
Chapter 2: Data and Expressions
CS 121

Department of Computer Science
College of Engineering
Boise State University

November 2, 2015

Chapter 2: Data and Expressions CS 121 1 / 56

Chapter 2

I Part 1: Data Types
Go to part 1

I Part 2: Expressions and Scanner
Go to part 2

Part 1: Data Types

I What is a data type?
I Character Strings

I Concatenation
I Escape Sequences

I Java Primitive Data Types
I Declaring and Using Variables

Go to index.

Chapter 2: Data and Expressions CS 121 3 / 56

What is a data type?

I Programs represent all kinds of data.
I What types of data might the following programs need to

represent?
I A calculator program.
I A word processor.
I An address book.

I A data type is a classification identifying various types of data,
such as real, integer, Boolean, words, etc.

Chapter 2: Data and Expressions CS 121 4 / 56

Character Strings

I A sequence of characters can be represented as a string literal
by putting double quotes around it.

I "This is a string literal." "So is this."
I What about the string literal? ""
I A character string is an object in Java, defined by the String

class.
I Every string literal represents a String object.
I See javadoc for String here: http://docs.oracle.com/

javase/8/docs/api/java/lang/String.html.

Chapter 2: Data and Expressions CS 121 5 / 56

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Printing Strings

I The System.out object represents a destination (the monitor)
to which we can send output.

I We can invoke the println and print methods of the
System.out object to print a character string.

I println – prints a new line character (’\n’) after the string.
I print – does NOT print a new line character (’\n’) after the

string.

I Example: Countdown.java

Chapter 2: Data and Expressions CS 121 6 / 56

String Concatenation (1)

I The string concatenation operator (+) appends one string to
the end of another.
"Peanut butter " + "and jelly"

I Allows strings to be broken across multiple lines.
"If this was a long string, we may want it on " +
"two lines so we can see it more easily"

I Also used to append numbers to a string.
"We will have " + 8 + " quizzes this semester."

Chapter 2: Data and Expressions CS 121 7 / 56

String Concatenation (2)

I The + operator is also used for addition.
I The function it performs depends on the context.

I String concatenation
I Both operands are strings.
I One operand is a string and one is a number.

I Addition
I Both operands are numeric.

I Example: Addition.java

I Precedence: evaluated left to right, but can use parenthesis to
force order (more about this later).

Chapter 2: Data and Expressions CS 121 8 / 56

Escape Sequences

I What if we wanted to actually print the " character??
I Let’s try it.

System.out.println("I said "Hello" to you");

I Our compiler is confused! Do you know why?
I We can fix it with an escape sequence – a series of characters

that represents a special character.
I Begins with a backslash character (\).

System.out.println("I said \"Hello\" to you");

Chapter 2: Data and Expressions CS 121 9 / 56

Some Java Escape Sequences

Escape Sequence Meaning
\b backspace
\t tab
\n newline
\r carriage return
\" double quote
\’ single quote
\\ backslash

Chapter 2: Data and Expressions CS 121 10 / 56

Using Java Escape Sequences

I Example: BlankOrDark.java
I Example: CarriageReturnDemo.java (must run from

command-line)

Chapter 2: Data and Expressions CS 121 11 / 56

Primitive Data Types

I There are 8 primitive data types in Java (varies in other
languages)

I Integers
I byte, short, int, long

I Floating point types
I float, double

I Characters
I char

I Boolean values (true/false)
I boolean

Chapter 2: Data and Expressions CS 121 12 / 56

Numeric Types

Type Space (#bits) Minimum value Maximum Value
byte 8 -128 127
short 16 -32768 32767
int 32 -2147483648 2147483647
long 64 -9223372036854775808 9223372036854775807
float 32 1.4E-45 3.4028235E38
double 64 4.9E-324 1.7976931348623157E308

I float has 6-9 significant digits
I double has 15-17 significant digits

Chapter 2: Data and Expressions CS 121 13 / 56

Initializing Numeric variable

I A decimal literal value is an int by default. To write a long
literal value, we have to use the L suffix.
int answer = 42;
long neuronsInBrain = 100000000000L;

I A floating point literal value is double by default. To write a
float literal value, we have to use the F suffix.
double delta = 453.234343443;
float ratio = 0.2363F;

Chapter 2: Data and Expressions CS 121 14 / 56

Characters

I A char stores a single character delimited by single quotes.
char topGrade = ’A’;
char comma = ’,’;
char tab = ’\t’;

I A char variable in Java can store any character from the
Unicode character set.

I Each character corresponds to a unique 16-bit number.
I The Character class supports the full Unicode Standard.

I English speakers typically use characters from the ASCII
character set.

I Older and smaller subset of Unicode (only 7-bits per
character).

