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ABSTRACT

Parallel computing is the practice of employing several processors to solve a prob-
lem substantially faster than is possible on a conventional single-processor machine.
There are many applications that can benefit from parallel computing. However,
often the best sequential algorithms cannot routinely be converted to fast parallel
algorithms that make efficient use of processors. Generally, the design of fast and
efficient parallel algorithms requires techniques quite different from those used in the
design of sequential algorithms. Another benefit of designing parallel algorithms is
that it usually provides new insights into the problem that could lead to simpler or
better sequential algorithms. This dissertation presents new parallel algorithms for
performing multiple selections and multiple searches in sets. These problems arise in
many applications. The model of parallel computation used is the Exclusive-Read
Exclusive-Write (EREW) Parallel Random Access Machine (PRAM).

A fundamental problem, encountered in many applications, is merging two sorted
arrays to produce a single sorted array. We will introduce a technique called mul-
tiselection that captures the “essence” of merging. An efficient solution to the mul-
tiselection problem allows us to partition the merging problem so as to obtain an
optimal parallel algorithm for merging. The analysis of the number of comparisons,
performed by the parallel algorithm, also suggests an optimal sequential algorithm
for multiselection.

Next, we will use the partitioning as well as the chaining technique to design

parallel algorithms for search and multisearch on n x n matrices with sorted rows



and sorted columns. The amount of work done in our parallel algorithms matches
the best-known sequential time bounds. We also consider the more general problem
of searching in an m X n matrix with only the columns sorted. We obtain optimal
parallel algorithms that employ techniques quite different from those required for
searches in matrices with both rows and columns sorted. The execution times of
these algorithms have a non-trivial dependence on the rank of the required elements.
Searching in both kinds of sorted matrices has applications in diverse areas.

Finally, our multiselection and merging algorithms are employed, together with
the technique of tree contraction, to design a fast and efficient parallel algorithm,
first of its kind, for computing the value of the minimum-cost flow in series-parallel
networks. Our algorithm is not only optimal with respect to the best-known sequential

algorithm but it also suggests a simpler sequential algorithm.
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Chapter 1

INTRODUCTION

1.1 Motivation

Parallel computation is the practice of employing multiple processors to solve a prob-
lem substantially faster than is possible on a conventional single-processor machine.
Why do we need parallel computation? Because of fundamental physical limitations,
imposed by speed of light and device sizes, the processing speed of a single processor
machine is not expected to keep on improving at the same rate. Nevertheless, the need
for faster solutions to ever larger problems is growing rapidly. A viable alternative is
the exploitation of parallelism.

Just as the fastest cycle times are approaching the fundamental physical barriers,
we have new generations of parallel machines appearing with more mature technology.
Very large scale integrated (VLSI) circuit technology has advanced to the point that
is has become feasible to build systems with thousands of processors at a reasonable
cost. Most high-performance computation is already being targeted principally at the
exploitation of parallelism. There are many important applications that can bene-
fit from parallelism. But how can one design a fast parallel algorithm for a specific
application without having some algorithmic paradigms that can be followed? Unfor-

tunately, it turns out that often the best sequential algorithms cannot routinely be



converted into fast parallel algorithms. Generally, the design of fast and efficient par-
allel algorithms requires new techniques quite different from the design of sequential
algorithms. Another benefit of designing parallel algorithms is that it usually pro-
vides new insights into the problems that could lead to simpler or better sequential
algorithms.

In this dissertation, we will design parallel algorithms to perform multiple selec-
tions (multiselection) and multiple searches (multisearch) in structured sets that arise
in many applications. We will also see that multiselection and multisearch are good
building blocks for solving other important problems. In the process of designing par-
allel algorithms for these problems we will see the use of several general techniques.
We shall also have a chance to investigate if parallel algorithms can suggest simple
or even better sequential algorithms for the problems under consideration.

In the next section we will define the model of parallel computation that will be
used as well as mention some important issues in the presentation and the performance

of parallel algorithms. In the last section an outline of the dissertation is given.

1.2 Preliminaries

1.2.1 Parallel Random Access Machine

The Parallel Random Access Machine (PRAM) is a natural generalization of the
sequential model of computation. The PRAM consists of several processors and
a shared memory that each processor can access in unit time. Each processor is

uniquely identified by an index, called a processor number or a processor id. Thus,



a PRAM with p processors has processors numbered 1,2,...,p. All the processors
operate synchronously under the control of a common clock. The PRAM algorithms
that we will present are of the type single instruction multiple data (SIMD). That is,
all processors execute the same program and in a single time unit all active processors
execute the same instruction, but with different data in general.

There are several variations of the PRAM model based on the assumption re-
garding the handling of the simultaneous access of several processors to the same
location of the shared memory. The exclusive-read exclusive-write (EREW) PRAM
does not allow any simultaneous access to a single memory location. The concurrent-
read exclusive-write (CREW) PRAM allows simultaneous access for a read instruction
only. In the concurrent-read concurrent-write (CRCW) PRAM simultaneous access
to a location is allowed for both read and write instructions. There are different vari-
ations of the CRCW PRAM depending on how concurrent writes are handled. The
CREW PRAM is more powerful than the EREW PRAM and the CRCW PRAM is
the most powerful. For more details, see the book by JaJa [41], or the survey by Karp
and Ramachandran [44] and the references found there.

We will use the EREW PRAM model for all of the algorithms presented in
this dissertation. The EREW PRAM model is the least powerful PRAM model
and, arguably, the closest to real parallel computers. The PRAM model has gained
widespread acceptance for the design of parallel algorithms. The issue of modeling

parallel computation, however, is by no means a closed topic. For more discussion

see JaJa [41], Sanz [54], Valiant [60], and Vishkin [62].



1.2.2 Presentation and Performance of Parallel Algorithms

In the design of parallel algorithms, progress during the last decade has redirected
the research focus from an effort to classify problems that can be solved fast, that is,
in O(logk n) time on n' processors, where [ and k are constants (NC algorithms, NC
stands for Nick’s Class), to a growing body of research on how to design algorithms
that run fast but use processors efficiently. To discuss this issue, we need to first
define a few concepts.

Let P be a given problem and n be its input size. Denote the sequential complexity,
if known, of P by T*(n). Otherwise, let T*(n) be the worst-case time bound of the
best known sequential algorithm. Suppose we have a parallel algorithm that runs
in T'(n) time using P(n) processors. The time-processor product C'(n) = T'(n)P(n)
represents the cost of the parallel algorithm. The parallel algorithm can be converted
into a sequential algorithm that runs in O(C'(n)) time. If we have p processors, where
p < P(n), then we can have each processor simulate the P(n) processors in O(P(n)/p)
substeps. Overall the simulation takes O(C(n)/p) time.

A parallel algorithm is said to be cost-optimal it the total cost of the parallel
algorithm C'(n) equals T*(n). A parallel algorithm is said to be time-optimal if the
running time 7'(n) can be shown to be the fastest possible for the problem on the
model under consideration, usually by a matching lower bound on that particular
model. A parallel algorithm is said to be optimal if it is be both cost-optimal and
time-optimal.

An alternative way to describe PRAM algorithms is the Work-Time paradigm,

which is described in the book by JaJa [41]. The Work-Time paradigm provides



informal guidelines for a two level top-down description of parallel algorithms. At the
upper level, we describe the algorithm in terms of a sequence of time units, where each
time unit may include any number of concurrent operations. Suppose that the upper
level description results in a parallel algorithm that runs in 7'(n) time units while
performing a total of W(n) operations, where W(n) is called the work performed
by the parallel algorithm. Using the general Work-Time scheduling principle (also
known as Brent’s scheduling [17]), we can almost always adapt this algorithm to
run on a p-processor PRAM in < |W(n)/p| + T'(n) parallel steps. The success of
this principle depends on being able to calculate the number of operations performed
during each time unit and the allocation of each processor to the appropriate tasks to
be performed by that processor. For most problems, the allocation is straightforward,
but for some problems it may not be obvious.

Suppose we have a parallel algorithm that runs in time 7'(n) and uses a total of
W (n) operations. Then using the Work-Time scheduling principle this algorithm can
be simulated on a p-processor PRAM in O(W(n)/p + T'(n)) time and the parallel
algorithm is optimal if W(n) = T*(n) and T'(n) is as small as possible. The cor-
responding cost is O(W(n) 4+ pT'(n)) and the previous definition of cost-optimality
still holds. Note that W(n) < C(n) for any number of processors. The Work-Time
scheduling principle allows a succinct presentation of parallel algorithms that empha-

sizes structural parallelism in the problem.



1.3 Outline

The remainder of the dissertation is organized as follows.

In the next chapter, we first consider the problem of multiselection in two sorted
arrays and propose an efficient parallel algorithm on the EREW PRAM model. The
multiselection algorithm, based on a novel application of the technique of chaining, is
used as a building block for solving other problems. Next, we consider the problem of
merging two sorted lists, a fundamental problem in sequential and parallel comput-
ing. We propose an optimal parallel algorithm for merging using our multiselection
algorithm for partitioning the merging problem.

In Chapter 3, we look at the problem of search in sets that possess certain struc-
ture. In particular, we are interested in matrices with sorted rows and sorted columns
and matrices with sorted columns only. Searching in such matrices has received con-
siderable attention due to their application in statistics, operations research and com-
binatorics, among others. We first consider search and multisearch in matrices with
sorted rows and sorted columns, and Cartesian sets of the form X + Y where X
and Y are sorted arrays of size n, a special case of matrices with sorted rows and
sorted columns. Next we consider the more general case of multiple sorted arrays or
matrices with sorted columns. The algorithms for search and multisearch in matrices
with sorted rows and sorted columns use the techniques of partitioning and chaining
while for matrices with sorted columns we use the technique of accelerated cascading
and chaining.

In Chapter 4, the problem of finding the minimum cost of a feasible flow in directed

series-parallel networks with real-valued lower and upper bounds for the flows on edges



is addressed. The technique of tree contraction is combined with our multiselection
and merging algorithms to tackle the min-cost flow problem in parallel. Although
there have been some algorithms for the max-flow problem on restricted classes of
networks, there are no known efficient NC algorithms for the min-cost flow problem.
We will present one such algorithm in Chapter 4, which is optimal with respect to
the best known sequential algorithm.

The final chapter contains the conclusions and some open problems arising from

this dissertation.



Chapter 2

PARALLEL MULTISELECTION AND MERGING

2.1 Introduction

A fundamental problem that is used in many applications is the merging of two sorted
arrays to produce a single sorted array. There is a simple sequential algorithm for
merging two sorted arrays, which takes linear time in the length of the two arrays.
We are interested in merging substantially faster by using several processors together
on the EREW PRAM. However, designing a fast parallel algorithm for merging is
not at all obvious. We will introduce a technique of multiselection that captures the
“essence” of merging. A fast solution to the multiselection problem gives us an optimal
solution to merging. Multiselection and the techniques involved in its solution are
also useful for solving other problems in parallel. Interestingly, the parallel algorithm
for multiselection also suggests an optimal sequential algorithm for multiselection.
Formally, the problem of selection in two sorted arrays can be stated as follows.
Given two ordered multisets A and B of sizes m and n, where m < n, the problem is
to select jth smallest element in A and B. The problem can be solved sequentially
in O(log(min{j,m})) time without explicitly merging A and B [26, 32]. Finding
the median of A and B is a well-known special case of this problem. Multiselection,

a generalization of selection, is the problem where given a sequence of r integers
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1<K < Ky <...< K, <(m+n), all the K;th, 1 <@ < r, smallest elements in
A and B are to be found. In the rest of the chapter we use the term selection, for
convenience, to mean selection in two sorted arrays. Without loss of generality, we
also assume that the two arrays A and B contain no repeated elements.

First, we present a new sequential algorithm for selection in two sorted arrays
and then use it to develop a parallel algorithm for multiselection. The algorithm
uses 1 processors, on the EREW PRAM, to perform multiselection for the set of
queries {K1,..., K.} in O(logm + log T)J[ time, where we assume that m < n.
Next, we analyze the number of comparisons performed by the parallel algorithm for
multiselection.

We will show that an efficient solution for multiselection leads to an elegant par-
allel merging algorithm which is optimal in time and cost. The merging problem
is introduced in Section 2.5.1, where we also relate our work to previous results on
merging. The merging algorithm itself is presented and analyzed in Section 2.5.2.

The chapter ends with a summary.

2.2 Selection in Two Sorted Arrays

The median of 2r elements is defined to be the rth smallest element (the left
median), while that of 2r + 1 elements is defined to be the (r 4+ 1)th element. Finding
the jth smallest element can be reduced to selecting the median of the appropriate
subarrays of A and B as follows: When 1 < 7 < m and the arrays are in nondecreasing

order, the required element can only lie in the subarrays A[l..j] and B[l..5]. Thus,

For clarity in presentation, we use log z to mean max{1,log, z}.
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the median of the 25 elements in these subarrays is the jth smallest element. This
reduction is depicted as Case IIl in Figure 2.1. On the other hand, when m <
7 < [(m 4+ n)/2], the jth selection can be reduced to finding the median of the
subarrays A[l..m] and B[(j — m)..j], which is shown as Case | in Figure 2.1. When
J > [(m+n)/2], we can view the problem as that of finding the kth largest element,
where k = m 4+ n — 7 + 1. This gives rise to Cases Il and IV which are symmetric
to Cases | and III, respectively, in Figure 2.1. For Cases Il and IV, the median of 2r
elements is defined to be the (r 4 1)st element, which is the right median. From now
on, these subarrays will be referred to as windows.

