
Chapter 3: Using Classes and Objects
CS 121

Department of Computer Science
College of Engineering
Boise State University

November 2, 2015

Chapter 3: Using Classes and Objects CS 121 1 / 43

Chapter 3 Topics

I Part 0: Intro to Object-Oriented Programming
Go to part 0

I Part 1: Creating Java objects
Go to part 1

I Part 2: The String class
Go to part 2

I Part 3: The Random class
Go to part 3

I Part 4: The Math class
Go to part 4

I Part 5: Formatting output
Go to part 5

I Part 6: Wrapper classes and autoboxing
Go to part 7

Chapter 3: Using Classes and Objects CS 121 2 / 43

Brief Intro to Object-Oriented Programming

I Java is an object-oriented programming language.
I Objects are used to represent real-world things.
I Objects have state and behaviors.

I Dog
I state: name, breed, color, age, hungry, etc.
I behavior: walk, run, bark, lick, fetch

I String "Hello World!"
I state: length, characters
I behavior: get length, equals, sub-string, compare to, to upper

case, etc.

Chapter 3: Using Classes and Objects CS 121 3 / 43

Classes

I Objects are defined by classes.
I Multiple objects can be created from the same class.
I Define variables to represent state.
I Define methods to define behaviors.

Chapter 3: Using Classes and Objects CS 121 4 / 43

Classes and Objects

I We can think of a class as the blueprint of an object.
I One blueprint to create several similar, but different, houses.

Chapter 3: Using Classes and Objects CS 121 5 / 43

Classes and Objects

I An object is an instance of a class.
I Objects are encapsulated to protect the data it manages.
I Classes can be created based on another class using

inheritance (You will see more of inheritance in CS 221).

Chapter 3: Using Classes and Objects CS 121 6 / 43

Creating Objects

I Recall: A variable holds either a primitive type or a reference
to an object.

I A variable referring to an object is known as a reference
variable.

I The class name of the object is used as the type in the
declaration statement.

String courseName;
Scanner keyboardInput;

I This declaration does not create an instance of the object.
I It is just a reference to an actual object stored in memory.
I The object must be explicitly created.

Chapter 3: Using Classes and Objects CS 121 7 / 43

Instantiating an Object

I We use the new operator to create a new object.
String courseName = new String(“CS 121”);

I This calls the String constructor – a special method that sets
up the object.

I The new object is an instance of the class.

Chapter 3: Using Classes and Objects CS 121 8 / 43

Instantiating String Objects - A special case

I A quick note.... We don’t have to use the new operator to
create a String.

I We can use string literals.
String courseName = “CS 121”;

I This is only supported for String objects (because they are so
frequently used). The Java compiler creates the object for us
as a convenience.

Chapter 3: Using Classes and Objects CS 121 9 / 43

Invoking Methods of an Object

I After we instantiate an object, we can use the dot operator to
invoke its methods.

String courseName = new String(“CS 121”);
int length = courseName.length();

I Methods may return values that can be used in an assignment
or expression.

I Invoking an object’s method can be thought of as asking the
object to do something.

Chapter 3: Using Classes and Objects CS 121 10 / 43

Object References

I Primitive variables and object variables store different
information.

I Primitive variables (e.g. int, char, boolean) contain the
value itself.

I Object variables (e.g. String) contain the address of the
object it references.

Chapter 3: Using Classes and Objects CS 121 11 / 43

Object References: The Hulk

Chapter 3: Using Classes and Objects CS 121 12 / 43

Assignment Revisited

I Recall: The act of assignment takes a copy of a value (the
Right-Hand-Side) and stores it in the target variable (the
Left-Hand-Side).

I For primitive types, the value of the variable is copied.

Chapter 3: Using Classes and Objects CS 121 13 / 43

Assignment Revisited

I For objects, the address of the object is copied.

Chapter 3: Using Classes and Objects CS 121 14 / 43

Aliases

I Two or more references that refer to the same object are
aliases of each other.

I A single object can be accessed using multiple references.
I This is useful, but can cause issues if not managed properly.
I Changing an object through one reference changes it for all of

its aliases, because there is really only one object stored in
memory.

Chapter 3: Using Classes and Objects CS 121 15 / 43

Example: Swapping Two Variables

I Suppose we have two int variables that we want to swap. We
need a temporary variable to complete the swap:

int n1 = 100, n2 = 200;

int tmp = n1; n1 = n2; n2 = temp;

I Suppose we have two String variables that we want to swap.
We need a temporary String variable to complete the swap.
This is a good example of using aliases.