I See Apendix C on page 951 of your textbook.
I http://en.wikipedia.org/wiki/Unicode
I http://en.wikipedia.org/wiki/ASCII

Chapter 2: Data and Expressions CS 121 15 / 56

http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/ASCII

Booleans

I Only two valid values for the boolean type: true or false.
I Reserved words true and false.

boolean done = false;
I Commonly used to represent two states (e.g. on/off)

Chapter 2: Data and Expressions CS 121 16 / 56

Review

What are the 8 primitive data types available in Java?
I Integers (byte, short, int, long)
I Floating Point (float, double)
I Character (char)
I Boolean (boolean)

How do we represent a sequence of characters?
I Strings (the String object).

Chapter 2: Data and Expressions CS 121 17 / 56

Declaring and Using Variables

I We know we can represent different types of data in our
programs using the data types we just discussed, but we need
a way to keep track of all of this data.

I Variables allow us to define and reference the data we use in
our programs.

Chapter 2: Data and Expressions CS 121 18 / 56

Java Identifiers

I Identifiers are words a programmer uses in a program.
I Consists of a combination of A-Z, a-z, 0-9, _, and $
I Can’t begin with digit.
I Case sensitive.

I Total, total, and TOTAL are different
I Good practice to use different case style for different types of

identifiers.
I title case for class names – Lincoln, HelloClass
I camel case for variables – count, nextCount
I upper case for constants – MAXIMUM, MINIMUM

Chapter 2: Data and Expressions CS 121 19 / 56

Reserved Words

I Reserved words are special identifiers that have pre-defined
meaning. They can’t be used in any other way.

I Some examples – public, static, void, class
I See page 7 (Chapter 1) in textbook for full list of reserved

words.

Chapter 2: Data and Expressions CS 121 20 / 56

Variables

I A variable is just a name for a location in memory.
I Variable names are identifiers. They must be unique.
I Variables must be declared by specifying a name and the type

of information it will hold.
String name;
int radius, area, circumference;

I When a variable is used in a program, the current value is used.

Chapter 2: Data and Expressions CS 121 21 / 56

Assignment

I An assignment statement changes the value of a variable.
I The assignment operator is the equals sign (=).

int radius;
radius = 10;

I The value on the right-hand side is stored in the variable on
the left.

I The previous value in radius is overwritten.
I Variables can also be initialized when they are declared.

int count = 0;
I The type of the right-hand side must be compatible with the

type of the variable.

Chapter 2: Data and Expressions CS 121 22 / 56

Assignment

I The right-hand side can be an expression.
I The expression will be evaluated first and then stored in the

variable.
radius = 10;
radius = radius * 2; // double the radius

I What is the new value of radius? 20

Chapter 2: Data and Expressions CS 121 23 / 56

Constants

I A constant is an identifier (similar to a variable) that holds the
same value during its entire existence.

I It is constant, not variable.
I The compiler will issue an error if you try to change the value

of a constant.
I In Java, we use the final modifier to declare a constant.
I We typically use all caps to name constants.

final int MAX_RADIUS = 1000;

Chapter 2: Data and Expressions CS 121 24 / 56

Why do we need constants?

I Readability – give meaning to arbitrary literals.
I Program maintenance – only need to change value once.
I Program protection – establishes that a value should not

change; less chance for error.

Chapter 2: Data and Expressions CS 121 25 / 56

In-class Exercises

I EX 2.2. What output is produced by the following code
fragment? Explain.

System.out.print("Here we go!");
System.out.println("12345");
System.out.print("Another.");
System.out.println("");
System.out.println("All done.");

I EX 2.4. What output is produced by the following statement?
Explain.

System.out.println("50 plus 25 is " + 50 + 25);
I PP 2.1. Create a revised version of the Lincoln application

from Chapter 1 such that quotes appear around the quotation.

Chapter 2: Data and Expressions CS 121 26 / 56

Part 2: Expressions and Scanner

I Expressions
I Data conversions
I The Scanner class for interactive programs

Go to index.

Chapter 2: Data and Expressions CS 121 27 / 56

In-class Exercises

I Which data type would you use to represent each of the
following items?

I The name of a restaurant.
I The maximum number of occupants a restaurant can hold.
I The current number of occupants.
I The price of a meal.
I Whether or not the restaurant is open.

I Write a variable declaration for each of the above items. Make
sure to give your variables descriptive names.

Chapter 2: Data and Expressions CS 121 28 / 56

Expressions

I An expression is a combination of one or more operators and
operands.

I We focus on arithmetic expressions that produce numeric
results.

Chapter 2: Data and Expressions CS 121 29 / 56

Arithmetic Expressions

I Arithmetic expressions use the arithmetic operators.

Addition +
Subtraction -
Multiplication *
Division /
Remainder (modulo) %

Chapter 2: Data and Expressions CS 121 30 / 56

Arithmetic Expressions and Data Types

I If any one of the operands used by an arithmetic operator is
floating point (float or double), then the result will be a
floating point.

