
Chapter 5: Writing Classes and Enums
CS 121

Department of Computer Science
College of Engineering
Boise State University

November 2, 2015

Chapter 5: Writing Classes and Enums CS 121 1 / 48

Chapter 5 Topics

I Identifying classes Go to part 0

I Anatomy of a class Go to part 1

I Encapsulation Go to part 2

I Anatomy of a method Go to part 3

I Static methods and data Go to part 4

I Method overloading Go to part 5

I Relationships among classes Go to part 6

I Method design Go to part 7

I Enumerate Types (enums) Go to part 8

Chapter 5: Writing Classes and Enums CS 121 2 / 48

Classes and Objects

I A class is a blueprint of an object. The class represents the concept of
an object, and any object created from that class is a realization (or
instantiation) of that concept.
Random rand = new Random ();
Color springGreen = new Color (107, 235, 128);
Color skyBlue = new Color (135, 206, 235);

I An object has state, which is defined by the values of the attributes
associated with an object.

I Example: Attributes for a song: title, artist, play time, file name
I In Java, the attributes are defined by the instance variables declared

within the class.
I An object also has behaviors, which are defined by the operations

associated with that object.
I Example: Operations for a song: Set the title, find its play time, play

the song
I In Java, the operations are defined by the methods declared within the

class.

Chapter 5: Writing Classes and Enums CS 121 3 / 48

Attributes and Operations
Class Attributes Operations
Student Name Set address

Address Set major
Major Compute GPA
GPA

Flight Airline Set airline
Flight number Set flight number
Origin city Determine status
Destination city
Current status

Employee Name Set department
Department Set title
Title Set salary
Salary Compute wages

Account Name Set email
Email Set alias
Alias Determine alias
Last login date Compute time since last login
List of session start/end times Compute average session length

I In-class Exercise: Suggest attributes and operations for classes
representing a Sphere, Dog, Calendar Appointment, Snap,
Smartphone, Computer.

Chapter 5: Writing Classes and Enums CS 121 4 / 48

Anatomy of a Class (1)

I A class consists of data declarations and method declarations. These
are known as members of the class.
public class MyClass
{

// instance variables
private int myInstanceVariable;
private double anotherInstanceVariable;
private final int MY_CONSTANT = 6;

// constructor
public MyClass ()
{
...
}
// other methods
public int doYourThing ()
{
...
}
public String toString ()
{
...
}

}

Chapter 5: Writing Classes and Enums CS 121 5 / 48

Anatomy of a Class (2)

I Consider a class representing a single dice (a die).
I State: Which face is showing on top.
I Primary Behavior : It can be rolled.

I We define it in a class named Die with the following methods.

Die()
Constructor: sets the initial face value to 1

int roll()
Rolls the die by setting face value to appropriate random number

void setFaceValue(int value)
Sets the face value to the specified value

int getFaceValue()
Returns the current face value

String toString()
Returns a string representation of the Die

I Example: Die.java, SnakeEyes.java
Chapter 5: Writing Classes and Enums CS 121 6 / 48

Anatomy of a Class (3)

I Constructor: A constructor has the same name as the class
and is used to setup an object when it is created.

I toString() method: This method provides a meaningful
textual representation of the object.

I It is called automatically when an object is printed with the
print or println method or concatenated to a string.

I All classes should provide an appropriate toString() method.
Useful for debugging and logging.

I Recommended style: Class name followed by attribute name,
value pairs. Separate multiple attributes by commas. For
example:

Die [faceValue = 1]

Chapter 5: Writing Classes and Enums CS 121 7 / 48

Anatomy of a Class: Data Scope (4)

I The scope of the data is the area in the program where it can
be referenced and used.

I Instance variables: These are variables declared at the class
level, that is, outside of any methods. Typically, they are
declared at the top of the class declaration. These can be
referenced by all the methods in the class.

I Local variables: Local variables are declared inside a method
(within its defining curly braces) and can only be used in that
method.

Chapter 5: Writing Classes and Enums CS 121 8 / 48

Instance Data

I The faceValue variable in the Die class is called instance data
because each instance (object) that is created has its own
version of it

I The objects of a class share the method definitions but each
object has its own data space for its instance variables. That’s
how different objects of the same class can have different
states.

I The two Die objects from the SnakeEyes.java program. Each
object has its own faceValue variable.