The median can be found by comparing the individual median elements of the
current windows and suitably truncating the windows to half, until the window in A
has no more than one element. The middle elements of the windows will be referred

to as probes. A formal description of this median-finding algorithm follows.

procedure select_median(A[lowA, ..., highA], BllowB, ..., highB])
{ Alp] < Alp+ 1], lowA < p < highA, Aim+ 1] =
Blq] < Blg+ 1], lowB < ¢ < highB, Bln 4+ 1] = o0
highA — lowA < highB — lowB < highA — lowA + 1
[lowA, highA], [lowB, highB]: current windows in A and B
probeA, probeB : next position to be examined in A and B }

1. while (highA > lowA)

2. probeA «— | (lowA + highA)/2 |; sizeA «— (highA — lowA + 1)

3. probeB « | (lowB + highB)/2 |; sizeB « (highB — lowB + 1)

4. case (A[probeA] < B[probeB]) :

5. lowA « probeA; highB « probeB + 1

6. if (sizeA = sizeB) and (sizeA is odd) highB < probeB

7. (A[probeA] > BlprobeB]) :

8. highA < probeA; lowB « probeB

9, if (sizeA = sizeB) and (sizeA is even) highA « probeA + 1
10. endcase

11.  endwhile

12. merge the remaining (at most 3) elements from A + B and return their median

endprocedure
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When the procedure select_median is invoked, there are two possibilities: (i) the
size of the window in A is one less than that of the window in B (ii) or the sizes
of the windows are equal. Furthermore, considering whether the size of the window
in A is odd or even, the reader can verify (examining Steps 4 through 9) that an
equal number of elements are being discarded from above and below the median.
Hence, the scope of the search is narrowed to at most three elements (1 in A and
at most 2 in B) in the two arrays; the median can then be determined easily in
Step 12, which will be denoted as the postprocessing phase. The total time required
for selecting the jth smallest element is O(log(min{j,m})). With this approach, r
different selections, {K1,..., K.}, in A and B can be performed in O(rlogm) time.
Note that the information-theoretic lower bound for the problem of multiselection
is (m;"r) which turns out to be O(rlogm/r) when r < m and O(mlogr/m) when
r > m. A parallel algorithm for r different selections based on the above sequential

algorithm is presented next.

2.3 Parallel Multiselection

Let the selection positions be (K, Ks,..., K,), where 1 < K; < Ky < ... < K, <
(m+n). Our parallel algorithm employs r processors with the ith processor assigned
to finding the K;th element, 1 <: < r. The distinctness and the ordered nature of the
K;s are not significant restrictions on the general problem. If there are duplicate K;s
or if the selection positions are unsorted, both can be remedied in O(log ) time using

r processors [21]. On a CREW PRAM this problem admits a trivial solution, as each

processor can carry out the selection independently. On an EREW PRAM, however,
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this problem becomes interesting because the read conflicts have to be avoided. In the
following, we will outline how multiselections can be viewed as multiple searches in a
search tree. Hence, we can exploit the well-known technique of chaining introduced
by Paul, Vishkin and Wagener [53].

Let us first consider only those K;s that fall in the range [m + 1..[(m 4+ n)/2]],
that is, those for which Case I, in Figure 2.1, holds. All of these selections initially
share the same probe in array A. Let m < K; < K1 < ... < K < [(m +n)/2]
be a sequence of K;s that share the same probe in A. Following the terminology of
Paul, Vishkin and Wagener [53], we refer to such a sequence of selections as a chain.
Note that these selections will have different probes in array B. Let the common
probe in array A be z for this chain, and the corresponding probes in array B be
Y < Yie1 < ... < yp. The processor associated with K;th selection will be active for
the chain. This processor compares x with y; and y;,, and based on these comparisons

the following actions take place:

e = < y;: The chain stays intact.
e T >y

* & < yp: The chain is split into two subchains.

* x > yp: The chain stays intact.

Note that at most two comparisons are required to determine if the chain stays
intact or has to be split. When the chain stays intact, the window in array A remains
common for the whole chain. Processor P, computes the size of the new common

window in array A. The new windows in the array B can be different for the selections
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in the chain, but they all shrink by the same amount, and hence the size of the new
window in B and the offset from the initial window in B are the same for all the
selections. The two comparisons made by the active processor determine the windows
for all the selections in the chain (when the chain stays intact). The chain becomes
inactive when it is within 7 elements to compute the required median for all the
selections in the chain. The chain does not participate in the algorithm any more,
except for the postprocessing phase.

When a chain splits, processor P, remains in charge of the chain K, ..., Kjqyry/21-1
and activates processor pr(41)/21 to handle the chain Kygyny/a, ..., Kp. It also passes
the position and value of the current probe in array A, the offsets for the array B, and
the parameter h. During the same stage, both these processors again check to find
whether their respective chains remain intact. If the chains remain intact they move
on to a new probe position. Thus, only those chains that do not remain intact stay
at their current probe positions to be processed in the next stage. It can be shown
that at most one chain remains at a probe position after any stage. Moreover, there
can be at most two new chains arriving at a probe position from the previous stages.
The argument is the same as the one used in the proof of Claim 1 in Paul, Vishkin
and Wagener [53]. All of this processing within a stage can be performed in O(1)
time on an EREW PRAM, as at most three processors may have to read a probe.
One of the chains always comes from the left and the other comes from the right
while the chain that stays at a probe is always in the center. When a chain splits into
two, their windows in A will overlap only at the probe that splits them. Any possible

read conflicts at this common element can happen only during the postprocessing
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phase (which can be handled as described in the next paragraph). Hence, all of the
processing can be performed without any read conflicts.

At each stage a chain is either split into two halves or its window size is halved.
Hence after at most O(logm + logr) stages each selection process must be within
seven elements of the required position. At this point, each processor has a window
of size at most 3 in A and 4 in B. If the windows of different selections have any
elements in common, the values can be broadcasted in O(logr) time, such that each
processor can then carry out the required postprocessing in O(1) time. However, we
may need to sort the indices of the elements in the final windows in order to schedule
the processors for broadcasting. But this requires only integer sorting as we have r
integers in the range 1...n which can surely be done in O(log ) time [21]. Thus, the
total amount of data copied is only O(r).

Of the remaining selections, those K;s falling in Case II can be handled in exactly
the same way as the ones in Case I. The chaining concept can be used only if O(1)
comparisons can determine the processing for the whole chain. In Cases III and IV,
different selections have windows of different sizes in both the arrays. Hence, chaining
cannot be directly used as in Cases | and II. However, we can reduce Case 111 (IV) to 1
(IT). To accomplish this reduction, imagine array B to be padded with m elements of
value —oo in locations —m +1 to 0 and with m elements of value oo in locations n+ 1
to n 4+ m. Let this array be denoted as C' (which need not be explicitly constructed).

Selecting the jth smallest element, 1 < j < m+n,in A[l..m] and B[l..n] is equivalent
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to selecting the (j + m)th element, m +1 < (j +m) < 2m +n, in the arrays A[l..m]

and C[1..2m + n|. Thus, selections in Case III (IV) in the arrays A and B become
selections in Case I (II) in the arrays A and C.

For clarity of presentation, we have increased the window sizes in Case 111 (IV) to

m in array A and m + 1 in C. For efficiency, it is better to truncate array A and B

depending upon the maximum (minimum) value of a selection in Case III (IV) before

using the reduction. If all selection positions fall either in interval [1..m] (Case III) or

[n 4+ 1..n + m| (Case IV) then r selections can be performed by r processors in time

O(log(max{ﬁyirél[?.%m] K, m+1-— Kj_znei[rllmm]{]&'j —n}})).

Any selection in the interval [m..n] dominates the time complexity. In such a case,
we note that all of the selections in different cases can be handled by one chain with

the appropriate reductions. Hence we have the following result.

Theorem 2.3.1 Given r selection positions {Kq,..., K.}, all of the selections can

be made in O(log m + logr) time using r processors on the EREW PRAM.

2.4 Analysis of the Multiselection Algorithm

We want to analyze the number of comparisons required, in the worst-case, in the
parallel multiselection algorithm, since the number of comparisons dominates other
operations used in the algorithm. The estimation of the number of comparisons is

somewhat involved. First we prove the following lemma.
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Lemma 2.4.1 Suppose we have a chain of size v, r > 2. The worst-case number of
comparisons required to process the chain completely is greater if the chain splits at

the current probe than if it stays intact.

Proof: We can envisage the multiselection algorithm as a specialized search in a
binary tree with height O(logm). Let T'(r,l) be the total number of comparisons
needed, in the worst case, to process a chain of size r, which is at a probe corresponding
to a node at height [ in the search tree. We proceed by induction on the height of the
node. The base case, when the chain is at a node of height 1, can be easily verified.
Suppose the lemma holds for all nodes at height <! — 1. Consider a chain of size r
at a node of height [. If the chain stays intact and moves down to a node of height

[ — 1 then
Tr,l)y=T(r,1—1)+2, (2.1)

since at most two comparisons are required to process a chain at a node. If the chain
splits, one chain of size [r/2] stays at height [ (in the worst-case) and the other chain
of size |r/2] moves down to height [ —1. Then the worst-case number of comparisons

18,

T,y =T([r/2],1) + T([r/2],1 = 1) + 4. (2.2)
By the hypothesis and Eq. (2.2)
T(r,l—1)<T([r/2],l=1)+T(|r/2],l —2)+ 4. (2.3)

Thus, when the chain stays intact, we can combine Eq.s (2.1) and (2.3) to obtain

T(r, ) <T([r/2],l=1)+T([r/2],1—2)+6.
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Again, by hypothesis T'(|r/2|,1—1) > T(|r/2],1—2)+ 2 and we require at least one
comparison for a chain to move down a level. Hence T'([r/2],1) > T([r/2],{—1)+1
and the lemma holds. O
To determine the number of comparisons required in the multiselection algorithm,

we consider two cases. In the first case, when r < m, we have the following.

Lemma 2.4.2 [n the worst case, the total number of comparisons required by the

parallel multiselection algorithm for r selections is O(r(1 + log(m/r))), if r < m.

Proof: The size of the initial chain is r. Lemma 2.4.1 implies that the chain must
split at every opportunity for the worst-case number of comparisons. Thus, at height ¢
the maximum size of a chain is 7/2°,0 <7 < |log r|. The maximum number of chains
possible is r (with each containing only one element), which could be spread over the
first [logr| levels. From a node at height ¢, the maximum number of comparisons a
search for an element can take is ([logm] — 7) (for this chain at this node). Hence
the number of comparisons after the chains have split is bounded by
J

>_22)(Nlogm] —1), j = |logr]

1=0

which is O(r log m/r). We also need to count the number of comparisons required for
the initial chain to split up into r chains, and fill up [logr| levels. Since the size of a
chain at a node of height 7 is at most r/2¢, the maximum number of splits possible is
([logr] —%). Also, recall that a chain requires four comparisons for each split in the
worst-case. Thus, the number of comparisons is bounded by:

J

43_2(2)(Mlogr] —1), j = [logr]

1=0
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since there can be at most 2(2°) chains at level i. Thus, the number of comparisons
for splitting is O(r). O

Consider the second case, when r > m.

Lemma 2.4.3 If r > m, the parallel multiselection algorithm performs r selections

in O(mlog(r/m)) comparisons.

Proof: Using Lemma 2.4.1 and arguments similar to the ones in the proof of previous
lemma, we know that the maximum size of a chain is r/2° at height ¢. This chain
can split at most ([logr| — ¢) times. Hence the number of comparisons needed for

splitting is bounded by |log |

4 Z 2(2")([logr] — 1)
which is O(mlog(r/m)). After the chains have split, there may be at most O(m)
chains remaining. The number of comparisons required is then bounded by
[log m |
Z 2(2")([logm] —1¢) = O(m).
O

Note that in the preceding analysis, we need not consider the integer sorting used
in the post-processing phase of the multiselection algorithm as it does not involve any
key comparisons. The sequential complexity of our multiselection algorithm matches
the information-theoretic lower bound for the multiselection problem. The number of

operations performed by our parallel multiselection algorithm also matches the lower

bound if we have an optimal integer sorting algorithm for the EREW PRAM.
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2.5 Parallel Merging

2.5.1 Previous Results

Consider the problem of merging two sorted sequences A and B of length m and n,
respectively, where m < n into one sorted sequence on an EREW PRAM. Merging is
a fundamental non-numeric operation which frequently arises in many diverse appli-
cations. Our approach to parallel merging consists of identifying elements in A and
B which would have appropriate rank in the merged array. These elements partition
the arrays A and B into equal-size subproblems which then can be assigned to each
processor for sequential merging. We use our multiselection algorithm, presented in
Section 2.3, for selecting the desired elements, which leads to a simple and optimal
parallel algorithm for merging on the EREW PRAM. Thus, our technique differs from
those of other optimal parallel algorithms for merging on the EREW PRAM where
the subarrays are defined by elements at fixed positions in A and B.

First, we note that Snir’s results [57] imply that regardless of the number of
processors available, Q(log(m + n)) time is required to merge two sequences on the
EREW PRAM. On the CREW PRAM merging can be performed in O(1) time using
mn processors [56]. If the number of processors is restricted to O(nlog®n), for any
fixed ¢, then Q(loglog(m + n)) is a lower bound on the time [16]. In the following
discussion, we limit ourselves to algorithms for merging on the EREW PRAM.

Optimal parallel algorithms for merging in [7, 13, 38, 61] use different techniques to
essentially overcome the difficulty of multiselection. Bilardi and Nicolau [13] gave the

first optimal algorithm for merging on the EREW PRAM that runs in O(log(m +n))
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time using ((m + n)/log(m + n)) processors. The number of comparisons in their
algorithm is within a factor of 2 of the minimum that can be achieved by any al-
gorithm, even a sequential one. Hagerup and Riib [38] (as well as Anderson, Mayr
and Warmuth [7]) have later presented another optimal algorithm on the EREW
PRAM. Their algorithm is based on the CREW PRAM merging algorithm developed
by Shiloach and Vishkin [56]. In order to reduce the number of comparisons as com-
pared to Bilardi and Nicolau’s algorithm, their algorithm recursively calls itself once
and then uses Batcher’s merging [10] for merging two sub-sequences for partition-
ing. Also, in order to avoid read conflicts, parts of the sequences are copied by some
processors.

