chapter 7: Arrays CS 121 15 / 41

In-class Exercise

I What does the following code do?
int[] array = new int [100];
for (int i = 0; i < array.length; i++)

array[i] = 1;

int[] temp = new int [200];
for (int i = 0; i < array.length; i++)

temp[i] = array[i];

I What happens if we now assign temp to array?
array = temp;

Chapter 7: Arrays CS 121 16 / 41

Arrays of Objects (1)

I The name of an array is an object reference variable:

I An array of objects really just holds object references. For
example, the following declaration reserves space to store 5
references to String objects.
String [] words = new String [5];

I It does not create the String objects themselves.
I Initially, the array holds null references. We need to create

the String objects.

Chapter 7: Arrays CS 121 17 / 41

Arrays of Objects (2)

I After declaration.
String [] words = new String [5];

I After adding 3 strings.
words [0] = "friendship";
words [1] = "loyalty";
words [2] = "honor";

Chapter 7: Arrays CS 121 18 / 41

Arrays of Objects (3)

I An array of coins.
Coin[] wallet = new Coin [5];
for (int i = 0; i< wallet.length; i++)

wallet[i] = new Coin();

I A collection of a hundred random die.
Random rand = new Random ();
Die[] diceCollection = new Die [100];
for (int i = 0; i< diceCollection.length; i++) {

int numFaces = rand.nextInt (20) + 1;
diceCollection[i] = new Die(numFaces);

}

Chapter 7: Arrays CS 121 19 / 41

Arrays of Objects (4)

I Example: CD.java, CDCollection.java, Tunes.java

Chapter 7: Arrays CS 121 20 / 41

Growing Arrays: A Space–Time Tradeoff

I The size of an array is fixed at the time of creation. What if
the array fills up and we want to add more elements?

I We can create a new array and copy the existing elements to
the new array. In effect, we have grown the array.

I How much bigger should the new array be?
I Minimum space: We could grow the array by one element so

it can store the new element.
I Minimum time: Grow the array to the maximum size we will

ever need. However, in many cases we don’t know ahead of
time how large the array needs to grow....

I Heuristic: A good heuristic is to double the size so we don’t
have to do the copying again and again.

I The ArrayList class grows an array internally.
I Example: GrowingArrays.java

Chapter 7: Arrays CS 121 21 / 41

In-class Exercise

I Declare and instantiate an array of hundred Color objects.
Color[] myColors = new Color [100];

I Now fill the array with random colors using a for loop.
Random rand = new Random ();
for (int i = 0; i < myColors.length; i++) {

myColors[i] = new Color(rand.nextInt (256),
rand.nextInt (256),
rand.nextInt (256));

}

I Write an array declaration and any necessary supporting
classes to represent credit card transactions that contain a
transaction number, a merchant name, and a charge.

Chapter 7: Arrays CS 121 22 / 41

Initializing Arrays

I An initializer list can be used to instantiate and fill an array in
one step.

I For example,
int[] scores = {91, 82, 78, 98, 86};
String [] fruit = {"apple", "orange", "banana"};

I The new operator is not needed (it is implied).
I The size of the new array is determined by the number of

items in the initializer list.
I Initializer lists can only be used in the array declaration.
I Initializer lists can contain expressions or objects (including

calls to new to create objects). For example:
Die[] myCollection = {new Die (10), new Die (20),

new Die (20)};

Chapter 7: Arrays CS 121 23 / 41

Arrays as Method Parameters

I An entire array can be passed as a parameter to a method.
I Like any other object, the reference to the array is passed,

making the formal and actual parameters aliases of each other.
I Therefore, changing an array element within the method

changes the original outside of the method.
I An individual array element can be passed to a method as well,

in which case the type of the formal parameter is the same as
the element type.

I Example: ArrayPassing.java

Chapter 7: Arrays CS 121 24 / 41

Command-Line Arguments (1)

I A program can accept any number of arguments from the
command line (known as command-line arguments).

I Allows the user to specify configuration information when the
program is launched, instead of asking for it at run-time.

I For example, suppose a Java application called Sort sorts lines
in a file. To sort the data in a file named friends.txt, a user
would enter:
java Sort friends.txt

Chapter 7: Arrays CS 121 25 / 41

Command-Line Arguments (2)

I Recall: The main method takes an array of String objects as a
parameter.
public static void main(String [] args) { ... }

I When an application is launched, the runtime system passes
the command-line arguments to the application’s main method
via this array of String objects.

I In our previous example, the String array passed to the main

method of the Sort application contains a single String:
"friends.txt".

Chapter 7: Arrays CS 121 26 / 41

Iterating Over Command-Line Arguments (1)

I The following program (CommandLineEcho.java) prints each
element of the args array to the console.
public class CommandLineEcho
{

public static void main(String [] args)
{

for (String arg: args)
System.out.println(arg);

}
}

I If we execute the program as follows
java CommandLineEcho monkey peanut banana

I We would get
monkey
peanut
banana

Chapter 7: Arrays CS 121 27 / 41

Iterating Over Command-Line Arguments (2)

I Note that the space character separates command-line
arguments.

I To have all words interpreted as a single argument, we can
enclose them in quotation marks.
java CommandLineEcho "monkey peanut banana"

I Would give us
monkey peanut banana

Chapter 7: Arrays CS 121 28 / 41

Parsing Command-Line Arguments

I We always want to validate our command-line arguments and
print an appropriate usage message to the user if they entered
invalid arguements.

I Typically, we want to validate
I the number of arguments
I the type of arguments
I the values are within a specific range

I Let’s say we have a program that accepts a filename (String)
followed by the number of characters per line (int). The
number of characters per line must be between 1 and 80.