Chapter 5: Writing Classes and Enums CS 121 9 / 48

In-Class Exercise

I PP 5.4. Implement a class named Sphere that contains the
instance data that represents the sphere’s radius.

I Include get/set methods for the radius.
I Include methods to calculate the surface area and volume.
I Include a toString method that returns a one-line description

of the sphere.
I Write a driver class called MultiSphere that instantiates and

updates several Sphere objects.

Chapter 5: Writing Classes and Enums CS 121 10 / 48

Encapsulation (1)

I Two views of an object:
I internal : the details of the variables and methods that make

up a class
I external : the services that an object provides and how the

objects interacts with the rest of the system

I From the external view, an object is an encapsulated entity,
providing a set of specific services These services define the
interface to the object.

I One object (called the client) may use another object for the
services it provides.

I Clients should not be able to access an object’s variables
directly. Any changes to the object’s state should be made by
that object’s methods. That is, an object should be
self-governing.

Chapter 5: Writing Classes and Enums CS 121 11 / 48

Visibility Modifiers (1)

I Encapsulation is provided via the use of visibility modifiers. A
modifier is a Java reserved keyword that specifies particular
characteristics of a variable or method. Example: final

I Java provides three visibility modifiers: public, protected,
private.

I Instance variables and methods of a class declared public can
be referenced anywhere.

I Instance variables and methods of a class declared private
can be referenced only within that class.

I Instance variables and methods declared without a visibility
modifier have default visibility and can be referenced by any
class in the same package.

I Instance variables and methods of a class declared protected
can be referenced by any class in the same package as well as
any subclass in any package. We will study this in CS 221.

Chapter 5: Writing Classes and Enums CS 121 12 / 48

Visibility Modifiers (3)

I To enforce encapsulation, instance variables should always be
declared with private visibility.

I Then we can allow controlled access using special methods
know as accessors and mutators.

I An accessor method returns the current value of an instance
variable.

I A mutator method changes the value of an instance variable.
I They are named as getX and setX, where X is the name of the

instance variable. Hence they are also referred to as getters
and setters.

I It is acceptable to give a constant instance variable public
visibility. (Why?)

I Methods that provide service to clients should be declared
public.

I A method created simply to assist a service method is called a
support method. Support methods are declared private.

Chapter 5: Writing Classes and Enums CS 121 13 / 48

Visibility Modifiers (4)

public private
Instance Violate Enforce
Variables Encapsulation Encapsulation

Methods
Provide services Support other

to clients methods in the class

Chapter 5: Writing Classes and Enums CS 121 14 / 48

In-Class Exercise

I What is the relationship between a class and an object?
I Where are instance variables declared?
I What is the scope of instance variables?
I What is a local variable?

Chapter 5: Writing Classes and Enums CS 121 15 / 48

Examples

I Create a class to represent a coin that can be flipped for heads
or tail.

I Coin.java, CountFlips.java
I FlipRace.java

I Create a n-sided die version of the Die class.
I NSidedDie.java, RollingNSidedDie.java

Chapter 5: Writing Classes and Enums CS 121 16 / 48

In-Class Exercise

I Design a class to represent a single playing card.
I What instance data do you need?
I What would your constructor look like?
I What card operations (methods) do you want to provide?

I Let’s write the class.

Chapter 5: Writing Classes and Enums CS 121 17 / 48

Anatomy of a Method (1)

I A method consists of a header and a body
I The format of a method header:

public int maxOfFour (int n1, int n2, int n3, int n4)

visibility
modifier

return
type

method
name

formal parameter list

I The parameter list specifies the type and name of each
parameter.

I The name of a parameter in the method header is called a
formal parameter

Chapter 5: Writing Classes and Enums CS 121 18 / 48

Anatomy of a Method (2)

I The method body follows the header and is enclosed within curly
brackets

public int maxOfFour (int n1, int n2, int n3, int n4)
{
 int max1 = (n1 > n2) ? n1 : n2;
 int max2 = (n3 > n4) ? n3 : n4;
 int max = (max1 > max2) ? max1 : max2;
 return max;
}

return value must match
return type for method

local variables
scope limited to method
created upon entry
destroyed upon return

Formal parameters
become automatic
local variables

I A return statement specifies the value that will be returned. A
method can have multiple return statements.

I A method that does not return a value has void return type in
the header. Such methods modify the state of an object.