We show that the number of comparisons in our merging algorithm matches those
of Hagerup and Riib’s algorithm [38] and is within lower-order terms of the minimum
possible, even by a sequential merging algorithm. Moreover, our merging algorithm
uses fewer comparisons when the two arrays differ in size significantly.

Finally, we note that Akl and Santoro [5] and Deo and Sarkar [26] have used
selection as a building block in parallel merging algorithms. Their parallel merging
algorithms employ either sequential median or sequential selection algorithm. Even
though these algorithms are cost-optimal, their time complexity is O(log*(m +n)) on

the EREW PRAM.
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2.5.2 Parallel Merging using Multiselection

In this section, we give an formal description of our merging algorithm.

1. Find the ¢|log(m+n)|,¢=1,2,...,57 — Il(where j = [(m +n)/|log(m +n)]|]),
ranked element using multiselection. Let the output be two arrays R4[1..7] and
Rpl[l..5], where R[] # 0 implies that A[R4[7]] is the (¢|log(m 4 n)|)th element

and Rp[t] # 0 implies that B[Rp[¢]] is the (¢[log(m 4 n)|)th element.

2. Let R4[0] = Rp[0] =0, Ra[j] = m, Rplj] = n
fore=1,...,7—1do
if Rali] =0 then R4[i] = ¢ * |log(m + n)| — Rp[t]

else Rp[t] =1 * [log(m +n)| — Rat]

3. forz=1,...,5do

merge (A[Ralt — 1] + 1]..A[Ra[¢]]) with (B[Rg[t — 1] + 1]..B[R5[?]])-

The merging algorithm is illustrated with an example in Figure 2.2. Steps 1 and
3 both take O(log(m + n)) time using (m + n)/log(m + n) processors. Step 2 takes
O(1) time using (m + n)/log(m + n) processors. Thus the entire algorithm takes
O(log(m+mn)) time using (m+n)/log(m+n) processors, which is optimal. The total
amount of data copied in Step 1is O((m+n)/log(m+mn)), since r = (m+n)/log(m+
n), and compares favorably with O(m + n) data copying required by Hagerup and
Riib’s [38] merging algorithm. If fewer processors, say p, are available, the proposed
parallel merging algorithm can be adapted to perform p — 1 multiselections and will

require a total of O((m + n)/p + logm + log p)) time.
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1 2 3 4 5 6 7 8 9

A 13]5]7]14][17][19]3][27][29] m =9
——— —— T —— —
—N——
1 2 3 4 5 6 7 8 9 10 11 12
B 12[4][6]12][15]16]18]20]24]28[30(31] ,, = 12

p=5 (mtn)=21  [(m+n)/p =1

Ry [2]a]ofofs]  — 2[4]5]7]9]

Ry [ofo]7]o]12] — 2[4[7]9]12]
after Step 1 after Step 2

Figure 2.2.: An example to illustrate the parallel merging algorithm. In Step 1,
the 4th, 8th, 12th, and 16th smallest elements are selected. Step 2 completes the
partitioning and the corresponding sections (shown by braces) of the two arrays A
and B can then be merged independently.
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We are also interested in the number of comparisons required. Step 2 does not

require any comparisons and Step 3 requires less than m + n comparisons. The

estimation of the number of comparisons in Step 1, the multiselection, is somewhat
more involved.

To analyze the number of comparisons in the multiselection algorithm, we consider

two cases. In the first case, when r < m, where r = (m + n)/log(m + n), we have

the following result from Section 2.4.

Lemma 2.5.1 [n the worst case, the total number of comparisons required by the

parallel multiselection algorithm for r selections is O(r(1 + log(m/r))), if r < m.

In particular, Lemma 2.5.1 implies that, when m = 6(n), the total number of
comparisons for the merging algorithm is (m+n)4O(nloglogn/logn). This matches
the number of comparisons in the parallel algorithm by Hagerup and Rib [38]. When
one of the list is smaller than the other, however, we can show better results. Consider
the second case when r > m, where r = (m+n)/log(m+n), then we have the following

result from Section 2.4.

Lemma 2.5.2 If r > m, the parallel multiselection algorithm performs r selections

in O(mlog(r/m)) comparisons.

Hence, if (m 4 n)/log(m + n) > m, or m < n/logn approximately, then our

merging algorithm requires only

m-+n
0] log ——M8M8M
(m+n) + (m 08 mlog(m—}—n))
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comparisons, which is asymptotically better than that of Hagerup and Riib’s parallel
algorithm [38]. Note that in the preceding analysis, we need not consider the integer
sorting used in the post-processing phase of the multiselection algorithm as it does

not involve any key comparisons.

2.6 Summary

In this chapter, we presented an efficient parallel algorithm for r multiselections in
two sorted arrays A and B of sizes m and n respectively. The algorithm requires
O(log m + logr) time using r processors on the EREW PRAM and is based upon
the technique of chaining. Furthermore, we analyzed the number of comparisons
required by the multiselection algorithm and found it to be O(r(1 + log(m/r))) if
r < m and O(m(1 + log(r/m)) if r > m, which matches the information-theoretic
lower bound on the multiselection problem. As a result, running the parallel algorithm
sequentially provides us with an optimal sequential algorithm for multiselection. An
optimal sequential algorithm for multiselection algorithm is not easily obtained using
standard techniques for designing sequential algorithms. The number of operations
performed by our parallel multiselection algorithm also matches the lower bound if
we have an optimal integer sorting algorithm for the EREW PRAM.

As an application of multiselection we consider the problem of merging two sorted
arrays A and B on an EREW PRAM. The solution to the multiselection problem
provides us with an appropriate partitioning and leads to a simple and optimal algo-

rithm for merging in parallel using a novel approach. Our parallel merging algorithm

requires O(log(m + n)) time and O(m + n) cost on the EREW PRAM. We fur-
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ther show that the number of comparisons in our merging algorithm matches that of
Hagerup and Riib’s parallel merging algorithm [38] and is within lower-order terms
of the minimum possible, even by a sequential merging algorithm. Moreover, our
merging algorithm uses fewer comparisons when the two given arrays differ in size
significantly, that is, when m < n/logn approximately. Furthermore, our merging
algorithm does not use data copying to avoid read conflicts unlike some of the earlier

parallel merging algorithms.



Chapter 3

PARALLEL SEARCH AND MULTISEARCH IN SORTED

MATRICES

3.1 Introduction

Sets that can be represented as matrices with certain structure arise in many appli-
cations. In particular, we are interested in performing search and multisearch in such
sets. As instances of these sets, we consider matrices with sorted rows and sorted
columns, matrices with sorted columns as well as vector representation of matrices
with sorted rows and sorted columns. By vector representation, we imply Cartesian
sets of the form X + Y where the elements are x; 4+ y;, where z; € X,1 < < |X|
and y; € Y1 < 5 < |Y|]. If X and Y are sorted, then the resulting Cartesian
set is a special case of a matrix with sorted rows and sorted columns. Search and
selection in the above mentioned matrices have received considerable attention be-
cause of their applications in statistics, operations research and combinatorics, among
others [23, 24, 25, 32, 33, 34, 37, 42, 50, 61].

Because of the constraints placed on these sets, search (as well as selection) may
be performed in time sublinear in the cardinality of the set. For a sorted matrix, we

assume that each element may be computed as needed in constant time or is already

27
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available in the memory. In many applications, this is indeed the case. Hence, it is
possible to have sublinear-time algorithms for search and selection in sorted matrices.

Searching in X 4+ Y has many applications ranging from finding equal keys in
a file [45], which in turn has many applications, to efficiently solving NP-complete
problems (e.g. the knapsack problem [24, 31, 39]). Searching in sorted matrices has
applications in computational geometry [2]. Search in matrices with sorted rows and
sorted columns also arises in multiplying sparse polynomials, each given by an ordered
list of coefficient-exponent pairs [37].

In this chapter, we will present parallel algorithms for search and multisearch in
sorted matrices. For matrices with sorted rows and sorted columns the technique of
partitioning will play an important role while for matrices with sorted columns the
technique of accelerated cascading will be found useful. In both types of matrices
we will combine these techniques along with the technique of chaining. Since these
matrices are partial orders the technique of chaining alone does not seem to lead to

fast and efficient algorithms.

3.2 Search in Matrices with Sorted Rows and Columns

An n X n matrix M = {m;;} is a sorted matrix if each row and each column is in
nondecreasing order. The search problem is to determine whether a given element z
occurs in M or not. A related problem is of ranking the element z among the elements
of M. Sequentially, the problem can be solved in O(m +n) time [37]. Gries [37] refers
to this problem as “Saddleback Search”. The sequential algorithms, however, do not

seem to be easily parallelizable.
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3.2.1 Related Results

Sarnath and He [55] have recently proposed a parallel algorithm for the case of n x n
matrix (square) that leads to an optimal algorithm on the CREW PRAM requiring
O(loglogn) time and O(n) work. Let M; be the portion of M whose elements are
less than z and M, be the portion of the sorted matrix whose elements are greater
than z. Then, M; and M, share a staircase shaped boundary, with length at most
2n, running in the off-diagonal direction. Sarnath and He’s algorithm [55] runs in
O(log log n) iterations successively refining the known approximation to the staircase
shaped boundary until at most n submatrices of size 2 x 2 are left. The original
approximation is the whole matrix. They also show that no comparison based parallel
algorithm can solve the problem in time faster than Q(loglogn) using at most nlog®n
processors, where ¢ is a constant.

Matrices with sorted rows and sorted columns satisty the property of being totally
monotone. An n X m matrix M = {m;;} is totally monotone if for all : < k and
J <l my < my = my < mg. Aggarwal et al. [2] gave a sequential algorithm
for finding the row maxima of totally monotone matrices that requires ©(m) time
when m > n and ©(mlog2n/m) when m < n. Later, Aggarwal et al. [3] presented
an O(lognloglogn) time algorithm on the CREW PRAM using O(nlogn) work.
Atallah and Kosaraju [9] improved the algorithm to run in O(logn) time, with the
same amount of work, on the EREW PRAM model. These algorithms, however,
would be inefficient for searching in sorted matrices since they require O(nlogn)-

work and also are much more complicated than the algorithms we will present.
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Finally, we note that the upper triangular or the lower triangular halt of a sorted
matrix is also known as a bi-parental heap or a beap. A beap [51] is an implicit data
structure for which the cost of search, insert and delete is O(y/n) for a beap with
n elements. In contrast, search in a heap requires O(n) time. A beap resembles
a heap, but each node has two parents as well as two children. Thus, in a full
beap level ¢ has ¢ nodes. The upper triangular half of a sorted matrix also forms a
Young tableauz [45] and algorithms for search as well as many properties are described
in Knuth’s book [45]. Thus our search algorithms can also be used in these data

structures.

3.2.2 Parallel Search in Square Sorted Matrices

We can solve the problem of searching in an n X n matrix in O(n) time sequen-
tially using the simple algorithm shown in Figure 3.1. The algorithm traces a step
shaped boundary in the sorted matrix starting from the left-hand bottom corner. The

invariant of the algorithm is expressed by the following:

(1<i,j<n)A(z€M[1:i,j:n])

For the problem of ranking, we want to find the number of elements in matrix M
that are less than or equal to z. The algorithm shown in Figure 3.1 can be modified
easily to compute the rank as shown in Figure 3.2.

Cosnard, Duprat and Ferreira [24] have showed that Q(n) time is required to solve

the search problem on the sorted matrices. The proof is based on the observation that
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Algorithm 1: search(z,M)
{M][i,5] < M[e,5 + 1], 1 <i < n sorted rows
Mli, 7] < M[i 4 1,5], 1 <£j < n sorted columns }

te—mn, ) —1
while ((¢>1) and (j <n)) do
if (M[i,j] = z) then
return (i,j)
if (z < M[z,7]) then
te—1—1
else
J—7+1
endwhile
return unsuccessful search
end

Figure 3.1. Sequential algorithm for search in a sorted matrix M.

Algorithm 2: rank(z,M)
{MIi,j] < M[e,5 +1], 1 <7 < n sorted rows
Mi, 7] < M1+ 1,5], 1 <j < n sorted columns}

1+ mn,j 1, rank «—0
while ((¢>1) and (j <n)) do
if (z < M|z, 7]) then

te—1—1
else
J—7+1
rank — rank + 1
endwhile

end

Figure 3.2. Sequential algorithm for ranking in a sorted matrix M.
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the n off-diagonal elements M(n,1], M[n — 1,2],..., M[1,n] form an unordered list
and z could be one of them. This optimal sequential algorithm does not seem to be
easily parallelizable since each step depends upon the previous step. Sarnath and He’s
parallel algorithm [55] is based upon an entirely different approach. Their algorithm
can be modified to run on the weaker model EREW PRAM, but a straightforward
adaptation would lead to an algorithm that takes O(log nloglog n) time, which is not
optimal. We will modify their algorithm such that our algorithm runs in O(logn)
time and requires O(n) work, which is optimal. Our algorithm is based upon the
technique of partitioning the matrix into many small submatrices, eliminating all
but ©(nlogn) elements of the matrix M in the process. Then we simultaneously
apply the optimal sequential algorithm on each of the remaining submatrices. The
algorithm is described more formally in Figure 3.3. The correctness of the algorithm

is based upon the following lemmas.

Lemma 3.2.1 Only the elements retained in the submatrices at the end of each step

have to be examined in the next step in Algorithm 3.

Proof: Consider an element x that is above a submatrix defined in Step 1. Then
x is less than M p;, ¢;] and therefore less than z. Similarly, the elements below the

submatrix defined in Step 1 are greater than M[p;_1 + 1, ¢;_1] and z. O

Lemma 3.2.2 The submatrices at the end of the Step 2 are of size at most logn X

logn and there are ©(n/logn) such submatrices left.

