
Chapter 4: Conditionals and Loops
CS 121

Department of Computer Science
College of Engineering
Boise State University

November 2, 2015

Chapter 4: Conditionals and Loops CS 121 1 / 67

Chapter 4 Topics

I Flow of control
Go to part 0

I Boolean expressions
Go to part 1

I if, else and block statements
Go to part 2

I Comparing data
Go to part 3

I switch statements
Go to part 4

I while, do, and for loops
Go to part 5

I Iterators, ArrayLists
Go to part 6

Chapter 4: Conditionals and Loops CS 121 2 / 67

Flow of Control

I Statement execution is linear unless specified otherwise.
I To make our programs more interesting there are program

statements that allow us to:
I decide whether or not to execute a particular statement

(conditional statements)
I execute a statement over and over, repetitively (loops)

I These decisions are based on boolean expressions (or
conditions) that evaluate to true or false

I The order of statement execution is called the flow of control

Chapter 4: Conditionals and Loops CS 121 3 / 67

Conditional Statements

I A conditional statement lets us choose which statement will be
executed next.

I Therefore they are sometimes called selection statements.
I Conditional statements give us the power to make basic

decisions.
I Conditional statements in Java:

I if statement
I if-else statement
I switch statement

Chapter 4: Conditionals and Loops CS 121 4 / 67

The if statement

I The syntax of a basic if statement is:

if (condition)
statement;

I The condition must be a boolean expression. It must return
true or false. Note that the condition must be encolsed in
parentheses.

I If the condition is true, then the statement is executed.
I If the condition is false, then the statement is skipped.

Chapter 4: Conditionals and Loops CS 121 5 / 67

Equality and Relational Operators

I Often, conditions are based on equality operators or relational
operators.

Operator Meaning
== equal to
!= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

I Note that the equality operator == is different than the
assignment operator =

Chapter 4: Conditionals and Loops CS 121 6 / 67

Conditions
Examples of if statements using equality and relational operators.

if (total == sum)
{

System.out.println("total equals sum");
}

if (count > 50)
{

System.out.println("count is more than 50");
}

if (letter != 'x')
{

System.out.println("letter is not x");
}

if (s.charAt (0) == 'A')
{

System.out.println("String s starts with an A");
}

Chapter 4: Conditionals and Loops CS 121 7 / 67

In-Class Exercise

Write an if statement that checks if the length of a String
variable str is greater than zero.

Chapter 4: Conditionals and Loops CS 121 8 / 67

Logical Operators

I Conditions can also use logical operators.

Op Meaning Example Result

! logical NOT !a true if a is false, false if a is true

&& logical AND a && b true if a and b are both true, false otherwise

|| logical OR a || b true if a or b or both are true, false otherwise

I They all take boolean operands and produce boolean results.
I Logical NOT is a unary operator.
I Logical AND and logical OR are binary operators.

Chapter 4: Conditionals and Loops CS 121 9 / 67

Logical Operators - Truth Tables

A Truth Table represents the values of a Boolean expression for all
possible values of its inputs.

I Logical NOT
a !a

false true
true false

I Logical AND and logical OR
a b a && b a || b

false false false false
false true false true
true false false true
true true true true

Chapter 4: Conditionals and Loops CS 121 10 / 67

Logical Operators and Expressions

I Expressions that use logical operators can form complex
conditions.

if (total < MAX+5 && !found)
{

System.out.println("processing ...");
}

I All logical operators have lower precedence than the relational
operators.

I Logical NOT has higher precedence than logical AND and
logical OR.

Chapter 4: Conditionals and Loops CS 121 11 / 67

Logical Operators and Expressions

I Specific expressions can be evaluated using truth tables.

if (total < MAX+5 && !found)
{

System.out.println("processing ...");
}

I Truth table:

total < MAX+5 found !found total < MAX+5 && !found
false false true false
false true false false
true false true true
true true false false

Chapter 4: Conditionals and Loops CS 121 12 / 67

Short-Circuited Operators

I The processing of logical AND and logical OR is
short-circuited.

I If the left operand is sufficient to determine the result, the
right operand is not evaluated.

if (count != 0 && total/count > MAX)
{

System.out.println("Testing");
}

I If count is equal to 0, then we won’t check the rest of the
condition.

I This type of processing should be used carefully.