I For example: A setter (mutator) method is typically void since it
modifies an instance variables but need not return any value back.

Chapter 5: Writing Classes and Enums CS 121 19 / 48

Method Invocation (1)

I When a method is called, actual parameters are copied into the formal
parameters.

public int maxOfFour (int n1, int n2, int n3, int n4)
{
 int max1 = (n1 > n2) ? n1 : n2;
 int max2 = (n3 > n4) ? n3 : n4;
 int max = (max1 > max2) ? max1 : max2;
 return max;
}

int max = maxOfFour(a, b, c, 10);
method
invocation

method
declaration

Actual
parameters

int a = 100, b = 200, c = 300;

I Note that methods are contained inside classes so we would have to
include reference to an object variable above to invoke the maxOfFour
method, but we skip that for simplicity in this section.

I When a method finishes, the local variables (including the formal
parameters) are destroyed and the memory is reclaimed.

I However, the instance variables, declared at the class level, remain in
existence as long as the object exists.

Chapter 5: Writing Classes and Enums CS 121 20 / 48

Method Invocation (2)

I Note that method calls pass parameters by copying. This is
known as call-by-value.

I See below for the memory model for method invocation.

public int maxOfFour (int n1, int n2, int n3, int n4)
{
 . . .

}

int max = maxOfFour(a, b, c, 10);

100
a

200 300 10
b c

100 200 300 10
n1 n2 n3 n4

actual parameters are
copied into space for
formal parameters

Chapter 5: Writing Classes and Enums CS 121 21 / 48

Method Examples (1)

I Ex 5.7. Write a method called cube that accepts one integer
parameter and returns that value raised to the third power.
public int cube(int n)
{

return n * n * n;
}

I Ex 5.9 Write a method named randomInRange that accepts two
integer parameters representing a range and returns a random integer
in the range (inclusive). Assume that the range is valid.
public int randomInRange(int low , int high)
{

Random rand = new Random ();
int value = rand.nextInt(high - low + 1) + low;
return value;

}

Chapter 5: Writing Classes and Enums CS 121 22 / 48

Method Examples (2)

I Ex 5.18. Write a method name isAlpha that accepts a
character parameter and returns true if the character is either
an uppercase or lowercase alphabetic letter.
public boolean isAlpha(char ch)
{

if ('a' <= ch && ch <= 'z')
return true;

else if ('A' < = ch && ch <= 'Z')
return true;

return false;
}

Chapter 5: Writing Classes and Enums CS 121 23 / 48

Method Examples (3)

I Write a public method named poemOfTheMomemt that takes no arguments,
returns nothing but prints a poem of your choosing on the console.
public void poemOfTheMoment () {

System.out.println("==")
System.out.println("\"Like a piece of ice on a hot stove ,");
System.out.println("the poem must ride on its own melting .\"");
System.out.println("\t--Robert Frost");
System.out.println("==")

}

I Write a public method that displays a line of "=" symbols n times, where n is
specified by the caller.
public void printSeparator(int n)
{

for (int i = 0; i < n; i++)
System.out.print("=");

System.out.println ();
}

I In-class Exercise. Rewrite the method poemOfTheMoment using the
printSeparator method.

I In-class Exercise. Rewrite the printSeparator so that it takes another char
argument, which is the character to use in the separator line.

Chapter 5: Writing Classes and Enums CS 121 24 / 48

Passing Objects as Parameters

I Passing objects as parameters copies the reference/address
making the corresponding formal parameter an alias.

I This implies that changes made to an object inside an method
change the original object.

I See below for an example:

public void fixMyDie (Die die)
{
 int desiredFaceValue = 6;
 if (die.getFaceValue() < desiredFaceValue)
 die.setFaceValue(desiredFaceValue);
}

Die myDie = new Die();
fixMyDie(myDie);

myDie
Die

faceValue = 1

die

6
aliases

I Example: ParameterTester.java, ParameterModifier.java,
Num.java

Chapter 5: Writing Classes and Enums CS 121 25 / 48

In-class Exercise

I Write a method that adds two Color objects together and
returns a new Color object.

I Let’s figure out the method header first.
I Now we will complete the method body.
I What if adding the colors makes the values be outside the

range [0,255]?
I Additional Exercise. Write a method that creates and

returns a random Color object.

Chapter 5: Writing Classes and Enums CS 121 26 / 48

Example - Account

I Consider an Account class:
I Attributes: name, account number and balance
I Operations (services): withdrawals, deposits and adding

interest.