Proof: Follows from the structure of the algorithm. a
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Algorithm 3: Parallel Search
begin

Step 1 For each column with index ¢; = ¢ x logn, where 1 = 1,2,...¢(= n/logn),
search the column ¢; for a row index p; such that M[p;,¢;] < z < M[p; + 1, ¢;].
(If z is equal to either of these elements the algorithm terminates.) For each ¢,
1 <17 < ¢, retain the elements within the submatrix M[p; +1,p;_1 : ¢i_1, ¢;] and
discard the rest.

Step 2 For each row with index r; = ¢ X logn, where i = 1,2,...t(= n/logn),
search the retained elements in the row r; for a column index ¢; such that
Mlri,q;]) < z < M[ri,qi + 1]. (If z is equal to either of these elements the
algorithm terminates.) For each ¢, 1 < i < 1, retain the elements within the
submatrix M[r;_1,r; : ¢; + 1, ¢;—1] and discard the rest.

Step 3 Assign one processor to each remaining submatrix and use the optimal se-
quential algorithm to finish the search.

end

Figure 3.3. Parallel algorithm for search in a sorted matrix.

Step 1 can be performed using n/logn processors, each doing a binary search in
the appropriate column in O(logn) time. Similarly, Step 2 can be done in O(log n)
time. In Step 3, there are O(n/logn) submatrices of size ©(log’n). Using the
optimal sequential algorithm Step 3 will also finish in O(logn) time. We can modify
the sequential algorithm that is run on each submatrix to compute its share of the
rank for the original matrix. At the end of Step 3 we just have to sum O(n/logn)
numbers in parallel, which can be done in O(log n) time using O(n/log n) work. Thus

we have the following result.

Theorem 3.2.3 Given an n X n matrizx M with sorted rows and columns and an

element z, the problem of searching for z in the matriz M as well as ranking can be

solved in O(logn) time using O(n) work on the EREW PRAM.
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3.3 Multisearch in Matrices with Sorted Rows and Columns

We will now consider the problem of performing multiple searches simultaneously
without any read conflicts on the EREW PRAM. We are given r elements z; <
z9 < ... < z, to search for in an n X n sorted matrix M. If these elements are not
sorted, they can be sorted in O(logr) time using r processors [21]. First we will
consider a preliminary algorithm where there is one processor assigned to search each
element. This parallel algorithm is based upon the technique of pipelining. Then we
will generalize the fast parallel algorithm for a single search (from Section 3.2) and
combine it with the simple pipelined algorithm to obtain a fast parallel algorithm for

multisearch in a sorted matrix M.

3.3.1 A Simple Pipelined Algorithm for Multisearch

Consider the sequential algorithm shown in Figure 3.1. The search follows a step
shaped path in the off-diagonal direction. In each step the search either moves up
one row or right one column. Let Py, P,, ..., P. be the r processors associated with
searching for corresponding elements z; < z; < ... < z,.. Then the path traced by
processor P while searching for z; is bounded below by the paths traced by processors
searching for larger elements z3 < z3 < ... < z,. Recall that the matrix is sorted in
nondecreasing order from top to bottom in each row and from left to right in each
column. However, segments of the step-shaped boundary may be common to two or
more searches as is shown next.

Let z; < z3 be two elements for which we have two processors P; and P, search-

ing. Consider the fragment of the matrix shown in the Figure 3.4 and suppose that
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Tij ——— Tij+l —— Tij42

Figure 3.4. Paths followed by two searches in a sorted matrix.

21 < xi41,; and 2 > x; ;. Then the search for z; ends up at z; ;41 in two steps starting
from x,41 ;. Suppose z; > x;41,; and 2z < 41 j4+1. Then the search for z; also ends
up at z; ;41 in two steps. From that point the two searches can either stay together
or z; goes up and z; goes to the right, that is, the two searches never cross paths
otherwise it implies that z; > z;. Thus delaying the search for z; by one step ensures
that there will be no read conflicts. By extending this argument for r processors, we

obtain an O(n + r)-time parallel algorithm for r searches on the EREW PRAM.

3.3.2 The Main Parallel Algorithm

The pipelined algorithm presented in previous section makes efficient use of proces-

sors but is not fast. In order to obtain a fast parallel algorithm we will generalize the
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parallel algorithm for a single search that was presented in Section 3.2. The general-
ized algorithm will use rn/logn processors and our goal is to solve all the r searches
in O(logn + logr) time.

First, let us examine the problem of multiple binary search in a single sorted array
of size n since we will be using that as a subroutine. Using the technique of chaining
Chen [20] has shown how to perform multiple binary searches efficiently. His result

is stated in the following theorem.

Theorem 3.3.1 (Chen [20]) Given a sorted array of size n, elements z; < z3 <

... < zp can be searched for in O(logn +logr) time using r processors on the EREW

PRAM.

Chen also gave another algorithm for multiple search that is more complicated

but optimal.

Theorem 3.3.2 (Chen [20]) Given a sorted array of size n, elements z; < z3 <

... < zp can be searched for in O(logn +logr) time using rlog(n/r)/logn processors

on the EREW PRAM.

Now we are ready to describe the parallel algorithm. In Step 1, for each col-
umn with index ¢; = ¢ x logn, where ¢ = 1,2,...,,¢(= n/logn) use the mul-
tiple binary search algorithm by Chen [20] using r processors to find row indices

pgj)7 7 =1,2,...,r such that

M[pgj)ﬂcz] < Zj < M[pfi—)hcz] J = 1,2,...77“.
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Since each column is sorted we can use the multiple binary search algorithm. At the
end of the search define submatrices as follows.
For each j, where 1 < 5 < r and for each 7, where 1 < i < ¢, retain the elements in
the submatrix M[pgj) + 1,p£‘i)1 : ¢i_1, ¢ and discard the rest.

In Step 2, for each row with index r; = ¢ x logn, where i = 1,2,...,,t(=n/logn)
use the multiple binary search algorithm by Chen [20] using r processors to search
for 21 < z3 < ... < z, in the retained elements in row r; for column indices (]Z(j)7 j=

1,2,...,r such that

?

Mri, ¢D] < z; < M[ri,¢¥ +1] j=1,2,...,r.

Since each row is also sorted we can use the multiple binary search algorithm. At the
end of the search define submatrices as follows. For each 5, where 1 < 5 < r; For each
i, where 1 < ¢ < t, retain the elements in the submatrix M[r,_1,7; : qz(j) +1, %@1] and
discard the rest.

In Step 3, each search has been narrowed down to O(n/log n) submatrices of size
at most logn x log n. However, each submatrix may have up to r searches still left in
it. Each such search has a processor associated with it and these processors will have
read conflicts if we allow them to search at the same time. Let r’ denote the number

of searches (processors) sharing a submatrix. Then depending upon the value of r/

we have the following three cases.
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Case I. 7’ = O(log n) . Then we can use the simple pipelined algorithm described in
Section 3.3.1. Since each submatrix is of size at most logn x logn the time required
is O(logn + r'), which is O(log n).
Case II. 7' = Q(log” n). Since the number of processors assigned to the submatrix
is larger than the number of elements in the submatrix we can afford to sort the
O(log® n) elements in the submatrix while retaining the original 7, j indices for each
element. Sorting the elements of the submatrix gives a sorted chain of O(log®n)
elements with at least one processor per element. Using the multiple binary search
algorithm the search can be finished in O(log r + log(log®n)) time.
Case III. logn < ' < log”n. In this case we don’t have enough processors to sort
all the remaining elements in the submatrix and we have too many searches to be
done in O(logn + logr) time using the simple pipelined algorithm. The idea is to
apply the algorithm recursively to each such submatrix. In Step 1, let t = \/logn
and let column indices be ¢; = ¢ x \/log n, where i = 1,2,...,t. Similarly take v/log n

rows and apply Step 2 appropriately. Now each remaining subsubmatrix has size at

most v/logn X \/logn. The number of searches left in each subsubmatrix is either
r" > logn = (y/logn)? and we can apply the solution from Case II or the number of
searches left v’ < logn and we can use the pipelined algorithm as in Case I.

Step 1 uses rn/log n processors and requires O(log n +log r) time using the result
from Theorem 3.3.1. Step 2 can be performed with the same time and processor
requirements. In Step 3, the time required depends upon what case the submatrix
falls in. For Case I the time is O(log n) while for Case II the time required is O(log r +

loglogn). In Case III the recursive application of Steps 1 and 2 requires O(log log n)
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time using /logn processors since we are searching in sorted rows and columns of
size logn. In the recursive application of Step 3 the time required depends upon
whether it is reduced to Case I or Case II. If the number of searches, ', left in the
subsubmatrix is less than logn then the time required is O(logn) using the simple
pipelined algorithm. Otherwise the time required is O(log r’ +loglog n), based on the

analysis for Case II. Thus we have the following result.

Theorem 3.3.3 Given an n X n matric M with sorted rows and columns and r
elements z1 < z9 < ... < z,, the problem of multisearch for these r elements in the

matriz M as well as ranking can be solved in O(logn + logr) time using O(rn) work

on the EREW PRAM.

Remark 1. The algorithm also requires that O(n/logn) copies of the r elements
be made, which can surely be done in O(logn) time using O(rn/logn) work using
recursive doubling on the EREW PRAM [41]. Note that the working space used per
processor is only O(1).

Remark 2. At the end of Steps 1 and 2 each processor knows which submatrix it
needs to search in and the set of processors that are assigned to the same submatrix are
consecutive. Thus identifying these processors and combining their searches can be
accomplished using the broadcasting algorithm for the EREW PRAM. Furthermore,
we can count the number of searches assigned to each submatrix and decide whether
Case 1, 11, or III applies in Step 3. All of these can be done in O(logr) time and
within the work bounds stated in Theorem 3.3.3.

Remark 3. The computation of ranks for the elements z; < 2z, < ...z, can be

done using the same approach as for a single search, since each group of processors
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allocated to a search have the ranks in the corresponding submatrices. In Case II,
however, the sorting process while it gives the rank of the element being searched for
among the elements of the submatrix but it does not identify which row or column in
the upper or right edge of the submatrix the search ends. We need this information
in order to compute the rank in the overall matrix. But we can search for the r
search-elements in the upper most row in O(log r +log log m) time using r processors.
Suppose the search for z; exits in the jth column. Then its rank is 7 — 1 times the
row index of the upper most row of the submatrix plus its rank in the submatrix.
Some of the searches may end up in the right edge. All of these will be greater than
the right most element in the upper most edge. For these elements the rank is log m

times the row index of the upper most row plus their rank in the submatrix.

3.4 Multisearch in X+Y

Let X = {z1,29,...,2,}, and Y = {y1,92,...,y,} be the two input vectors. Both
X and Y are sorted in increasing order. Given z, the search problem is to find a p
and ¢, if they exist, such that z = z, + y,. In the multisearch problem, we are given
r values, z1,...,2,, to search for, where z; < z3 < ... < z,. A lower bound of Q(n)
was proved for search in X +Y by Cosnard, Duprat and Ferreira [24]. An O(n)-time
sequential algorithm has been known under different contexts (e.g. Knuth [45]). The
sequential algorithm is almost identical to the one for a matrix with sorted rows and
columns, shown in Figure 3.1, except replacing z;; with x; + y;.

Cosnard and Ferreira [25] have presented parallel algorithms for search in X + Y.

One of their optimal parallel algorithms is based on merging. Using the relation
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that =, + y, = 2, we have z, = z — y, and thus, search in X 4+ Y is equivalent to
detecting common elements in X and z — Y. Their search algorithm uses merging to
detect common elements in X and z—Y and requires O(logn) time using O(n/ log n)
processors, if we use an optimal EREW PRAM merging algorithm such as the one
presented in Chapter 2. The merging involves unnecessary data movement, instead
if we could search for the elements of z — Y in X directly then the problem could
be solved without resorting to merging. Using the multiple binary search algorithm
from Chen [20] (which is based on the technique of chaining by Paul, Vishkin and
Wagner [53]) we can solve the problem of search in X + Y optimally on the EREW
PRAM using only O(m + n) space.

The idea of search in X 4+ Y can be extended to multisets of the form X; + X, +
...+ X,, where m > 2 and all the X; are sorted vectors of size n. The general
problem for any m and n is NP-hard as it contains the knapsack problem as a special
case. Cosnard, Duprat and Ferreira [24] give an O(mnl™/?logn)-time algorithm
with O(n[™/41) auxiliary space requirement using the basic X + Y algorithm. In
particular, they present an O(n?) algorithm for search in X +Y + W and leave as an
open problem if (n?) is the lower bound. Parallel algorithms for search in X + Y
can be used to solve the knapsack problem [31, 30].

We will consider the multisearch problem in X 4+ Y on the EREW PRAM. On a
CREW PRAM, this problem is easy to solve as read conflicts are allowed. But on
an EREW PRAM only one processor may access a memory location, which makes

the multisearch problem harder. A potential use of an multisearch algorithm is for
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solving the X + Y 4+ W search problem since search in X + Y + W can be posed as
a multisearch for z —wy,z —wy,...,z—w, in X +Y, where w; € W, 1 <1 <n.

We can’t directly use the multisearch algorithm presented for sorted matrices as
there would be many read conflicts. All processors accessing row ¢, for example, will
all be accessing x; and so on. But if we have rn/logn processors available we can
generate the r vectors z1 —y;, 29— y;, . .., 2, —y; where 1 <1 < n as well as r copies of
the vector X. This requires O(logn) time using rn/logn processors on the EREW
PRAM. Now we can use the parallel algorithm for search in X + Y on all r pairs
simultaneously. The total time required is O(log n) time and the work done is O(rn).