String s1 = "hello";
String s2 = "goodbye";
String tmp = s1; s1 = s2; s2 = tmp;

Chapter 3: Using Classes and Objects CS 121 16 / 43

Garbage Collection

I If there are no variables that refer to an object, the object is
inaccessible and referred to as garbage.

I Java performs automatic garbage collection in the background,
reclaiming the memory used by garbage objects for future use.

I In some languages, the programmer is responsible for freeing
the memory used by garbage objects.

Chapter 3: Using Classes and Objects CS 121 17 / 43

The Java API

I The Java API is the standard class library that provides a large
collection of pre-built classes that we can use in our programs.

I API = Application Programming Interface
I Before writing our own classes, we will practice using several

classes that are part of the Java API.
I The classes of the Java API are organized into packages. Java

comes with hundreds of packages and tens of thousands more
can be obtained from third-party vendors.

I Java API docs:
http://docs.oracle.com/javase/8/docs/api/

Chapter 3: Using Classes and Objects CS 121 18 / 43

http://docs.oracle.com/javase/8/docs/api/

Selected Java Packages

Package Provides
java.lang Fundamental classes
java.util Various useful utility classes
java.io Classes for variety of input/output functions
java.awt Classes for creating graphical user interfaces and graphics
java.swing Lightweight user interfaces that extend AWT capabilities
java.net Networking operations
java.security Encryption and decryption

Chapter 3: Using Classes and Objects CS 121 19 / 43

Import Declarations

I When you want to use a class from a Java API package, you
need to import the package.

import java.awt.Graphics;
I To import all classes in a package, you can use the wild card

character (*).
import java.awt.*;

I All classes in the java.lang package are automatically
imported into all programs.

I This includes String and System (among others)

Chapter 3: Using Classes and Objects CS 121 20 / 43

Think-Pair-Share

I What is the difference between a class and an object?
I What does it mean to instantiate an object? How do you do

this?
I What is a reference variable?
I What does a variable reference if the object it is supposed to

reference is not instantiated?
I How do you tell an object to perform an action?

Chapter 3: Using Classes and Objects CS 121 21 / 43

Intro to Java Graphics

I The Graphics class from the java.awt package is a useful
class for drawing shapes on a canvas.

I See the Intro to Graphics notes for details on how to use the
Graphics class.

I http://cs.boisestate.edu/~cs121/notes/
graphics-handout.pdf

Chapter 3: Using Classes and Objects CS 121 22 / 43

http://cs.boisestate.edu/~cs121/notes/graphics-handout.pdf
http://cs.boisestate.edu/~cs121/notes/graphics-handout.pdf

The String Class

I In Java, strings are immutable: Once we create a String
object, we cannot change its value or length.

I The String class provides several useful methods for
manipulating String objects. Many of these return a new
String object since strings are immutable. For example:

String babyWord = "googoo";
String str = babyWord.toUpperCase();

I See javadocs for String for list of available methods:
http://docs.oracle.com/javase/8/docs/api/java/
lang/String.html

Chapter 3: Using Classes and Objects CS 121 23 / 43

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Selected Methods in String class

int length()
char charAt (int index)
String toLowerCase()
String toUpperCase()
String trim()
boolean equals(String str)
boolean equalsIgnoreCase(String str)
int compareTo(String str)
String concat(String str)
String replace(char oldChar, char newChar)
String substring(int offset, int endIndex)

returns a string that equals the substring from index offset to endIndex - 1
int indexOf(char ch)
int indexOf(String str)

returns the index of the first occurrence of character ch or string str

Chapter 3: Using Classes and Objects CS 121 24 / 43

String Representation

I The String class represents a string internally as a series of
characters. These characters have an index that we can use to
refer to a specific character.

I We can use the charAt(int index) method to get the
character at the index position.

char ch = babyWord.charAt(0);
char ch = babyWord.charAt(4);

Chapter 3: Using Classes and Objects CS 121 25 / 43

String Examples

I Example: StringPlay.java.

I What output is produced by the following code?

String babyWords = "googoo gaagaa";

System.out.println(babyWords.length());

System.out.println(babyWords.toUpperCase());

System.out.println(babyWords.substring(7, 10));

System.out.println(babyWords.replace(’g’, ’m’));

System.out.println(babyWords.length());

Chapter 3: Using Classes and Objects CS 121 26 / 43

The Random Class

I The Random class provides methods that generate pseudorandom
numbers. The class is part of the java.util package.

I True random numbers are usually generated from nature or physical
processes.

I Give some examples of physical processes that generate random
numbers:

I Flipping a coin
I Rolling dice
I Shuffling playing cards
I Brownian motion of molecules in a liquid

I Pseudorandom numbers are generated using algorithms that start with
a seed value. The values generated pass statistical tests. There are
two main advantages of pseudorandom numbers:

I Unlimited supply
I Reproducibility

I Random numbers are used in simulations, security, testing software,
design, games and many other areas.