I For example:
int radius = 10;
final double PI = 3.14159265358979323;
double area = PI * radius * radius;

I If both operands used by an arithmetic operator are floating
point, then the result will be a floating point

I If both operands used by an arithmetic operator are integer,
then the result will be an integer. Be careful!!

Chapter 2: Data and Expressions CS 121 31 / 56

Division and Data Types

I If both operands of the division operator are integers, then the
result will be an integer.

I This means we lose the fractional part of the result.
I For example, let’s assume we want to divide a wall into equal

sections.
int length = 15;
int sections = 2;
double newLength = length / sections;

I Let’s try this.
I How can we fix it?
I Data conversion – we’ll get to this soon.

Chapter 2: Data and Expressions CS 121 32 / 56

Remainder Operator (modulo)

I Given two positive numbers, a (the dividend) and b (the
divisor), a % n (a mod n) is the remainder of the Euclidean
division of a by n.

14 / 3 == 4 14 % 3 == 2
8 / 12 == 0 8 % 12 == 8

10 / 2 == 5 10 % 2 == 0
7 / 6 == 1 7 % 6 == 1
9 / 0 == error 9 % 0 == error

Chapter 2: Data and Expressions CS 121 33 / 56

Remainder Operator (modulo)

I Typically used to determine if a number is odd or even.
I How?

Chapter 2: Data and Expressions CS 121 34 / 56

Operator Precedence (Order of Operations)

I Just like in Mathematics, operators can be combined into
complex expressions.

result = total + count / max - offset;
I Operators have well-defined precedence to determine order of

evaluation.
result = total + count / max - offset;

4 2 1 3
I Expressions are evaluated from left to right in order of

operator precedence.

Chapter 2: Data and Expressions CS 121 35 / 56

Operator Precedence

Precedence Operator Operation Association
0 () parenthesis L to R
1 + unary plus R to L

- unary minus
2 * multiplication L to R

/ division
% modulo (remainder)

3 + addition L to R
- subtraction
+ string concatenation

4 = assignment R to L

See the full precedence table in Figure D.1 on page 956 of your
textbook.

Chapter 2: Data and Expressions CS 121 36 / 56

In-Class Exercise

I Determine the order of evaluation in the following expressions.

1) a + b + c + d + e

2) a + b * c - d / e

3) a / (b + c) - d % e

4) a / (b * (c + (d - e)))

Chapter 2: Data and Expressions CS 121 37 / 56

In-Class Exercise

I Determine the order of evaluation in the following expressions.

1) a + b + c + d + e
1 2 3 4

2) a + b * c - d / e
3 1 4 2

3) a / (b + c) - d % e
2 1 4 3

4) a / (b * (c + (d - e)))
4 3 2 1

Chapter 2: Data and Expressions CS 121 38 / 56

Order of Evaluations and Integer Division

I Expressions are evaluated from left to right in order of
operator precedence.

I This order can change the results of an expression, especially
where possible integer division is involved, which can easily
lead to bugs in code.

final double PI = 3.14159;
double radiusCubed = 1.0;
double volume1 = 4 / 3 * PI * radiusCubed;
double volume2 = PI * radiusCubed * 4 / 3;

I Does volume1 equal volume2?
I Example: Volume.java

Chapter 2: Data and Expressions CS 121 39 / 56

Expression Trees

I Evaluation order of an expression can also be shown using an
expression tree.

I The operators lower in the tree have higher precedence for
that expression.

I a + (b - c) / d +

a /

-

b c

d

Chapter 2: Data and Expressions CS 121 40 / 56

Assignment Operator

I The assignment operator has the lowest operator precedence.
I The entire right-hand side expression is evaluated first, then

the result is stored in the original variable.
I It is common for the right hand side and left hand sides of an

assignment statement to contain the same variable.
I count = count + 1;

Chapter 2: Data and Expressions CS 121 41 / 56

Increment and Decrement Operators

I The increment operator (++) adds one to its operand.
I The following statements produce the same result.
count++;
count = count + 1;

I The decrement operator (--) subtracts one from its operand.
I The following statements produce the same result.
count--;
count = count - 1;

I The increment ++ and decrement – operators have the same
level of precedence as the unary + and unary - operators.

Chapter 2: Data and Expressions CS 121 42 / 56

Postfix vs. Prefix

I The increment and decrement operators can be applied in
postfix form

count++; count--;
or prefix form

++count; --count;
I When used as part of a larger expression, the two can have

different effects. Use with care!!

Chapter 2: Data and Expressions CS 121 43 / 56

Assignment Operators

I Java provides assignment operators to simplify expressions
where we perform an operation on an expression then store the
result back into that variable.