Note that the working space required is O(logn) per processor.

3.5 Search in Matrices with Sorted Columns

Matrices where only the columns are sorted present another useful structure for inves-
tigating search algorithms. An m X n matrix with sorted columns can be equivalently
viewed as m arrays of size n each since there is no order among the columns. We
are interested in searching for the given value z as well as computing the rank of
the value z. Let this rank be denoted by k. This problem was solved sequentially
by Frederickson and Johnson [32], and we will now sketch their optimal sequential
algorithm.

The optimal sequential algorithm consists of performing an one-sided binary search,
proposed by Bentley and Yao [12], on each column to find the insertion point in each
column. If the value z is found during this procedure then the search is done, otherwise

the one-sided binary search identifies an interval where the value may lie. This phase
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of the one-side binary search is just a linear search over the elements 1,2,4,8, ..., 2.
Next, ordinary binary search is used on this interval to either find the value or locate
the insertion point. Let the insertion point in the jth column be k;, where k; > 0.
In O(m) time, we can easily determine k;s that are non-zero and then carry out the
search only in those columns. Of course, if the rank & < m then at most k£ columns
will be selected. The time required for search in each column is O(log k;) and, if

p = min{k,m}, the total time required by the algorithm is

S log ky = log(k ks -+ ) < log(k/p)? = O(plog(k/p)).

J=1

Frederickson and Johnson [32] also proved a corresponding lower bound. There is no
reported parallel algorithm, to the best of our knowledge, for search or multisearch
on matrices with sorted columns.

For ease of exposition we consider two cases:(i) the rank & < m, and (ii) the rank
k > m. In the first case, the time taken by the optimal sequential algorithm is O(m)
and in the second case the time taken is O(mlog(k/m)). In the extreme case when
k = ©(mn), the time taken is O(mlogn). Note that the partitioning technique used
for designing parallel algorithm for matrices with sorted rows and sorted columns is
not applicable here since the rows are not sorted. Straightforward approaches like
using m processors and performing a binary search in each row in O(logn) time is
fast but not cost-optimal except in the extreme case of the rank being ©(mn). If the
rank of the element z is less than n then we could improve the cost of this approach

slightly to O(mlog k) by using the one-sided binary search in each row. But that is
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still not cost-optimal as many processors will idle in rows where the one-sided search
ends much sooner than other rows. We will attempt to develop a cost-optimal parallel
algorithm by reducing the number of processors to m/log m.

Consider the first case, when k& < m. Since we have m/logm processors the
natural approach seems to be to divide the columns into blocks of logm columns
and assign one processor to perform the one-sided binary search in each block of
rows. Since there is no relative ordering among the rows, all of the search may be
concentrated in one or a few blocks leading to little or no improvement. Instead
we will use the idea of accelerated cascading of two algorithms, one cost-optimal but
relatively slow, the other fast but not cost-optimal. The main idea is to proceed
with the one-sided binary searches in parallel in each column till the number of
unterminated searches is O(m/log m) and then to switch to the fast algorithm where
one processor is assigned to each of the O(m/logm) remaining columns.

Initially the first element in each column is examined in O(logm) time using
m/log m processors. This is the first step of the one-sided binary search in each
column. Now let r; be the number of unterminated searches. The algorithm proceeds
in two phases.

Phase I. In each iteration use m/logm processors to simulate one step each of the
linear search part of the one-sided binary search, that is, examine elements at positions
2,4,8,...,2" in each column. This requires r;/(m/ log m) steps where r; is the number
of unterminated searches before iteration . Continue this phase until r; < m/log m.

At this point the number of unterminated searches is less than or equal to the number
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of processors, Thus, each processor can finish the one-sided binary search taking no
more than O(logm) time.

Phase II. Reallocate the processors to the remaining intervals identified in Phase |
such that each processor finishes the search in a section of O(log m) elements, possibly
spanning several columns.

At the end of Phase I we have either found the rank k; of the element z in the
jth column or have identified an interval to which the element z belongs. The size of
the interval is < 2k; where k; is the rank of element z in column j. The total size of
these intervals is O(k) and there could be as many as O(k) such intervals. However,
the size of any one interval could be as much as 2k.

Since the rank & < m the number of unterminated searches after initialization,
r1, is less than m. In iteration ¢ of Phase I the 2ith element is examined in each
of the r; columns where the search has not been terminated. Thus the value of
r; < m/2', otherwise we are examining elements with rank greater than m > k.
Phase I ends when r; < m/2" < m/logm, which implies that the number of iterations

is O(loglog m). Furthermore the total work done during Phase I is given by

log 1
ogogmm

> 5 = 0(m)

=1

in the case when k = m and O(k) if k¥ < m. In each iteration, however, the m/logm
processors have to be reassigned to those columns where the one-sided binary search
hasn’t finished. This processor scheduling and assignment requires a parallel prefix

operation to compact the list of columns where the search has not yet finished. The
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parallel prefix can be computed in O(logm) time using O(m) work [46]. Thus the
overall time for Phase I is O(log m loglog m).

For implementing Phase 11 we construct two arrays WT'[1..m], where WT[j] is the
number of elements left in the interval identified in the jth column, and POS[1..m],
where POS(j] is a two tuple identifying the start and end of the interval in the jth
column that still has to be searched. Note that the sum of the values in the array
WT is O(m), since k < m, and is otherwise O(k). In Phase II we want to divide
these O(m) elements equally among the m/log m processors for finishing the search.
The Phase II can be performed as follows.

Phase II.a Compute the parallel prefix of the array WT'[1..m].

Phase I1.b Perform multisearch for ¢ x log m, where 1 < ¢ < m/logm in the array
consisting of the partial sums for array WT'[1..m]. The result of the multisearch are
column indices.

Phase Il.c Let the ith processor, where 1 < ¢ < m/logm, use simple linear search
in its section of size O(log m) and, if desired, compute the rank.

All of these steps of Phase II can be finished in O(logm) time using O(m)
work. Overall the algorithm requires O(log m loglog m) time, but since we are using
m/ log m processors the cost is not optimal. Since the total work done is only O(m) we
can use Brent’s Scheduling and reduce the number of processors to (m/ log m log log m)

and then the time required for Phase I would be

loglogm

O(logm >

=1

log log m

5 ) = O(log mloglogm)
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Phase II will also require O(log mloglogm) time using m/log mloglog m proces-

sors. Thus we have the following result.

Theorem 3.5.1 Given an m X n matriz with sorted columns, a value z, with rank

k < m, can be searched for and its rank k computed in O(logmloglogm) time and

O(m) work on the EREW PRAM.

Now we will consider the algorithm for the case when the rank &£ > m. Note that
we will detect that this is the case at the end of Phase I by summing up the weight
array WT'. Consider iteration ¢ in Phase 1. If the one-side binary search is active in all
columns then we have examined 2'm elements already. This can continue as long as
2'm < k, that is, the number of iterations is O(log(k/m)). In each iteration we need
O(log m) time to compact the list of unfinished searches using parallel prefix. Thus the
overall time for this part of Phase I is O(log mlog(k/m)) using m/logm processors.
For the rest of Phase I of the algorithm, we need to distinguish between two cases: (i)
when k/m >logm, and (ii) k/m < logm. If k/m > logm then in the next iteration
there are at most O(m/log m) unfinished one-sided searches. These can be done in
O(log n) time, in the worst-case, using O(mlogn/log m) work, which in this case is
still O(mlog(k/m)). In addition, we will also have computed the rank of the element
z in these columns. If k/m < logm then we may need another O(log log m) iterations
to finish the Phase 1. So Phase I requires O(log m log log m + log mlog(k/m))) time
in this case and the work is O(mlog(k/m) + m).

In Phase IT we may have one interval each left in some of the columns after the
one-sided binary search. The total number of elements in these intervals is given by

Ty WTy], which is less than 2k. If k/m > logm then the size of any interval
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is O(k/m). Assigning one processor to logm columns finishes the search and the
computation of the rank in O(log mlog(k/m)) time. If, however, k/m < logm then
the size of the intervals in each column could be as much as O(log m) and the above
approach leads to a time of O(log mloglogm) with O(mloglogm) cost, which is not
optimal. Cost-optimality can be achieved by the following method. The sum of the
entries in the WT' array provides us with an estimate on the value of the rank &, let
this be &’. Take the first &'/m elements from each interval and use one processor to
search log m columns in O(log mlog(k/m)) time and optimal cost. Now the number
of elements remaining are O(m) and we can use the same approach as use in the case
where rank & < m. This can be done in O(log m) time with O(m) work.

Overall the algorithm runs in O(log mlog(k/m) + log mloglog m) time and
O(mlog(k/m)) work. Applying Brent’s Scheduling we can use m/logmloglogm

processors and the resulting algorithm is cost-optimal for all values of the rank £.

Theorem 3.5.2 Given an m X n matriz with sorted columns, a value z can be
searched for and its rank k computed in O(logmloglogm + logmlog(k/m)) time

and O(m + mlog(k/m)) work on the EREW PRAM.

3.6 Multisearch in Matrices with Sorted Columns

The problem of multisearch consists of ranking the elements z; < 2o < ... < z, in
the m x n matrix M with sorted columns. To avoid confusion we will identify the
elements z1, ..., z, as the search-elements and the elements of the matrix M as merely

elements. The number of search-elements, r, is assumed to be between 1 and mn.



49
First we will consider sequential algorithms for the problem of multisearch that are
sensitive to the number of search-elements and to the rank of the search-elements.
Then we will present the parallel algorithm for multisearch in matrices with sorted

columns.

3.6.1 Sequential Algorithm

Initially we can sort the first row of the matrix M in O(mlogm) time and then merge
the elements z1,..., 2., in O(m + r) time, with the sorted row in order to determine
which columns are to be searched. Now we can search for each element separately.

The total time required by this simple approach is

O(mlogm +r + Z mlog(K(i)/m)),

=1

where K is the rank of the ith element z;.

We can improve the above sequential algorithm as follows. First search for the
largest element z, so that we have a bound on how far to search for the rest of the
elements in each column. This requires O(mlog(K)/m)) time, where K() is the
rank of the element z,. Let the rank of the element z, in column j be K](-T). Note that
since z1 < z3 < ... < z,, we have to only search elements at indices no more than
KJ(-T) in column j.

In addition we also have to determine in what columns we should search for each
of the elements, which is first step of the one-sided search. If the number of elements

r is very small then we could just check one at a time in O(rm) time. Otherwise we
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can first sort the matrix elements in the first row and then use the multiple binary
search algorithm [20] to search for the r elements in the m sorted elements of the first
row. If r < m, then the total time for this initial step is O(mlogm + rlog(m/r)),
which is O(mlogm). Otherwise, if r > m, we can search for the m sorted elements
in the r given elements in O(mlogm + mlog(r/m))-time.

After the one-sided binary search for z, ends we have identified a set of elements
of size at most O(m) if the rank of z, is less than or equal to m. In this case we can
merge the remaining r — 1 search-elements with at most O(m) elements identified
during the search for z, and we would have the ranks for all the search-elements.

In all other cases we use the optimal sequential algorithm for multiple binary
search presented by Chen [20] on each column where the elements may be found.
This algorithm requires O(rlog(K; /r)) time for searching r elements in a sorted

-(r)

column of size K;’. Thus the total time for the algorithm is now

Zrlog )/7“)

which can be simplified to O(rm log(K ") /mr)).
In case the number of elements r is greater than n or K(") < rm, we can change
the search around such that we are searching for the elements of the column in the r

given elements. The time-complexity then becomes

f:[ log( r/[& ))

J=1
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which can be simplified to

O(K" log(rm/K™)).

Note that the value of K" > m for this case and the value of r > n. These results

are summarized in the next theorem.

Theorem 3.6.1 Given r search-elements, zy < zy < ... < z., to search for in an
m X n matriz M with sorted columns, the time-complexity of the sequential algorithm

is:
1. 1 <r <logm:
(a) KU =0O(m): O(rm).
(b) K = Q(m) and K" < rm: O(rm + K@) log(rm/[s’(’"))).
(¢) K" =Q(m) and KU > rm: O(rm + rmlog(K") /rm)).
2. logm < r <m:

(a) KU =O(m): O(mlogm).

(b) KO =Q(m) and K < rm: O(mlog m+mlog(K") /m)+K ) log(rm/K"))).

(¢) KO =Q(m) and K > rm: O(mlog m+mlog(K") /m)4+rmlog(K" /rm)).

3 m<r<n:

(a) KU < rm: O(mlogr + mlog(K") /m)+ K log(rm/K®)).

(b) KO >rm: O(mlogr + mlog(K"/m) + rmlog(K™) /rm)).

4. n<r<mn:O(mlogr+ K log(rm/]((’"))).
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TABLE 3.1

VARIOUS CASES FOR THE SEQUENTIAL TIME-COMPLEXITY OF THE
MULTISEARCH ALGORITHM

number of searches | maximum rank time-complexity
KU = 0(m) O(rm)
1 <r<logm
K = O(mn) O(rm + rmlog(n/r))

KU = 0(m) O(mlogm + rlog(m/r))
logm <r <m
K = ©(mn) O(mlogn + rmlog(n/r))
K = 0(m) not possible since r > m

m<r<n
K = ©(mn) O(mlogn + rmlog(n/r))
KU = ©(m) | not possible since r > n > m

n<r<mn

K = ©(mn) O(mlogr + mnlog(r/n))

The time-complexity for the extreme cases of the rank K ) being ©(m) and ©(mn)

is illustrated in Table 3.1.