Chapter 4: Conditionals and Loops CS 121 13 / 67

The if statement

I Consider the following if statement:

if (sum > MAX)
delta = sum - MAX;

System.out.println("The sum is " + sum);

I First the condition is evaluated – the value of sum is either
greater than the value of MAX, or it is not.

I If the condition is true, the assignment statement is executed
– if it isn’t, it is skipped.

I Either way, the call to println is executed at the end.
I Example: Age.java

Chapter 4: Conditionals and Loops CS 121 14 / 67

Indentation

I The statement controlled by the if statement is indented to
indicate that relationship.

I The use of a consistent indentation style makes a program
easier to read and understand.

I Although it makes no difference to the compiler, proper
indentation is crucial for readability and maintainablity.

I Remember, indentation is for the human reader, and is ignored
by the computer. E.g., this is BAD:

if (total > MAX)
System.out.println("Error !!");
errorCount ++;

I Despite what is implied by the indentation, the increment will
occur whether the condition is true or not.

Chapter 4: Conditionals and Loops CS 121 15 / 67

Block Statements

I Several statements can be grouped together into a block
statement delimited by curly braces.

I A block statement can be used wherever a statement is called
for in the Java syntax rules.

if (total > MAX)
{

System.out.println("Error !!");
errorCount ++;

}

I To avoid confusion, it is best to always use block statements.

Chapter 4: Conditionals and Loops CS 121 16 / 67

The if-else statement

I An else clause can be added to an if statement to make an
if-else statement.

if (condition)
statement1;

else
statement2;

I If the condition is true, statement1 is executed.
I If the condition is false, statement2 is executed.
I One or the other will be executed, but never both.
I Examples: AgePhrases.java, Wages.java, Guessing.java

Chapter 4: Conditionals and Loops CS 121 17 / 67

The Conditional Operator (1)

I Java has a conditional operator that uses a boolean condition
to determine which of two expressions is evaluated.

I The syntax is

condition ? expression1 : expression2;

I If the condition is true, expression1 is evaluated.
I If the condition is false, expression2 is evaluated.
I The resulting value of the entire conditional operator is the

value of the selected expression.

Chapter 4: Conditionals and Loops CS 121 18 / 67

The Conditional Operator (2)

I The conditional operator is similar to an if-else statement,
except that it is an expression that returns a value.

I For example:

int larger = ((num1 > num2) ? num1 : num2);

I If num1 is greater than num2, then num1 is assigned to larger.
I If num1 is less than or equal to num2, then num2 is assigned to
larger.

I Here is another example:

System.out.println("Your change is " + count +
((count == 1) ? "dime" : "dimes"));

Chapter 4: Conditionals and Loops CS 121 19 / 67

Nested if Statements

I The statement executed as a result of an if statement or
else clause could be another if statement.

I These are called nested if statements.
I An else clause is matched to the last unmatched if (no

matter what the indentation implies).
I Braces should be used to specify the if statement to which an

else clause belongs.
I Examples: MinOfThree.java
I In-class exercise: Write a code snippet to find the minimum

of four numbers.

Chapter 4: Conditionals and Loops CS 121 20 / 67

Comparing Data

I When comparing data using boolean expressions, it’s
important to understand the nuances of certain data types.

I Let’s examine some key situations:
I comparing floating point values for equality.
I comparing characters.
I comparing strings (alphabetical order).
I comparing objects vs. comparing object references.

Chapter 4: Conditionals and Loops CS 121 21 / 67

Comparing Floating Point Values (1)

I You should rarely use the equality operator (==) when
comparing two floating point values (float or double).

I Two floating point values are equal only if their underlying
binary representations match exactly.

I Computations often result in slight differences that may be
irrelevant (e.g. 3.14 vs. 3.141592).

I In many situations, you might consider two floating point
numbers to be “close enough” even if they aren’t exactly equal.

Chapter 4: Conditionals and Loops CS 121 22 / 67

Comparing Floating Point Values (2)

I To determine the equality of two floating point values, we can
use the following technique:

if (Math.abs(f1 - f2) < TOLERANCE)
{

System.out.println("Essentially equal");
}

I If the difference between the two floating point values is less
than the tolerance, they are considered to be equal.

I The tolerance could be set to any appropriate level. For
example 10E-7 for float and 10E-15 for double.

I Example: TestDoubleCompare.java

Chapter 4: Conditionals and Loops CS 121 23 / 67

Comparing Characters (1)

I Java character data is based on the Unicode character set.
Unicode establishes a particular numeric value for each
character, and therefore an ordering.