Chapter 3: Using Classes and Objects CS 121 27 / 43

Selected Methods in the Random class

Random Random()
Constructor: creates a new pseudorandom generator

Random Random(long seed)
Constructor: with a seed value to be able to reproduce random sequence

int nextInt(int bound)
returns a random number over the range 0 to bound-1

int nextInt()
returns a random number over all possible values of int

double nextDouble()
returns a double random number between 0.0 (inclusive) and 1.0 (exclusive)

Chapter 3: Using Classes and Objects CS 121 28 / 43

Using the Random Class

I Import the class, construct an instance and then use the
appropriate methods.

import java.util.Random;
Random generator = new Random();
System.out.println(generator.nextInt(10));
System.out.println(generator.nextInt(10));

I Use the constructor with a seed argument to create a
pseudorandom number sequence that is the same each time:

import java.util.Random;
long seed = 12345; //arbitrary number!
Random generator = new Random(seed);
System.out.println(generator.nextInt(10));
System.out.println(generator.nextInt(10));

I Example: RandomNumbers.java

Chapter 3: Using Classes and Objects CS 121 29 / 43

In-class Exercises

I Given an Random object named generator, what range of values are
produced by the following expressions?

generator.nextInt(25)

generator.nextInt(10) + 1

generator.nextInt(50) + 100

generator.nextInt(10) - 5

generator.nextInt(21) - 10
I Write an expression using generator that produces the following

range of random values:

0 to 12
1 to 100
15 to 20
-10 to 0

I Create a random color using the Color class and the Random class.

Chapter 3: Using Classes and Objects CS 121 30 / 43

The Math Class

I The Math contains methods for basic mathematical operations like
exponentiation, square root, logarithm and trigonometric functions.

I Part of the java.lang package so no need to import.

I The methods in the Math class are static methods (also known as
class methods).

I Static methods can be invoked using the class name — no Math
object needs to be instantiated. For example:

double value = Math.sin(Math.PI) + Math.cos(Math.PI);

I Example: Quadratic.java, TrigDemo.java.

Chapter 3: Using Classes and Objects CS 121 31 / 43

Selected Methods in the Math class

static int abs(int num)
static double sqrt(double num)
static double ceil(double num)
static double floor(double num)
static double log(double num)
static double log10(double num)
static double pow(double num, double power)
static double min(double num1, double num2)
static double max(double num1, double num2)
static int min(int num1, int num2)
static int max(int num1, int num2)
static double sin(double angle)
static double cos(double angle)
static double tan(double angle)
static double toRadians(double angleInDegrees)
static double toDegrees(double angleInRadians)

Chapter 3: Using Classes and Objects CS 121 32 / 43

Formatting Output (1)

I The java.text package provides classes to format values for output.
I The NumberFormat allows us to format values as currency or percentage.
I The DecimalFormat allows us to format values based on a pattern.

I Two code code snippets that shows the usage of NumberFormat class
(Note that the import statement will be at the top of the Java source file):

I import java.text.NumberFormat;
NumberFormat fmt1 = NumberFormat.getCurrencyInstance();
double amount = 1150.45;
System.out.println("Amount: " + fmt1.format(amount));

I import java.text.NumberFormat;
NumberFormat fmt2 = NumberFormat.getPercentInstance();
double passRate = .8845;
System.out.println("Amount: " + fmt2.format(passRate));

I Example: Purchase.java

Chapter 3: Using Classes and Objects CS 121 33 / 43

Formatting Output (2)

I The DecimalFormat allows us to format values based on a pattern.
I For example, we can specify the number should be rounded to three digits

after the decimal point.
I Uses Half Even Rounding to truncate digits: round towards the “nearest

whole neighbor” unless both whole neighbors are equidistant, in which case,
round towards the even neighbor. See here for details: http://docs.
oracle.com/javase/8/docs/api/java/math/RoundingMode.html

I A code snippet that shows the usage:
import java.text.DecimalFormat;
DecimalFormat fmt = new DecimalFormat("0.###");
double amount = 110.3424;
System.out.println("Amount: " + fmt.format(amount));
//shows 110.342

I We can change the rounding mode with the setRoundingMode method:
fmt.setRoundingMode(RoundingMode.CEILING);
System.out.println("Amount: " + fmt1.format(amount));
//shows 110.343

Chapter 3: Using Classes and Objects CS 121 34 / 43

http://docs.oracle.com/javase/8/docs/api/java/math/RoundingMode.html
http://docs.oracle.com/javase/8/docs/api/java/math/RoundingMode.html

Formatting Output (3)

I Commonly used symbols in the pattern:

0 digit (int, short, byte)
digit, zero shows as absent
. decimal separator
, grouping separator (for large numbers)
E show in scientific notation

I Example: CircleStatsDecimalFormat.java
I In-class exercise What do the following patterns accomplish?