3.6.2 Parallel Algorithm

The parallel algorithm for multisearch is also based upon the how many elements we
want to search for. Initially we run the parallel algorithm for single search and find
the largest search-element z, and its rank K" as well as its rank in each column,
[’J(-T), 1 <3 < m. The time taken depends upon the rank of z.. Let us first consider
the case K") < m, which also implies that » < m since all the search-elements are

distinct. Similar to the sequential algorithm proposed in the previous section, two

cases have to be examined separately.
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It 1 <r <logm then after execution of the Phase Il.a and IL.b of the parallel
algorithm for a single search we have identified a total of O(m) elements within
sections [1... K](T)], 1 <5 < m. Phase IL.b for a single search also identifies sections
of size O(logm), but now we may have multiple processors searching within these
sections. Since r < log m, we can simply pipeline the r searches through the section
in time O(r + logm) or equivalently O(log m) making the total work O(rm). Thus
we have O(log m log log m) time algorithm that performs O(rm) work. Similar to the
single search, we can apply Brent’s Scheduling and reduce the number of processors
to rm/log mloglogm and keep the same running time.

If logm < r < m then after searching for z,, we can simply merge the O(m)
elements with the r search-elements in O(log m) time using m/log m processors and
thus compute all the ranks. The total time is then O(logmloglogm) and the total
work is O(mlogm).

Now we will consider the case when the rank K() > mlog m, similar to the parallel
algorithm for a single search. At the end of the one-sided binary search for the search-
element z, we have narrowed the search to m/ log m columns in O(log m log(K ") /m))
time and O(mlog(K")/m)) work. At this point we will finish the search in these
m/logm columns and know the rank of the search-element z, in these columuns.
Thus we can perform multisearch for the rest of r — 1 search-elements in O(logr +
max;{log ]&’;T)})—time and the work performed is no more than that of the sequential
algorithm. After this phase we still have to go back and complete the search in the
intervals identified during the initial one-sided search. In this case we will assign r

processors to log m columns to the intervals identified by the search for the element z,.
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From earlier arguments we know that the size of these intervals is O(K") /m). We will
use the multisearch algorithm by Chen [20], which was summarized in Theorem 3.3.2.
The multisearch in one column requires O(log(K ") /m)+log r) time leading to overall
time of O(log m(log( K" /m) +logr)). If K")/m < r then we can instead search for
the at most K(")/m sorted elements of a column in the r search-elements and the
algorithm has the same cost as the sequential algorithm discussed in the previous
subsection.

The other case to be considered is when n < r < mn. Then we use the multisearch
algorithm to search for the elements of the column in the r search-elements. The
time is same as the previous case and the work done is the same as in the sequential
algorithm. Finally, when the rank K () is less than m log m, only in the case 1 < r <
log m, then we can split the elements as done in the case for the parallel algorithm
for single search and then apply the two methods proposed above on parts of the

problem.

3.7 Faster Parallel Search in Matrices with Sorted Columns

The parallel algorithm for searching in a matrix with sorted columns presented earlier
can be made to run asymptotically faster while maintaining cost-optimality. The
algorithm in this section is inspired by the ideas contained in the paper by Bentley
and Yao [12] on unbounded searching. Bentley and Yao present a series of algorithms
for searching in an unbounded sorted array for an element with rank n. Their ultimate

algorithm requires the following number of comparisons:
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logn + log@) n + log(?’) n4+...+2 log(q) n+1,

where log(q) is the log function applied ¢ times to n. The value ¢ is chosen such that
q= minq{log(q) n < 1}, that is, ¢ = O(log™ n). If we use the simple unbounded search
then the number of comparisons is (2logn + 1), which differs from the ultimate
algorithm only by a constant factor. Surprisingly, when we apply these ideas to
searching in matrices with sorted columns the time will be asymptotically faster.
Recall that we examine elements at index at most log m before the number of
searches is definitely reduced below m/logm. Thus we can take our n = logm.

Instead of examining indices 1,2,...,2" we will instead examine indices as follows:

2,22 2% . 2%
and thus the number of iterations is log*(logm). After the one-sided search ends
we have identified an interval. Within this interval we will now use ordinary binary
search but over sparsely situated elements. First time we will examine only log(q) m
elements and then log“™" m elements and so until the last stage when we examine at
most log m elements per column. Thus there are ¢ stages where ¢ = O(log™(log m)).
Suppose that the rank of the element being searched for is & < m. Then in
each iteration the number of unfinished searches is much less than half of that in the
previous iteration. Therefore the O(log™(log m)) iterations of the first stage can be im-
plemented in O(log mlog*(log m)) time and O(m) work. In order to finish the search
we have to successively refine the interval until we are left with O(m) elements. This

is accomplished by the nested binary searches mentioned in the previous paragraph.
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The number of such searches is O(log™(log m)). We will show that the number of ele-
ments examined in the ith nested binary search is no more than m/2', thus showing
that the overall work is O(m) and the time required is O(log m log™(logm)).

Let the rank of the element in column j be k;. First we observe that

3" log ks = O(m log(k/m)),

i=1

which is O(m) (since k < m). This is the case in the last stage. In the nested search

in the stage before that the total number of elements examined is

S loglog by < 3 (log &5)/2 = O((m log(k/m)/2)).

J=1 J=1

or O(m/2). Similarly in the gth nested search before the last stage the the total
number of elements examined is O(m/2?). Thus we can search for a element with
rank £ < m in O(log mlog™(logm)) time and O(m) work.

When the rank £ > mlogm, then the number of iterations in the first stage is
O(log™(k/m)) and the overall time is O(log m log™(log m)log(k/m)) if we are using
m/ log mlog™(log m) processors. When the rank is intermediate then we can use the
strategy used before in Section 3.5 and obtain the time O(log m log™(log m) log(k/m)+

log mlog™(logm)) with O(m 4+ mlog(k/m)) work.
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3.8 Summary

In this chapter, we have presented parallel algorithms for search and multisearch in
sorted matrices. First we presented an O(logn)-time parallel algorithm using O(n)
work for searching and ranking in an n X n matrix with sorted rows and sorted
columns. The algorithm required the technique of partitioning. This algorithm to-
gether with the technique of chaining then served as a basis for the design of a parallel
algorithm for multisearch in the n x n matrix with sorted rows and sorted columns.
The multisearch algorithm for r searches runs in O(logn + logr) time and O(rn)
work, which matches the best known sequential time. These algorithms are quite
different from their sequential counterparts. Then we also briefly considered the use
of chaining to design parallel algorithm for search in X 4+ Y where both X and Y are
sorted vectors implicitly representing a sorted matrix.

The second part of the chapter dealt with search in m X n matrices with sorted
columns or equivalently search in m sorted arrays of size n each. Since there is no
relative order of the elements in the rows of such a matrix the technique of partition-
ing is not applicable. Furthermore the parallel as well as the sequential algorithm
are sensitive to the rank of the search-element. We proposed a cost-optimal algo-
rithm that runs in O(log mloglogm) time for small elements (with rank < m) and
in time O(logm loglogm log(k/m)) for large elements. This algorithm uses the
technique of accelerated cascading. Then we presented a sequential algorithm for
multisearch in a matrix with sorted columns as a prelude to the parallel algorithm.
The sequential algorithm is inspired by the parallel technique of chaining. The par-

allel algorithm follows this sequential algorithm and has a nontrivial dependence not
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only on the ranks of the search-elements but also on the number of search-elements.
Finally we show how to adapt ideas from Bentley and Yao’s [12] classic paper on
sequential unbounded searching and improve the search algorithm for small elements
to run in O(log mlog™(logm)) time with optimal work and for large elements in

O(log mlog™(logm)log(k/m)) time with optimal work.



Chapter 4

PARALLEL MIN-COST FLOW

4.1 Introduction

The max-flow problem is a fundamental problem in combinatorial optimization and
tremendous amount of work has been done for obtaining its algorithmic solution. In
this chapter, we will design a fast parallel algorithm for the min-cost flow problem
on series-parallel networks. Studies on such classes of graphs is well-motivated since
often such results shed light on more complex classes of graphs. Furthermore one may
encounter such graphs in typical real-life situations and thus expect a faster solution
than for general graphs.

The parallel algorithms that we developed in Chapter 1 for multiselection and
merging form an important building block for our parallel min-cost flow algorithm.
These are combined with the technique of tree contraction to obtain an efficient
parallel algorithm. Our parallel solution to the the min-cost flow problem gives us
another sequential algorithm quite different than the best known sequential algorithm.
The next section contains a description of related previous work. The section following
that has the formal definition of the min-cost max-flow problem. Then the parallel

algorithm is described and the chapter concludes with a summary.
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4.1.1 Previous Work

Many polynomial-time sequential algorithms are known for solving the minimum-cost
flow problem (see for example [4, 35]). The best known bound for the running time
is O((m + nlogn)mlogn) [52]. Better bounds are known in special situations where
the capacities or the costs are integers of moderate size. The min-cost flow problem
is considered to be apparently “hard” for parallelization, because it has been shown
in [36] that even the max-flow problem is P-complete. This implies that the existence
of a polylogarithmic-time parallel algorithm using a polynomial number of processors
(NC algorithm) is highly unlikely for this problem. Recently, it has been further
proved [58] that approximating the value of the min-cost maximum-flow to within a
constant factor is also P-complete.

One way to cope with the apparent inherent sequentiality of these problems is
to restrict them to special classes of networks. In [43], parallel algorithms for the
maximum flow problem on planar networks have been presented which work either
in O(log® n) time using O(n*) processors or in O(log®n) time using O(n®) processors.
These algorithms have been later improved by [47], to O(log®n) time using O(n'?)
processors. Contrasted with this, to the best of our knowledge, there are no known
published NC algorithms for the max-flow min-cost problem on restricted classes of
networks. Even in the sequential context, there has been at best only sporadic work
on this problem. This is perhaps not so surprising, considering the polynomial-time
sequential complexity of the problem. Bein, Brucker and Tamir [11] were the first to

compute the minimum cost of the maximum flow on trees and series-parallel networks.



61

For the special case of zero lower bounds, they observe that a simple greedy strategy
works, resulting in a time bound of O(nm + mlogm).
Two-Terminal Series-Parallel (TTSP) networks are a subclass of planar networks

and can be defined recursively by the following rules.

1. G = ({s,t},{(s,1)}), is a TTSP network. The vertices s and ¢ are called the
terminals.
Let Gy = (Vi, E1), with source s; and sink ¢, and Gy = (V3, ;) with source s,

and sink t; be TTSP networks.

2. The network G, formed from G; and Gy by the parallel composition operation
which identifies s; with sy and #; with #5 is TTSP with source s; = s5 and sink

tl - tg.

3. The network Gy formed from G; and G, by the series composition operation

which identifies ¢; and sy, is TTSP with source s; and sink t,.

A network G is said to be series-parallel if there exist two vertices s and ¢ such
that G is a TTSP network with terminals s and ¢. In [14, 15|, Booth and Tarjan
present several improved algorithms for the general min-cost flow problem with lower
bounds on the edge flows for series-parallel networks. Their first algorithm runs in
O(mlogm) time and O(m) space if only the cost of a minimum cost flow is needed or
O(mloglog m) space if the optimal flow distribution is needed. Her second algorithm
for finding the actual flow distribution runs in O(mlogmloglogm) time but uses
only O(m) space. The problems of finding a linear-space algorithm with O(m logm)

running time and obtaining a fast parallel algorithm have been left open in [14, 15].
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These algorithms work bottom-up on the decomposition tree representation of a series-
parallel network. A decomposition tree of a series parallel network is a binary tree in
which the leaves represent the edges of the network and each internal node represents
either a series or a parallel composition of the networks represented by its subtrees.
In Figure 4.1, we show a series-parallel network and its decomposition tree.

The decomposition tree of a series-parallel network can be obtained in O(m + n)
time sequentially [59]. The best algorithm for recognizing a series-parallel network
and obtaining a decomposition tree for it has been developed by Eppstein [29] which
runs in O(log®n) time on the EREW PRAM with C(m,n) processors; here C(m,n)
is the number of processors required to compute connected components of a graph in

logarithmic time. The best known bound for C(m,n) is O(ma(m,n)/logn) [22].

4.1.2 Definitions of Max-Flow and Min-Cost Max-Flow Problems

Let G = (V, E) be a directed network with two distinguished vertices s and ¢ called
the source and the sink respectively. For each e = (u,v) € E, we define source
s(e) = u and sink t(e) = v. We always denote the number of vertices in G by n and
the number of edges by m. With every edge e € E are associated three real-valued
functions, a lower bound l(e), a capacity u(e), and a cost ¢(e). A flow on a network

is a real-valued function fon the edges satisfying the following constraints:

capacity constraints,
l(e) < f(e) < u(e) for all e € £, and
conservation constraints,

Z fle) = Z fle) for all veV —{s,t}.
e€E, s(e)=v

e€E, t(e)=v



J 0.2

f i
(2,8,8) (0.4,2)

g ¢ h

f (2,10,6) 0,3,5)

s 0,12,14)
(0,6,5/
b
(1.5.2) 2.7.10)

/\
/\/\
/\
N\ /\
auk

a b

"U

Figure 4.1.: A series-parallel network and its decomposition tree

labeled by 3-tuples (I(e), u(e), c(e)).
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The value of the flow fis > f(e), and the cost of f is Y c(e)f(e). A
e€l, t(e)=t eck

flow is maxzimum if it has the maximum possible value. The maz-flow problem is

that of finding the maximum-flow from s to t. The minimum-cost flow problem is

to find the minimum cost of a given feasible flow, among all flows with the same

value. In particular, the minimum-cost mazimum-flow problem is that of computing

the minimum cost of the maximum flow from s to t.

4.2 Min-Cost Flow on Series-Parallel Networks

4.2.1 Flow Feasibility

We can compute the maximum flow value and the minimum flow value on a series-
parallel network G' in O(m) time sequentially using the decomposition tree. If the
minimum flow value is greater than the maximum flow value there is no feasible
flow. Let the maximum flow value be mazval(G) and the minimum flow value be
minval(G). Then the maximum and the minimum flow in G' can be computed from
the decomposition tree bottom-up, by the following equations.

base network Let G = ({s,t},{e}). Then minval(G) = l(e), mazval(G) = u(e).