I Consider the following expression.
num = num + count;

I We can simplify this using the addition assignment operator.
num += count;

I Java provides the following assignment operators.
I += (string concatenation or addition), -=, *=, /=, %=

Chapter 2: Data and Expressions CS 121 44 / 56

Data Conversion

I Sometimes we need to convert from one data type to another
(e.g. double to int).

I These conversions do not change the type of a variable, they
just convert it temporarily as part of a computation.

I Widening conversions. Safest. Go from small data type to
large one.

I e.g. short to int, int to double
I Narrowing conversions. Not so safe. Go from large data type

to smaller one. Must be used carefully as we can lose
information!

I e.g. int to short, double to int
I By default, Java will not allow narrowing conversions unless we

force it (shown later)
I int count = 3.14 ; //won’t compile!

Chapter 2: Data and Expressions CS 121 45 / 56

Data Conversions

I Assignment conversion.
I Promotion.
I Casting.

Chapter 2: Data and Expressions CS 121 46 / 56

Assignment Conversion

I Assignment conversion occurs when one type is assigned to a
variable of another.

I Only widening conversions can happen via assignment.
I For example:

double totalCost;
int dollars;
totalCost = dollars;

I The value stored in dollars is converted to a double before
it is assigned to the totalCost variable.

I The dollars variable and the value stored in it are still int
after the assignment.

Chapter 2: Data and Expressions CS 121 47 / 56

Promotion

I Promotion happens automatically when operators in
expressions convert their operands.

I For example:
double sum;
int count;
double result = sum / count;

I The value of count is converted to a double before the
division occurs.

I Note that a widening conversion also occurs when the result is
assigned to result.

Chapter 2: Data and Expressions CS 121 48 / 56

Casting

I Casting is the most powerful and potentially dangerous
conversion technique.

I Explicitly perform narrowing and widening conversions.
I Recall our example from earlier:

int length = 15, sections = 2;
double newLength = length / sections;

I Recall: If both operands of the division operator are integers,
then the result will be an integer. If either or both operands
used by an arithmetic operator are floating point, then the
result will be a floating point.

I By casting one of the operands (length in this case), we get
the desired result
double newLength = ((double) length) / sections;

Chapter 2: Data and Expressions CS 121 49 / 56

In-Class Exercise
Will the following program produce an accurate conversion (why or why not)?

/**
* Computes the Fahrenheit equivalent of a specific
* Celsius value using the formula:
* F = (9/5) * C + 32.
*/
public class TempConverter
{

public static void main (String [] args)
{

final int BASE = 32;

double fahrenheitTemp;
int celsiusTemp = 24; // value to convert

fahrenheitTemp = celsiusTemp * 9 / 5 + BASE;

System.out.println ("Celsius Temperature: " +
celsiusTemp);

System.out.println ("Fahrenheit Equivalent: "
+ fahrenheitTemp);
}

}

1. Yes.
2. Sometimes.
3. Nope.
4. I have no idea.

Chapter 2: Data and Expressions CS 121 50 / 56

The Scanner class

I Typically, we want our programs to interact with our users.
I The Scanner class is part of the java.util class library. It

must be imported.
import java.util.Scanner;

I It provides methods for reading input values of various types.
I A Scanner object can read input from various sources (e.g.

keyboard, file)
I See Java 8 API docs: http://docs.oracle.com/javase/8/

docs/api/java/util/Scanner.html

Chapter 2: Data and Expressions CS 121 51 / 56

http://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html
http://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

Using the Scanner

I Create a new Scanner object that reads from the keyboard.
Scanner scan = new Scanner(System.in);

I The new operator creates a new Scanner object.
I The System.in object represents keyboard input.
I After the object is created, we can invoke various input

methods it provides.

Chapter 2: Data and Expressions CS 121 52 / 56

Example

I Example: Convert TempConverter.java to interactive
program.

I Example: Echo.java

Chapter 2: Data and Expressions CS 121 53 / 56

Input Tokens

I By default, white space is used to separate input elements
(called tokens).

I White space includes
I Space characters (‘ ’)
I Tab characters (‘\t’)
I New line characters (‘\n’ and ‘\r’)

I The next, nextInt, nextDouble, etc. methods of the
Scanner class read and return the next input tokens.

I See Scanner documentation for more details.

Chapter 2: Data and Expressions CS 121 54 / 56

Example

I Example: GasMileage.java

Chapter 2: Data and Expressions CS 121 55 / 56

Exercises

I Recommended Homework:
I Exercises: EX 2.5, 2.7, 2.8, 2.9, 2.10 (a, b, c, d), 2.11 (e, f, g,

i, j).
I Projects: PP 2.3, 2.4, 2.8.

I Browse Chapter 3 of textbook.

Chapter 2: Data and Expressions CS 121 56 / 56