I Example: Account.java. Transactions.java
I Draw the three objects and show their state at the end of the

Transactions.java driver program.

Chapter 5: Writing Classes and Enums CS 121 27 / 48

The this Reference

I The this reference allows an object to refer to itself. That is,
the this reference, used inside a method, refers to the object
through which the method is being executed.

I The this reference can be used to distinguish the instance
variables of a class from corresponding method parameters
with the same names.

I Thus we can reuse the instance variable names as formal
parameter names, avoiding having to create unnecessary new
names.
public Account (String name , long acctNumber ,

double balance)
{

this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

}

Chapter 5: Writing Classes and Enums CS 121 28 / 48

Static Methods and Static Variables

I Static methods and variables are declared using the static
modifier. It associates the method or variable with the class
rather than with an object of that class.

I Hence, static method and static variables are also known as
class methods and class variables.

I Static methods are invoked using the name of the class. For
example:
double x = Math.sqrt (2.0);

Chapter 5: Writing Classes and Enums CS 121 29 / 48

Static Variables

I If a variable is declared as static, only one copy of the variable
exists.

I Memory space for a static variable is created when the class is
first referenced.

I All objects instantiated from the class share its static variables.
I Changing the value of a static variable in one object changes it

for all others.

Chapter 5: Writing Classes and Enums CS 121 30 / 48

Static Methods

I Static methods cannot refer to instance variables because
instance variables don’t exist until an object exists. They
cannot call non-static methods as well as no object exists to
call them on.

I Static methods can refer to static variables or local variables.
Static methods often work together with static variables.

I Example: Slogan.java, SloganCounter.java
I Determining if a variable or method should be static is a

design decision.

Chapter 5: Writing Classes and Enums CS 121 31 / 48

Method Overloading (1)

I Method overloading is the process of giving a single method
name multiple definitions.

I The signature of a method includes the number, type, and
order of the parameters. The return type isn’t part of the
signature.

I The signature of each overloaded method must be unique.
double tryMe(int x)
{

return x + 2.0;
}
double tryMe(int x, double y)
{

return x * y;
}

Chapter 5: Writing Classes and Enums CS 121 32 / 48

Method Overloading (2)

I Example: The println method is overloaded.
println(String s)
println(int i)
println(double x)
...

I The following code snippet uses multiple versions of println.
System.out.println("A String!");
System.out.println (1000);

I Constructors can also be overloaded. Overloaded constructors
provide multiple ways to initialize a new object. For example:
NSidedDie die1 = new NSidedDie ();
NSidedDie die2 = new NSidedDie (20);

Chapter 5: Writing Classes and Enums CS 121 33 / 48

Class Relationships

I Classes can be related in three common ways:
I Dependency – A uses B.
I Aggregation – A has-a B.
I Inheritance – A is-a B. (This is covered in CS 221)

Chapter 5: Writing Classes and Enums CS 121 34 / 48

Dependency (uses) Relationship

I A dependency exists when one class relies on the other in some
way. Usually by invoking the methods of the other.

I For example:
I FindParking uses ParkingSpot.
I SnakeEyes uses Die.

Chapter 5: Writing Classes and Enums CS 121 35 / 48

UML Diagrams

I UML stands for the Unified Modeling Language
I UML diagrams show relationships among classes and objects.
I A UML class diagram consists of one or more classes, each

with sections for the class name, attributes (data), and
operations (methods)

I Lines between classes represent associations.
I A solid arrow shows that one class uses the other (calls its

methods)

Chapter 5: Writing Classes and Enums CS 121 36 / 48

UML Diagrams

UML Class Diagrams Classes are drawn as rectangles, which may
be divided into 1, 2 or 3 partitions. The top partition is for the
class name, the second one for the instance variables, and the third
one for the methods or operations. Each variable/method is
preceded by a visibility indicator.

I + indicates public
I - indicates private
I # indicates protected

Chapter 5: Writing Classes and Enums CS 121 37 / 48

Self Dependencies

I Dependencies can also exist between objects of the same class.
I For example, a method of a class may accept an object of the

same class as a parameter.
String fullName = firstName.concat(lastName);

Chapter 5: Writing Classes and Enums CS 121 38 / 48

In-Class Exercise

I Recall: A Rational Number is a real number that can be
written as a simple fraction (i.e. as a ratio).