I We can use relational operators on character data based on
this ordering.

I For example, the character ’+’ is less than the character ’J’
because it comes before it in the Unicode character set.

I Appendix C provides an overview of Unicode.

Chapter 4: Conditionals and Loops CS 121 24 / 67

Comparing Characters (2)

I In Unicode, the digit characters (0-9) are contiguous and in
order.

I Likewise, the uppercase letters (A-Z) and lowercase letters
(a-z) are contiguous and in order.

Characters Unicode Values
0-9 48 through 57
A-Z 65 through 90
a-z 97 through 122

I We can also add and subtract characters. For example:

System.out.println('b' - 'a');
System.out.println('9' - '0');
System.out.println('A' - 'a');

Chapter 4: Conditionals and Loops CS 121 25 / 67

Comparing Strings (1)

I Recall that in Java a character string is an object.
I The equals method can be called with strings to determine if

two strings contain exactly the same characters in the same
order.

I The equals method returns a boolean result.

if (name1.equals(name2))
{

System.out.println("Same name");
}

Chapter 4: Conditionals and Loops CS 121 26 / 67

Comparing Strings (2)

I We cannot use the relational operators to compare Strings.
I The String class contains a method called compareTo to

determine if one string comes before another.
I Using the method would look something like:

name1.compareTo(name2)

I returns zero if name1 and name2 are equal (contain the same
characters).

I returns a negative value if name1 is less than name2.
I returns a positive value if name1 is greater than name2.

Chapter 4: Conditionals and Loops CS 121 27 / 67

Comparing Strings (3)

if (name1.compareTo(name2) < 0)
{

System.out.println(name1 + "comes first");
}
else if (name1.compareTo(name2) == 0)
{

System.out.println("Same name");
}
else
{

System.out.println(name2 + "comes first");
}

Chapter 4: Conditionals and Loops CS 121 28 / 67

Lexicographic Ordering

I Because comparing characters and strings is based on a
character set, it is called a lexicographic ordering.

I Lexicographic ordering is not strictly alphabetical when
uppercase and lowercase characters are mixed.

I For example, the string "Great" comes before the string
"fantastic" because all of the uppercase letters come before
all of the lowercase letters in Unicode.

I Also, short strings come before longer strings with the same
prefix (lexicographically). Therefore "book" comes before
"bookcase".

Chapter 4: Conditionals and Loops CS 121 29 / 67

Comparing Objects vs. Comparing Object References

I The == operator can be applied to objects, but it returns true
if the two references are aliases of each other. It doesn’t
compare the values of the objects.

I The equals method is defined for all objects, unless we
redefine it when we write a class.

I By default, it will be the same as the == operator.
I It has been redefined in the String class to compare the

characters in two strings.
I When writing classes, we can/should redefine the equals

method to return true under the appropriate conditions.
I Example: StringEquals.java
I Example: PoetryPlay.java

Chapter 4: Conditionals and Loops CS 121 30 / 67

In-class exercise

1 if (age < 18)
2 {
3 if(status == "happy")
4 System.out.println("Hi, I'm a minor and I'm happy!");
5 else if (status == "sad")
6 System.out.println("Hi, I'm a minor and I'm sad :(");
7 else
8 System.out.println("Hi, I'm a minor and I don't know my status");
9 }

10 else if (age >= 18 && age < 21)
11 {
12 System.out.println("Hey , I'm over 18, but still not 21.");
13 }
14 else
15 {
16 if(status == "happy")
17 System.out.println("I love getting older!");
18 else if(status == "sad")
19 System.out.println("Man , I'm getting old...");
20 }
21 System.out.println("Goodbye!");

I What is the output if age = 17 and status = "happy"?
I What is the output if age = 25 and status = "excited"?
I What is the output if age = 21 and status = "sad"?

Chapter 4: Conditionals and Loops CS 121 31 / 67

The switch Statement (1)

I The switch statement provides another way to decide which
statement to execute next.

I The general syntax of the switch statement is

switch (expression)
{

case value1:
statement -list1

case value2:
statement -list2

case value3:
statement -list3

case ...
}

Chapter 4: Conditionals and Loops CS 121 32 / 67

The switch Statement (1)

I A switch statement evaluates an expression, then attempts to
match the result to one of several possible cases.

I Each case contains a value and a list of statements.
I The flow of control transfers to the statement associated with

the first case value that matches.