I Example: CommandLineValidation.java

Chapter 7: Arrays CS 121 29 / 41

Parsing Numeric Command-Line Arguments

I In many cases, our command-line arguments will need to support
numeric arguments.

I To handle this, we need to convert a String argument to a numeric
value.
int firstArg;
if (args.length > 0) {

try {
firstArg = Integer.parseInt(args [0]);

} catch (NumberFormatException e) {
System.err.println("Argument" + args [0]

+ " must be an integer.");
System.exit (1);

}
}

I parseInt throws a NumberFormatException if the format of
args[0] isn’t valid.

I All of the wrapper classes for primitive types have parseX methods
that convert a String representing a number to an object of their
type X.

Chapter 7: Arrays CS 121 30 / 41

2-Dimensional Arrays

I A one-dimensional array stores a list of elements.
I A two-dimensional array can be thought of as a table of

elements, with rows and columns.

Chapter 7: Arrays CS 121 31 / 41

2-Dimensional Arrays (1)

I In Java, a 2-D array is an array of arrays.
I A 2-D array is declared by specifying the size of each dimension

separately.
int [][] table = new int [3][5];

I An array element is referenced using two index values
int value = table [1][3];

I Note that table.length is the number of rows in the table.
I Note that table[i].length is the length of the ith row in the table

Chapter 7: Arrays CS 121 32 / 41

2-Dimensional Arrays (2)

I In-class Exercise. What does the following 2-d array contain
after the code executes?
int numRows = 3, numCols = 5;
int [][] table = new int[numRows][numCols];

for (int row = 0; row < numRows; row++)
for (int col = 0; col < numCols ; col++)

table[row][col] = row;

I In-class Exercise. What if we change the initialization?
for (int row = 0; row < numRows; row++)

for (int col = 0; col < numCols ; col++)
table[row][col] = row * numCols + col;

Chapter 7: Arrays CS 121 33 / 41

2-Dimensional Arrays (3)

I In-class Exercise. What does the following method do?
public static void printArray (int arr [][])
{

for (int i = 0; i < arr.length; i++)
{

for (int j = 0; j < arr[i]. length; j++)
System.out.print(arr[i][j] + " ");

System.out.println ();
}
System.out.println ();

}

I Example: TwoDimArrays.java

Chapter 7: Arrays CS 121 34 / 41

2-Dimensional Arrays (3)

I Since a 2-dimensional array is an array of arrays, we can
declare it in two parts:
int [][] table = new table [3][]; //2nd dim blank
for (int i = 0; i < table.length; i++)

table[i] = new int [5];

I Layout of a 2-dim array in memory:

Chapter 7: Arrays CS 121 35 / 41

2-Dimensional Arrays (4)

I Two-dimensional arrays don’t have to be square or rectangular in
shape!

I Example: FunkyArrays.java

I In-class Exercise What does the following code do?
Color [][] board = new Color [8][8];
for (int row = 0; row < board.length; row++)
{

for (int col = 0; col < board[row]. length; col++)
{

if (row % 2 == col % 2)
board[row][col] = Color.white;

else
board[row][col] = Color.red;

}
}

Chapter 7: Arrays CS 121 36 / 41

Multi-Dimensional Arrays (1)

I Any array with more than one dimension is a multi-dimensional
array.

I Each dimension subdivides the previous one into the specified
number of elements.

I Each dimension has its own length constant.
I Because each dimension is an array of array references, the

arrays within one dimension can be of different lengths.

Chapter 7: Arrays CS 121 37 / 41

Multi-Dimensional Arrays (2)

I Arrays can have more than two-dimensions. Here is a
declaration for a 3-dimensional array.
double [][][] data = new double [4][1000][100];

I Can you think of when a 3-D array might be useful?
I A spreadsheet is a 2-dimensional array. The tabs would make

it 3-dimensional.
I Simulations of liquids, solids, space etc.
I Modeling in science and engineering.

I A 4-D array? (not very common...)
I Instead of building larger dimensional arrays, it is a better

design to have arrays of objects such that the objects contain
arrays inside them as needed to get the dimensional depth.

Chapter 7: Arrays CS 121 38 / 41

Multi-Dimensional Arrays (3)

I Consider a 3-dim array to represent a universe that has a 100 galaxies.
Suppose that each galaxy has a 1000 star clusters. Each cluster has
10 stars.
Star [][][] myUniverse = new Star [100][1000][10];

public class Star {
...
}

I Here is a different design that avoids the multidimensional array.
Galaxy [] myUniverse = new Galaxy [100];

public class Galaxy {
private Cluster [] myClusters = new Cluster [1000];
// other related instance variables

}

public class Cluster {
private Star[] myStars = new Star [10];
// other related instance variables

}

public class Star {
...
}

Chapter 7: Arrays CS 121 39 / 41

In-class Exercise

I How would we implement an ArrayList<String>? How
would we implement the following operations?

I add(String element): adds an element to the end of the array
list

I add(String element, int index): adds an element at the
indexth position

I remove(int index): removes an element at the indexth
position

I contains(String s): returns true if the array list contains the
string s

Chapter 7: Arrays CS 121 40 / 41

Exercises

I Read Chapter 7 (skip Section 7.5).
I Recommended Homework:

I Exercises: EX 7.1, 7.4 (e), 7.5, 7.8.
I Projects: PP 7.1, 7.2, 7.5.

I Browse: Sections 6.1.

Chapter 7: Arrays CS 121 41 / 41