Let G4 and G; be series-parallel. Let their parallel composition be G, and the
series composition be Gy.

parallel composition

minval(G,) = minval(Gy) + minval(Gy)

mazval(G,) = mazval(Gy) + mazval(Gy)
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series composilion

minval(Gs) = maz{minval(Gy), minval(Gz)}
mazval(Gs) = min{mazval(Gy), mazval(Gy)}

If minval(Gs) > mazval(Gs) then no flow is feasible.

The maximum and the minimum flow can be computed in parallel on an EREW
PRAM using the tree contraction technique [1]. Briefly, the tree contraction approach
reduces a binary tree by means of repeated shunt operations to a single node. The
shunt operation involves pruning a leaf, eliminating its parent and setting its sibling’s
new parent to its previous grandparent. Some familiarity with the tree contraction
technique is assumed, and the interested reader is directed to many excellent refer-
ences dealing with tree contraction [1, 41, 48, 49]. We describe below, how to compute
the maximum flow in G by providing the transformations associated with the shunt
operation in the contexts of series and parallel composition operations.

With each parallel composition node in the decomposition tree, we associate the
operation of addition, and with each series composition node we associate the oper-
ation of minimum. Each node (x) has a value val(z) which is the maximum flow in
the subgraph corresponding to the decomposition subtree rooted at x and a 2-tuple,
say (a,b), associated with it. Then the actual value passed to the parent of x is
min{val(z) + a,b}. Initially, each node is labeled with (0,00). Each leaf node of the
decomposition tree corresponding to an edge e € E is assigned val(e) = u(e), the
maximum flow value on that edge. The val(y) for each internal node y is undefined

at the start of the algorithm.
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Figure 4.2 shows a portion of a decomposition tree, illustrating the shunt operation

on the leaf u composed in parallel with v at node w (shown as P). The value of the
node v is min{val(v) 4+ v,,vs} where val(v) is unknown. The value of the node
v is val(u). The value computed at node w is thus val(u) + min{val(v) 4 v,, vy}
which can be rewritten as min{val(u) + val(v) 4+ v,,val(u) + vs}. In other words,
the 2-tuple associated now with v is (val(u) 4+ v,,val(u) 4+ vs). But we have the
tuple (w,, ws) for w which should be combined with this, to form a new 2-tuple
(zp, z5) for v such that min{val(v) + z,,z;} is the same as (w,,w;) combined with
min{val(u) + val(v) + vy, val(u) + vs}. A little manipulation yields (z,, z5) as equal
to (v, + val(u) + wy,, min{ws, vs + val(u) + w,}). In the special case when (w,, w;) =
(0,00), we have (z,,z5) = (val(u) + vy, val(u) + vs). If u is the right child, we can
derive a similar expression. Also if the node w represents a series operation, then
Figure 4.3 shows the result after shunting u. For computing the minimum flow the
two operations are addition and mazimum. There we assign (0, —oo) to each internal
node. We can carry out the analysis for the series operation just the same as above.

Hence, we have the following theorem using the results from [1].

Theorem 4.2.1 Let G = (V, F) be a series-parallel network with n vertices and m
edges. If the decomposition tree for G is given, then the mazimum flow, the minimum
flow and feasibility of flow can be determined in O(logm) time using O(m/logm)
processors on an EFREW PRAM.

4.2.2 Min-Cost Flow Value and Flow List Computations

The value of a maximum flow can be computed knowing only the maximum flow

values of the constituent networks. That is not true, however, of the minimum cost
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v (v, + val(u) + wy,
min{ws, vs + val(u) + w,})

Figure 4.2.  SHUNT on a parallel composition node for computing the max-flow.

p(w)

v (vp+ wy,
min{ws, w, + min{val(u),vs}})

Figure 4.3. SHUNT on a series composition node for computing the max-flow.
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of a maximum flow. To compute the minimum cost we need, in general, to know
the costs of minimum cost flows of all possible values in the constituent networks.
To represent this Booth and Tarjan introduced a flow list. A flow list is a list of
pairs, sorted with respect to cost, representing the flow that can be pushed on the
augmenting paths and the cost associated with it. Formally a flow list is a list of

pairs (lo, co); (w1, ¢1), (uz, ¢2), ..., (ug, cx) with the following properties:
1. u; >0for 1 <<k,
2. ¢, <cpq for 1 <o < k.

3. lp is the value of the minimum flow, ¢y is the minimum cost of / units of flow

and ug =l + Ele u; 1s the value of a maximum flow.

4. for any flow value z,ly < & < ug, where x = [y + Z‘Z;ll u; +au; with 0 < a <1,

.. . i1
the cost of a minimum-cost flow of value z is ¢o + 372, ciu; + aujc;.

The first pair is a spectal pair and the remaining pairs are normal pairs. The first
component of a normal pair is the flow capacity and the second component is the
cost. These pairs give the flow that can be pushed and the cost per unit flow for that
flow, with each pair corresponding to an augmenting path in the network. Typically,
the pairs with the same cost in a flow list are combined to reduce the size of the flow
list. For general networks the flow list can be exponential in size. For a series-parallel
network, however, the flow list has size O(m) [14, 15].

A flow list for an arbitrary network can be constructed by first computing a

minimum flow of minimum cost using any minimum-cost flow algorithm. This gives
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the special pair (lp, o). Each subsequent pair is computed by finding a minimum-
cost augmenting path in the residual network for the current flow. To construct a
flow list for a series-parallel network G however, it is more efficient to build it by
working on a decomposition tree of GG bottom-up instead of using the minimum-cost
augmenting path method. The following recursive formulation captures the essence
of the algorithm.

base graph G = ({s,t},{e}). The flow list is (I(e),c(e)l(e)); (u(e) — l(e),c(e)) if
u(e) > I(e), else there is no feasible flow.

Let G4 and Gy be two series-parallel networks with flow lists Ly = (I{, ¢{); Ly and
Ly = (1§, ¢}); Ly respectively.

parallel composition The flow list is L, = (I} + I, ch + c}); L, where L, is formed

by merging lists L; and L,, ordering the pairs in nondecreasing order of costs, and
combining pairs of equal cost by adding their capacities.

series composition Let the flow list be L, = (I3, ¢3); L,. First we have to compute

the special pair. If [ = [ then [§ = [ and ¢} = ¢ + ¢j. Otherwise we have to
increase the minimum flow in the graph with smaller minimum flow to be equal to
the minimum flow in the other graph. This may lead to deletion of some pairs in
the flow list as they will be used to push the flow. Next we have to compute the
remaining pairs of L,. Remove the first pair (u’,¢') from Ljand the first pair (u”, c”)
from Ly. Add the pair (min{u/,u"},c +¢c") to L,. If v’ > u” add the pair (v’ —u", ')
to the front of Ly; if u” > u’ add the pair (u” — v/, ¢") to the front of L,. Repeat this

step until one of the two lists is empty.



70

The above description of the algorithm closely follows that of Booth and Tar-
jan [14, 15]. In Figure 4.4, a decomposition tree for the series-parallel network in
Figure 4.1 is shown along with all the intermediate flow lists. A straightforward im-
plementation using linked lists to represent the flow lists, can compute a flow list
for an m-edge series-parallel network using O(m?) amount of work. Booth and Tar-
jan, however, obtained an O(mlogm) time bound by using a clever representation
of the flow lists using finger search trees. But, this is where the implementation of
their algorithm becomes involved which in turn makes the analysis complex. Here we
present a method which completely avoids the use of finger search trees. Although
we describe our method in the parallel setting, it can be used profitably in the se-
quential setting as well. If we have the flow list for a graph then the minimum cost
of a maximum flow (rather, of any flow) can be computed easily. From the flow list
and a valid flow value k, we can compute the cost of the min-cost flow of value k as
follows: Given flow list (lo, co); (w1, ¢1), (u2,¢2)y ..., (u, ) if 1 <j<land 0 < a <1
are such that [, + Ef:_ll u; + au; = k then the cost of the min-cost flow of capacity &
1s ¢g + Ef;ll u;c; + auje;.

Now we introduce two operators: the parallel flow list operator ©, and the series
flow list operator ;. These binary operators work on two flow lists and produce a
new flow list corresponding to parallel or series composition operation. The identity
element for the operator ©, is the flow list ((0,0); ¢) where ¢ represents an empty
list. The identity element for the operator ) is the flow list ((—o0,0);(00,0)). If
there are no lower bounds on the flows on the edges, then the identity elements are ¢

and (00, 0). In the following lemma we show some of the properties of these operators.
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[6,118](6,9)(2,16)(4,27)(1,32) p
.

[4,100](2,16)(4,27)(1,32)
. k [2,18](6,9)

[2,52](4,8)(6,19)(3,26) / [4,42](6,8)(1,13)
[2,52](6,19)(3,26) / \ / \ [2,26](1,13)
/ wO]@ 8) € f[2 16] (6 8)
[2,241(6,5)(3,12) 222101, 11) p [0.0](4.2)2.8)
(2,24](3,12) g \ [0, O](12 14) \ /\

]
[0.01(6.5) [212](8 6)  [0.0]3, 5) [0.0](4.2) [0,0](Z,S)

Figure 4.4.: Flow lists for the series-parallel network in Figure 4 (special pairs are
shown in square brackets).
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Lemma 4.2.2 Series and parallel flow list operators have the following properties:

1. ©, s commutative and associative,

2. (s 1s commutative and associative, and

3. ©, distributes over ©, but not vice versa.

Proof: Both parallel and series flow list operations are commutative by definition.
Computation of the special pair for ), operator involves only addition which is
associative. Combining the two flow lists uses straightforward merging which is also
associative. Hence (, is associative. The series composition results in excess capacity
of one of the constituent graphs being removed. Hence if we are combining three
graphs in series the result depends only on which graph has the minimum capacity.
Similarly computation of the special pair involves increasing the minimum flow to
be the same as the largest minimum flow among the three graphs. Hence the
operator is also associative.

For distributivity, let us consider (A @5 (B ®, C)). If @, distributes over ©,
then the resulting flow list should be the same for ((A ©; B) @, (A ®s C')). Suppose
B had more capacity than C. Then we could push flow equal to the smaller of the
capacity of A and C. But in the distributed expression we can push more flow. Hence
the ©, operator does not distribute over ©, operator. The other case is similar.

Now, let us consider (A ®, (B @, C)). If ®, distributes over @, then the
resulting flow list should be the same for ((A ©, B) @5 (A ®, C)). The flow that can
be pushed is the flow in A plus the minimum of the flow that can be pushed through

B and C. If the distributed expression is considered, the flow is the the minimum of
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p(w)
(Pu, Sw)
(Ly ®p Py, Ly ©p Sy)

Figure 4.5.: SHUNT on a parallel composition node for computing the min-cost flow.

the flow through A and B and the flow through A and C' which is the same as before.
Hence the operator ©, distributes over @ . O

Our parallel algorithm for the min-cost flow problem follows a modified form of
the tree contraction technique, where a shunt operation takes more than a constant
amount of time because of the presence of flow lists of size O(m). We associate a
value with each node of the decomposition tree which is the flow list of the network
rooted at that node. For each leaf node, corresponding to an edge e in the original
network, the flow list is (({(e), c(e)l(e)); (u(e) — I(e),c(e))), assuming flow is feasible.
With each node we also associate a 2-tuple whose components are flow lists. Suppose
for a node x, the flow list is L, and the 2-tuple is (P, S;). Then the flow list passed
to the parent is ((L, ®, P;) ©®s S;). Initially, label each internal node of the
decomposition tree by the 2-tuple of identity elements for the operators ©, , @5 ,
fe., (((0,0)5 ), (=00, 0); (09,0)))

Now consider the tree in Figure 4.5, where the shunting is being done on node
u. Then the value computed at node w is (L, ©, ((L, ®, P,) ®s S,)) which by
Lemma 4.2.2 can be rewritten as ((L, ©®, (L, ©®, P,)) @s (L, ®, Sy)). Hence

the new 2-tuple should be (L, ®, P,,L, ®, S,). This 2-tuple has to be combined
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P, Sy)
(Pv; Lu @s Sv)

Figure 4.6.: SHUNT on a series composition node for computing the min-cost flow.

with the 2-tuple (P, Sy) which is discussed below in general terms. The case when
u is the right son can be handled similarly. The case when the node w is a series
composition node is also similar and the result is shown in Figure 4.6.

We show here, how to combine two 2-tuples (P, S;) and (P,,S,) where y is the
parent of x such that L, when applied to the resulting 2-tuple gives the same result
as when applied to the two 2-tuples in succession. Using Lemma 4.2.2 we have:
(Le ©p Pr) ©s Sz) Op Py) @5 Sy) =
(Le ©p Pe) ©p By) Os (52 Op By)) Os Sy) =
(Le ©p (Pr ©p By)) Os (52 ©p By) Os Sy)) =

L, applied to (P, @, Py, (S: ©, P,) ©s S,)

Hence, we have the following theorem that is analogous to Theorem 4.2.1.

Theorem 4.2.3 Given a series-parallel network with the decomposition tree the min-
imum cost maximum flow value and the flow list for the graph can be computed in

O(log m) iterations using tree contraction.
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The time needed to perform an iteration of the algorithm is in the order of the time
needed to compute the series or parallel composition of all the flow lists processed in

any iteration. In the next subsection, we will look at this problem in more detail.

4.2.3 Obtaining Flow Lists using Multiselection and Merging

Suppose L1 and Ly are two flow lists of size m; and mgy respectively. Let m; < ma,
and let Ly = (I, c}); Ly and Ly = (I, cl); Ly. Assume that the flow lists are stored
in arrays; later we will say how to maintain these flow lists. We prove the following

lemmas.