Chapter 4: Conditionals and Loops CS 121 33 / 67

The switch Statement (2)

I Often a break statement is used as the last statement in each
case’s statement list.

I A break statement causes control to transfer to the end of the
switch statement.

I If a break statement is not used, the flow of control will
continue into the next case. Sometimes this may be
appropriate, but often we want to execute only the statements
associated with one case.

Chapter 4: Conditionals and Loops CS 121 34 / 67

The switch Statement (3)

I An example switch statement:

char option = 'A';

switch (option)
{

case 'A':
aCount ++;
break;

case 'B':
bCount ++;
break;

case 'C':
cCount ++;
break;

}

I In-class Exercise. Rewrite the above switch statement using
if-else statements.

Chapter 4: Conditionals and Loops CS 121 35 / 67

The switch Statement (4)

I A switch statement can have an optional default case.
I The default case has no associated value and simply uses the

reserved word default.
I If the default case is present, control will transfer to it if no

other case value matches.
I If there is no default case, and no other value matches, control

falls through to the statement after the switch.

Chapter 4: Conditionals and Loops CS 121 36 / 67

The switch Statement (5)

I Another example switch statement:

// Read a color from the user
String color = keyboard.nextLine ().trim();

switch (color.toLowerCase ())
{

case "blue":
countBlue ++;
break;

case "green":
countGreen ++;
break;

case "purple":
countPurple ++;
break;

case "orange":
countOrange ++;
break;

default:
System.out.println("Not in my top four!");
break;

}

Chapter 4: Conditionals and Loops CS 121 37 / 67

The switch Statement (6)

I The expression of a switch statement must result in an integral
type, meaning an integer (byte, short, int, long), char or
an enum.

I Switch statements can also use String type from Java 7
onward.

I It cannot be a boolean value or a floating point value (float
or double).

I The implicit boolean condition in a switch statement is
equality.

I You cannot perform relational checks with a switch statement.
I Example: GradeReport.java, FavoriteColors.java

Chapter 4: Conditionals and Loops CS 121 38 / 67

while, do, and for loops

I Loops allow us to execute a statement multiple times.
I Like conditional statements, they are controlled by boolean

expressions.
I Java has three kinds of loops:

I the while loop
I the do loop
I the for loop

Chapter 4: Conditionals and Loops CS 121 39 / 67

The while loop (1)

I A while loop has the following syntax:

while (condition)
{

statement;
}

I If the condition is true, the statement is executed.
I The statement is executed repeatedly until the condition

becomes false.
I If the condition of a while loop is false initially, the statement

is never executed.
I Therefore, the body of a while loop will execute zero or more

times.

Chapter 4: Conditionals and Loops CS 121 40 / 67

The while loop (2)

I While count is less than or equal to 5, print the value of count and
increment the value of count by one.

int count = 1;
while (count <= 5)
{

System.out.println(count);
count ++;

}

I What is the output from the above code snippet?

Chapter 4: Conditionals and Loops CS 121 41 / 67

The while loop (3)

I Write a loop that counts the number of times the letter ’z’
occurs in a given String s.

String s = "I am a zizzer zazzer zuzz";

int count = 0;
int index = 0;
while (index < s.length ())
{

if (s.charAt(index) == 'z')
count ++;

index ++;
}
System.out.println("#z: " + count);

Chapter 4: Conditionals and Loops CS 121 42 / 67

In-class exercise

I Write a while loop that prints the letters in a string variable
s, one per line.

String s = "watch me go!";

Chapter 4: Conditionals and Loops CS 121 43 / 67

The while loop (4)

I Let’s look at some more examples of loop processing.
I A loop can be used to maintain a running sum. Or compute

the average or min or max value from a series of values.
I A sentinel value is a special input value that represents the end

of input.
I Example: Average.java

I A loop can be used to validate input from a user.
I Example: WinPercentage.java

Chapter 4: Conditionals and Loops CS 121 44 / 67

Infinite Loops

I Infinite loops are loops that keep running forever. Usually, they are not
good!

I Example of an infinite loop.

int count = 1;
while(count <= 25)
{

System.out.println (count);
count --;

}

I To stop an infinite loop, interrupt your program execution with the
cancel command (ctrl-c). In Eclipse, click on the red stop button.

I Infinite loops can be useful in certain circumstances.

while (true)
{

//wait for interaction from user
}

I For example, the operating system runs in an infinite loop on your
desktop, laptop or phone (unless you power it off or it crashes!)