"##.###"
"00.###"
"###,###"
"000,000"

I We can set minimum and maximum limits on integer and
fractional digits. For more information, see the javadocs for
the DecimalFormat class.

Chapter 3: Using Classes and Objects CS 121 35 / 43

Formatting Output (4)

I The class Formatter from the java.util package provides an
alternative way of formatting output that is inspired by the printf
method in C language.
import java.util.Formatter;
Formatter fmt = new Formatter(System.out);
double area = 1150.45;
fmt.format("The area is %f\n",area);

I Here the %f is a conversion template that says to format the variable
area as a floating point number and insert in the output. Various
conversions are available for printing a wide variety of types.

I Convenience methods exist in the System.out object to use
Formatter class methods.
System.out.printf("The area is %f\n",area);

I We can also format a String object, which often comes in handy.
String output = String.format("The area is %f\",area);

I In each case, the underlying method used is the same.

Chapter 3: Using Classes and Objects CS 121 36 / 43

Selected printf Style Formatting Conversions

I Commonly used conversions:
%d decimal (int, short, byte)
%ld long
%f floating point (float, double)
%e floating point in scientific notation
%s String
%b boolean

I Some examples of variations on the default formatting:

%10d use a field 10 wide (right-aligned for numeric types)
%8.2f use a field 8 wide, with two digits after the decimal point
%-10s left justified string in 10 spaces (default is right justified)
I Note that if the output doesn’t fit in the number of spaces

specified, the space will expand to fit the output.
I Examples: CircleStatsFormatter.java,

CircleStatsPrintfTable.java, PrintfExample.java
Chapter 3: Using Classes and Objects CS 121 37 / 43

Wrapper Classes (1)

I The java.lang package contains wrapper classes corresponding to
each primitive type.

byte Byte
short Short
int Integer
long Long
float Float
double Double
char Character
boolean Boolean
void Void

I See below for the relationship between the wrapper object and the
primitive type:

I An object of a wrapper class can be used any place where we need to
store a primitive value as an object.

Chapter 3: Using Classes and Objects CS 121 38 / 43

Wrapper Classes (2)

I The wrapper classes contain useful static methods as well as
constants related to the base primitive type.

I For example, the minimum int value is Integer.MIN_VALUE
and the maximum int value is Integer.MAX_VALUE.

I Example: PrimitiveTypes.java
I For example, the parseInt method converts an integer stored

as a String into an int value. Here is a typical usage to
convert input from a user to an integer.
Scanner scan = new Scanner(System.in);
String input = scan.nextLine();
int num = Integer.parseInt(input);

Chapter 3: Using Classes and Objects CS 121 39 / 43

Wrapper Classes (3)

I Selected methods from the Integer class.

Integer(int value)
Constructor: builds a new Integer object that stores the specified value.

static parseInt(String s)
Returns an int value corresponding to the value stored in the string s.

static toBinaryString(int i)
static toOctalString(int i)
static toHexString(int i)

Returns the string representation of integer i in the corresponding base.

I Similar methods and many more are available for all the wrapper classes.
Explore the javadocs for the wrapper classes.

Chapter 3: Using Classes and Objects CS 121 40 / 43

Autoboxing

I Autoboxing is the automatic conversion of a primitive value to
a corresponding wrapper object.

Integer obj;
int num = 100;
obj = num;

I The assignment creates the corresponding wrapper Integer
object. So it is equivalent to the following statement.

obj = new Integer(num);
I The reverse conversion (unboxing) also happens automatically

as needed.

Chapter 3: Using Classes and Objects CS 121 41 / 43

Summary

I Understand the difference between primitive type variables and
reference variables.

I Creating and using objects.
I Using String, Math, Random, Scanner classes.
I Formatting output using NumberFormat, DecimalFormat and

Formatter classes.
I Wrapper classes and autoboxing: Byte, Short, Integer,

Long, Float, Double, Character, Boolean

Chapter 3: Using Classes and Objects CS 121 42 / 43

Exercises

I Read Chapter 3.
I Recommended Homework:

I Exercises: EX 3.2, 3.3, 3.4, 3.6, 3.7, 3.11, 3.12.
I Projects: PP 3.2, 3.3, 3.5.

Chapter 3: Using Classes and Objects CS 121 43 / 43