I 3
2 ,

5
8 , etc.

I Think for a minute...how can we represent a rational number
in Java?

I What types of operations do we want to be able to do?
I Example: RationalNumber.java
I Several of the methods in RationalNumber depend on

another RationalNumber object.

Chapter 5: Writing Classes and Enums CS 121 39 / 48

Aggregation (has-a) Relationship

I An aggregate object is an object that is made up of other
objects.

I For example:
I A PairOfDice has-a Die.

I An aggregate object contains references to other objects as
instance data.

Chapter 5: Writing Classes and Enums CS 121 40 / 48

Aggregation (has-a) Relationship

I A PokerHand has-a Card.
I A Dealer class depends on the PokerHand.

Chapter 5: Writing Classes and Enums CS 121 41 / 48

Method Design

I Program design involves two levels:
I High-level : Identify primary classes and objects. Assign

primary responsibilities.
I Low-level : Decompose classes into methods.

I An algorithm is a step-by-step process for solving a problem.
I An algorithm may be expressed in pseudocode, a mixture of

code statements and English that communicate the steps
required.

I A method implements an algorithm that determines how the
method accomplishes its goals.

Chapter 5: Writing Classes and Enums CS 121 42 / 48

Method Decomposition

I A method should be relatively small, so that it can be
understood as a single entity.

I A potentially large method should be decomposed into several
smaller methods as needed for clarity.

I A public service method of an object may call one or more
private support methods to help it accomplish its goal.

I Support methods might call other support methods if
appropriate.

Chapter 5: Writing Classes and Enums CS 121 43 / 48

Extended Example: PigLatin (1)

I Objective: Write a program that translates English into Pig
Latin.

I Pig Latin is a language in which each word is modified as
follows:

I Words that begin with a vowel simply have the "yay" sound
added to the end.

I Words that begin with a consonant blends such as "ch" "st"
are moved together to the end before adding the "ay" sound
to the end.

I Words that begin with a single consonant have the initial sound
moved to the end before adding the "ay" sound at the end.

I Examples:
book → ookbay
item → itemyay
chair → airchay

Chapter 5: Writing Classes and Enums CS 121 44 / 48

Extended Example: PigLatin (2)

I The primary objective (translating a sentence) is too
complicated for one method to accomplish. Therefore we look
for natural ways to decompose the solution into pieces

I Translating a sentence can be decomposed into the process of
translating each word.

I The process of translating a word can be separated into
translating words that

I begin with vowels
I begin with consonant blends (sh, cr, th, etc.)
I begin with single consonants

I Example: PigLatin.java, PigLatinTranslator.java

Chapter 5: Writing Classes and Enums CS 121 45 / 48

Enumerated Types (1)

I An Enumerated type is a set of values or elements that behave as
constants. For example:
public enum Season {WINTER, SPRING, SUMMER, FALL};
public enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES};

I The enumeration lists all possible values for the specified type.
I Now we can declare a variable of the enumerated type and assign

it values:
Suit cardSuit = Suit.DIAMONDS;

I Enumerated values are type-safe, that is, only valid assignments
are the listed values.

I In-Class Exercise: EX 3.12. Write a declaration for an
enumerated type that represents the days of the week. Declare a
variable of this type and assign it a day of the week.

Chapter 5: Writing Classes and Enums CS 121 46 / 48

Enumerated Types(2)

I Internally, each value of an enumerated type is stored as an
integer, called its ordinal value. We can access the ordinal
value with the ordinal() method.
System.out.println(cardSuit.ordinal());

I The first value in an enumerated type has an ordinal value of
zero, the second an ordinal value of one, and so on.

I However, we cannot assign a numeric value to an enumerated
type, even if it corresponds to a valid ordinal value.

I Example: SuitTest.java, IceCream.java, Navigator.java
I Example: FavoriteColorsByOrdinal.java

Chapter 5: Writing Classes and Enums CS 121 47 / 48

Exercises

I Read Chapter 5.
I Recommended Homework:

I Exercises: EX 5.8, 5.10, 5.11, 5.12, 5.14, 5.21, 5.25, 5.26,
5.32.

I Projects: PP 5.1, 5.7, 5.11 (more difficult), 5.12.

I Browse: Sections 7.1–7.3.

Chapter 5: Writing Classes and Enums CS 121 48 / 48