I Example: InfiniteLoop.java

Chapter 4: Conditionals and Loops CS 121 45 / 67

Nested Loops (1)

I Similar to nested if statements, loops can be nested as well. That is,
the body of a loop can contain another loop. For each iteration of the
outer loop, the inner loop iterates completely.

I How many times will the output be printed?

1 int count1 = 1;
2 while (count1 <= 10)
3 {
4 int count2 = 1;
5 while (count2 <= 50)
6 {
7 System.out.println ("Here again");
8 count2 ++;
9 }

10 count1 ++;
11 }

I What if the condition on outer loop was (count1 < 10)?
I What if the variable count2 was initialized to 10 instead of 1 before

the inner loop?

Chapter 4: Conditionals and Loops CS 121 46 / 67

Nested Loops (2)

I A Palindrome is a string of characters that reads the same
both forward and backward. Are the following palindromes?

I radar
I kayak
I Radar
I A man, a plan, a canal, Panama.

I Example: PalindromeTester.java
I Generalize to skip spaces, punctuation and changes in case for

letters.

Chapter 4: Conditionals and Loops CS 121 47 / 67

The do Loop (1)

I The do loop has the following syntax:

do
{

statements;
}
while (condition);

I The statement is executed once initially, and then the
condition is evaluated.

I The statement is executed repeatedly until the condition
becomes false.

I The body of a do loop is executed at least once.

Chapter 4: Conditionals and Loops CS 121 48 / 67

The do Loop (2)

I An example of a do loop:

int count = 0;
do
{

count ++;
System.out.println (count);

}
while (count < 5);

I Example: ReverseNumber.java

Chapter 4: Conditionals and Loops CS 121 49 / 67

while vs. do-while

I Check for understanding...what is the difference?

Chapter 4: Conditionals and Loops CS 121 50 / 67

The for Loop (1)

I The for loop has the following syntax:

for (initialization; condition; increment)
statement;

I The initialization is executed once before the loop begins.
I If the condition is true, the statement is executed, then the

increment is executed.
I The condition is evaluated again, and if it is still true, the

statement and increment are executed again.
I The statement and increment are executed repeatedly until the

condition becomes false.

Chapter 4: Conditionals and Loops CS 121 51 / 67

The for Loop (2)

I The for loop is functionally equivalent to the following while
loop structure:

initialization;
while (condition)
{

statement;
increment;

}

Chapter 4: Conditionals and Loops CS 121 52 / 67

The for Loop (3)

I An example of a for loop:

for (int count = 1; count <= 5; count ++)
System.out.println (count);

I The initialization section can be used to declare a variable.
I Like a while loop, the condition of a for loop is tested prior

to executing the loop body.
I Therefore, the body of a for loop will execute zero or more

times.
I A for loop is well suited for executing statements a specific

number of times that can be calculated or determined in
advance.

Chapter 4: Conditionals and Loops CS 121 53 / 67

The for Loop (4)

I The increment section can perform any calculation.

for (int num = 100; num > 0; num = num - 5)
System.out.println (num);

I Write a for loop to print the multiples of 3 from 3 to 300.

for (int i = 1; i <= 100; i++)
{

System.out.println (3*i);
}

I Write a for loop to print the multiples of 3 from 300 down to
3.

for (int i = 100; i >= 1; i--)
{

System.out.println (3*i);
}

Chapter 4: Conditionals and Loops CS 121 54 / 67

The for Loop (5)

I Write a for loop that computes the sum of integers from 20 to 70,
inclusive, and then prints the result.

int sum = 0; int low = 20; int high = 70;
for (int i = low; i <= high; i++)
{

sum += i;
}
System.out.println("sum = " + sum);

I Write a for loop that creates a new string composed of every other
character from the String object called name

String s = "";
for (int i = 0; i < name.length (); i += 2)
{

s += name.charAt(i);
}
System.out.println(s);

Chapter 4: Conditionals and Loops CS 121 55 / 67

The for Loop (6)

I Example: Multiples.java.
I Shows how to print fixed number of values per line using the mod %

operator inside a for loop.
I Nested for loops are similar to other nested loops. What does the

following loop print?

//PP 4.6
int n = 12;
for (int i = 1; i <= n; i++)
{

for (int j = 1; j <= n; j++)
{

System.out.print(i*j + " ");
}
System.out.println ();

}

Chapter 4: Conditionals and Loops CS 121 56 / 67

In-class Exercise

I What does the following for loop print?

final int MAX_ROWS = 10;

for (int row = MAX_ROWS; row > 0 ; row --)
{

for (int star = 0; star < row; star ++)
System.out.print ("*");

System.out.println ();
}

Chapter 4: Conditionals and Loops CS 121 57 / 67

The for Loop (7)

I Each expression in the header of a for loop is optional.
I If the initialization is left out, no initialization is performed.
I If the condition is left out, it is always considered to be true,

and therefore creates an infinite loop.
I If the increment is left out, no increment operation is

performed.
I The following is a valid, infinite for loop!

for (;;) {}

Chapter 4: Conditionals and Loops CS 121 58 / 67

More for Loop Examples

I More examples using for loops.
I Example: RandomBoxes.java
I Example: BullsEye.java
I Example: BullsEyeScalable.java

Chapter 4: Conditionals and Loops CS 121 59 / 67

In-class Exercise

I What does the for loop in following paintComponent method draw?

private final int SIZE = 30;
private final int GAP = 10;
private final int WIDTH = 800;

public void paintComponent(Graphics page)
{

super.paintComponent(page);
int n = WIDTH / 40;
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++) {
page.setColor(Color.blue);
page.fillRect ((SIZE + GAP)*i,

(SIZE + GAP)*j,
SIZE , SIZE);

}
}

I A two-dimensional lattice of blue squares!

Chapter 4: Conditionals and Loops CS 121 60 / 67

Iterators (1)

I An iterator is an object that allows you to process a collection
of items one at a time.

I It lets you step through each item in turn and process it as
needed.

I An iterator object has a hasNext method that returns true if
there is at least one more item to process.

I The next method returns the next item.
I Iterator objects are defined using the Iterator interface.

Chapter 4: Conditionals and Loops CS 121 61 / 67

Iterators (2)

I Some classes in the Java API are iterators. For example, the
Scanner class is an iterator.

I the hasNext method returns true if there is more data to be
scanned.

I the next method returns the next scanned token as a string.

I The Scanner class also has variations on the hasNext method
for specific data types (such as hasNextInt).

Chapter 4: Conditionals and Loops CS 121 62 / 67

The ArrayList Class

I The ArrayList class stores a list of objects. It is part of the java.util
package.

I It grows and shrinks as needed. Each object in it has a numeric index,
starting from zero. Objects can be inserted or removed and the indices
adjust accordingly.

I The declaration establishes the type of objects that a given ArrayList
class can store. This is an example of generics.

ArrayList <String > band = new ArrayList <String >();

band.add("Paul");
band.add("Pete");
band.add("John");
band.add("George");

System.out.println("Size of the band: " + band.size());

I The ArrayList class cannot store primitive types. We can use wrapper
objects if we want to store primitive types in an ArrayList.

Chapter 4: Conditionals and Loops CS 121 63 / 67

Iterators and the for-each Loop

I A variant of the for loop simplifies the repetitive processing
for any object that implements the Iterable interface.

I This style of for loop is referred to as the for-each loop.
I An Iterable interface provides an iterator.
I For example, an ArrayList is an Iterable list that we can

use with a for-each loop.

// Iterate over the band members using a for -each loop
for (String member: band) {

System.out.print(member + " ");
}

I It can be read: ”for each member in the list of band members“
I Example: Beatles.java
I The for-each loop will also be helpful when processing arrays

(Chapter 7).

Chapter 4: Conditionals and Loops CS 121 64 / 67

In-class Exercise

I Write a code snippet that creates a 100 random colors and
adds them to an ArrayList.

I Then write a for-each loop that walks through the colors and
finds the one with the maximum red component.

Chapter 4: Conditionals and Loops CS 121 65 / 67

Review

I while, do-while, and for loops
I Which loop should we use to

I Print numbers 1 - 100.
I Keep asking the user to enter input until they enter a specific

sentinel value.
I Ask the user for 3 items.
I Read a number from the user and store each digit of the

number in a separate int.
I Reverse a String.

Chapter 4: Conditionals and Loops CS 121 66 / 67

Exercises

I Read Chapter 4.
I Recommended Homework:

I Exercises: EX 4.2–4.4, 4.6, 4.8, 4.11–4.14, 4.17, 4.21, 4.22.
I Projects: PP 4.3, 4.10, 4.12.

I Browse: Sections 5.1–5.4.

Chapter 4: Conditionals and Loops CS 121 67 / 67