Lemma 4.2.4 Given two flow lists with my and my pairs, the composition of these

two flow lists for the parallel composition operation can be done in O(log(my + mz))

time using O((my + mz)/(log(mi + mz))) processors on the EREW PRAM.

Proof. The special pair can be computed in O(1) time by a single processor. The
rest of the two flow lists can be merged in O(log(m; + m3)) time using O((my +
my)/(log(my 4+ my))) processors on the EREW PRAM. Any optimal merging algo-
rithm for the EREW PRAM can be used to accomplish this step [13, 27, 38]. After
merging there may be up to two pairs with the same cost. These two pairs can be
combined easily. We can then use the parallel prefix [46] algorithm to compact the

array containing the flow list. a

Lemma 4.2.5 Given two flow lists with my and my pairs, the series composition of
these two flow lists can be done in O(log(my+m2)) time using O((my+my)/(log(my+

my))) processors on the EREW PRAM.
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Proof. We provide the proof in two parts: (I) computing the special pair and (1I)
merging the remaining flow lists.

(I) Computing the special pair: If the minimum flow values are the same
then computing the special pair is trivial and can be done in O(1) time. Otherwise,
without loss of generality, let [{, > [{] then we have to increase the flow in the second

subgraph. This can be done in parallel as follows.

1.1 Compute in parallel, the prefix-sums on capacity u; and cost u;¢; for the flow list

: 1<k<ma , 1 1<k<ma , 11
Lyjie, Y5 u; and 3,2 ul'cl.

[}

1.2 Determine the index j of the pair and a fraction a such that I} = I/ + Y720 u” +

auj, where 0 < o < 1.
i1
1.3 Compute the cost as ¢§ = ¢ + ¢ + >/2; ul'c! + ozu;-’c;’.

1.4 Compress Ly to ((1 — a)u”,c?)...(uf,c]) using parallel prefix.
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All of the above can be done in O(logmz) time using O(my/logmz) processors on
the EREW PRAM.

(IT) Merging the remaining flow lists: This is a special type of merge oper-
ation where the merger of two pairs can result in at most two pairs with one added
back to one of the flow lists being merged. The pair added back is the one with excess
flow capacity. Sequentially the series operation can be accomplished in O(mq + ms)
time by moditying the standard merging algorithm. In the parallel setting, the key
issue is how to partition the two flow lists into sublists such that these can be merged

independently and are computationally balanced.
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The idea is to partition the flow lists using the flow capacities and not just the
cost. Note that the flow lists are ordered only by cost and not by capacity. We
provide a high-level description of how to perform the series operation in parallel in

the following steps.

II.1 Compute the prefix-sums on the flow capacities in the flow lists. (if not computed

in Step L.1).

I1.2 Partition the flow lists based on the cumulative flow capacity such that the

corresponding sublists represent approximately equal flow capacity.

I1.3 Make the flow capacity in corresponding sublists equal by splitting pairs in the

adjacent sublists.

I1.4 Merge the sublists independently using the sequential series operation.

Step 1 can be done in O(log(my + mz)) time in parallel. Suppose the total flow
capacity is larger in one of the flow lists. Then we can discard the excess capacity in
that list except one extra pair. The reason to keep one extra pair will become clear
as we describe the rest of the steps. The prefix sums of the flow capacities for the two
flow lists obviously form two increasing sequences. Let these two sequences be A (for

Ly) and B (for Ly). To perform Step 2 we will use these two sequences as follows.

II.2a  Find the ¢|log(m + my)|th ranked element in the union of the two sequences

Aand B, i = 1,2,...,5(= (m1 + ma)/([log(mi + m3)|)). Let the output
be two arrays R4[l..7] and Rp[l..j], where R4[i] # 0 implies that A[R4[:]] is
the (i[log(my 4+ m3)|)th element and Rg[i] # 0 implies that B[Rpl[¢]] is the

(¢]log(my + my)|)th element.
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IL.2b  Let R4[0] = Rp[0] = 0
fori=1,...,j do
if Rali] = 0 then Rali] = i * |log(my + my)| — Rpli]

else Rp[t] =i * [log(my + m2)| — Ra[i]

Consider the flow sublists corresponding to the subsequences A[R4[t—1]+1].. A[R4[7]]
and B[Rp[i — 1]+ 1]..B[Rp]i]]. The total flow capacity in one of the flow sublists may
be smaller (the sequence which had R4[i] or Rp[i] equal to zero at the end of Step
II1.2a). Without loss of generality, let this be the sublist of L; corresponding to A.
Then we can split the (R4[¢] 4 1)th pair in the flow list L; into two pairs such that the
flow capacity of sublist corresponding to A plus the new pair is exactly equal to that
of the sublist corresponding to B. Note that we never need to split more than one pair
else the value of Rp[t] is not correct. Further, if we have O((mq 4+ m3)/log(my 4+ m3))
partitions of the flow lists L; and L, the sizes of the flow lists will increase by at
most O((mq + mz)/log(mi 4+ my)). Using parallel prefix, we can perform Step IL.3
and form new flow sublists which are exactly balanced in flow capacity. Then we can
assign one processor to merge each flow sublist pair independently using the usual
sequential algorithm.

The only other step we need to explain is Step I[.2a. The ranking in Step II.2a
can be done by merging the sequences A and B and then computing the positions.
However, we can use a simpler approach by using the multiselection algorithm [27]
described in Chapter 2 by which we can avoid merging the two sequences. Given two
ordered sets A and B of sizes m and n, where m < n, let us say we want to perform

r selections where the ranks are {Ky,..., K,}. Our multiselection algorithm solves
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the problem in O(logm + logr) time using r processors on the EREW PRAM and
is used as a subroutine for developing an optimal merging algorithm on the EREW
PRAM. The multiselection algorithm can be used to compute Step I1.2a by setting
m =my, n =my and r = (my + my)/log(my + ma). O
Remark 1. The sum of the sizes of all flow lists is initially at most m pairs (not
counting the special pairs). Each parallel or series composition operation reduces or
maintains the number of pairs. The various flow lists can be kept in an array of
size O(m) and in each iteration, we can keep track of the locations of the flow lists
with appropriate bookkeeping. One way is to augment the decomposition tree such
that each node also has pointers to the location and the size of its associated flow list.
Hence each iteration of the tree contraction can be done in O(log m) time using O(m)
processors and O(m) space. Thus the MCMF value can be computed in O(log®m)
time using O(m) processors on the EREW PRAM.

Remark 2. Using Brent’s scheduling the number of processors can be reduced. The
time taken for an iteration of the tree contraction is maz O(log(m;, + my,)), 1 <
t < k, where k is the number of nodes in the decomposition tree being shunted
in that iteration. We know that % m,, 4+ m;, = O(m). A simple strategy is to
allocate [m;/logm] processors to a flow list of size m; in each iteration of the tree-
contraction, instead of [m;/logm;| processors. Hence the total number of processors
is bounded by O(X°%_, (mi, +m,)/(logm)) and the time by O(log m) in each iteration.
Hence we can reduce the number of processors to O(m/log m) without increasing the

asymptotic running time, giving rise to our main theorem:



30

Theorem 4.2.6 Given a series-parallel network G with n vertices and m edges, the
minimum cost of any flow can be computed in O(log”m) time using O(m/logm)

processors on the FEREW PRAM from the decomposition tree for G.

4.3 Summary

In this chapter, we have presented an efficient parallel algorithm for finding the cost of
the minimum cost flow problem of a series-parallel network. The parallel algorithms
that we developed in Chapter 1 for multiselection and merging form an important
building block for our parallel min-cost flow algorithm. Given a decomposition tree,
our algorithm runs in O(log? m) time using O(m/logm) processors on the EREW
PRAM. The salient features of our algorithm are summarized in the following two
paragraphs.

The spirit of our algorithm is based on the sequential algorithm by Booth and
Tarjan [14, 15] but the efficiency is due to a careful application of the tree contraction
technique [1]. The time-processor product of our algorithm matches the best known
sequential time-complexity for min-cost flow on series-parallel networks due to Booth
and Tarjan [14, 15].

The algorithm computes a flow list at each internal node of the decomposition
tree which represents the costs of minimum-cost flows of all possible values for the
subtree rooted at that node. The size of the flow list is O(m) for a series-parallel
network. The bottom-up procedure for obtaining the flow list for a node (from the
flow lists of its subtrees) can take as much as O(m) work resulting in an O(m?) work

algorithm for the problem. To avoid this, Booth and Tarjan use an elaborate finger



31
search tree representation of the flow lists and achieve an O(mlogm) running time
for their algorithm. Our parallel algorithm does not use the finger search tree and
it is conceptually simpler. We believe that the sequential simulation of our parallel

algorithm may perform better than Booth and Tarjan’s in practice.



Chapter 5

CONCLUSION AND OPEN PROBLEMS

5.1 Conclusions

The technique of chaining plays an important role in the design of parallel algorithms
for multiselection and multisearch. The technique of chaining has surprisingly been
applied to only a few problems [6, 8, 19, 63]. To summarize, a chain is an ordered
sequence of operations that can be processed together as long as the individual opera-
tions are expected to progress identically. This technique is applicable only when the
test for identical progress of operations can be determined in constant time. Other-
wise, when the individual operations cannot progress together, the chain is split into
two and processed, either independently or using pipelining. Another technique that
we found useful is partitioning. The technique of partitioning consists of breaking
up a given problem into independent subproblems of equal sizes and then solving the
subproblems in parallel. The main problem is in finding the proper partitioning. We
saw that multiselection is an useful technique for partitioning. On many occasions
we also made use the technique of pipelining. Pipelining is the process of breaking
up a operation into a sequence of suboperations such that once the first suboperation
is finished, the sequence corresponding to a new operation can begin and proceed at

the same rate as the first operation. Pipelining by itself may not lead to fast parallel
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algorithms but is combined with the above two techniques. The other two techniques
that were found useful are accelerated cascading and tree contraction.

In Chapter 2, we presented an O(logm + logr)-time parallel algorithm using r
processors to perform r multiselections in two sorted arrays, of sizes m and n with
m < n, on the EREW PRAM. The multiselection algorithm is based on a novel
application of the technique of chaining. A careful analysis of our parallel algorithm
shows that the total number of comparisons performed is O(r log(m/r)), when r < m,
and O(mlog(r/m)), when m < r, which matches the information-theoretic lower
bound on the problem of multiselection.

A natural way to merge two sorted arrays in parallel is to partition the arrays into
equal size subarrays such that independent merging of the subarrays solves the original
problem. Thus, the problem of merging in parallel can be solved if we can efficiently
select the correct elements to partition the arrays. Our multiselection algorithm was
used to select the correct elements, leading to a simple and optimal algorithm for
merging on the EREW PRAM requiring O(log(m + n)) time and O(m + n) work.
The merging algorithm does not move or copy any data during the partitioning phase
and the number of comparisons is within lower order terms of the minimum possible,
even by a sequential algorithm. Hagerup and Riib [38] have given a parallel merging
algorithm on the EREW PRAM that has the minimum number of comparisons for
any parallel merging algorithm for the EREW PRAM. Our merging algorithm has
the same number of comparisons when m = ©(n). When the size of the two lists
differs significantly, however, our merging algorithm performs asymptotically fewer

comparisons than Hagerup and Rub’s algorithm.
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In Chapter 3, we have presented parallel algorithms for search and multisearch in
sorted matrices. First we presented an O(log n)-time parallel algorithm, based on the
technique of partitioning, using O(n) work for searching and ranking in an nxn matrix
with sorted rows and sorted columns. This algorithm combined with the technique of
chaining then served as a basis for the design of a parallel algorithm for multisearch
in the n X n matrix with sorted rows and sorted columns. The multisearch algorithm
for r searches runs in O(logn + logr) time and O(rn) work, which matches the best
known sequential time. These algorithms are quite different from their sequential
counterparts. Then we also considered the use of chaining to design parallel algorithm
for search in X +Y where both X and Y are sorted vectors implicitly representing a
sorted matrix.

The second part of the Chapter 3 dealt with search and multisearch in m x n
matrices with sorted columns or equivalently m sorted arrays of size n each. Since
there is no relative order of the elements in the rows of such a matrix the technique
of partitioning is not applicable. Furthermore the parallel as well as the sequential
algorithm are sensitive to the rank of the search-element. We proposed a cost-optimal
algorithm that runs in O(log mloglogm) time for small elements (with rank < m)
and in time O(log m loglog m log(k/m) for large elements. This algorithm uses the
technique of accelerated cascading. Then we presented a sequential algorithm for
multisearch in a matrix with sorted columns as a prelude to the parallel algorithm.
The sequential algorithm is inspired by the parallel technique of chaining. The par-
allel multisearch algorithm follows this sequential algorithm and has a nontrivial

dependence not only on the ranks of the search-elements but also on the number of
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search-elements. Finally we show how to adapt ideas from Bentley and Yao’s [12]
classic paper on sequential unbounded searching and improve the search algorithm
for small elements to run in O(log m log*(log m)) time with optimal work and for large
elements in O(log mlog™(log m)log(k/m)) time with optimal work.

In Chapter 4, the problem of finding the minimum cost of a feasible flow in directed
series-parallel networks with real-valued lower and upper bounds for the flows on edges
is addressed. The best known sequential algorithm for computing the minimum cost
of a feasible flow on series-parallel networks, given by Booth and Tarjan [14, 15],
takes O(mlog m) time and O(m) space for a network with m edges. Their algorithm
works bottom-up on the decomposition tree representation of a series-parallel network.
We develop, for the first time in [40], an efficient and fast parallel algorithm to
compute the minimum cost of a feasible flow on directed series-parallel networks
solving, in part, a problem posed by Booth [14]. Our algorithm takes O(log® m) time
using O(m/logm) processors on an EREW PRAM and it is optimal with respect
to Booth and Tarjan’s algorithm, if the decomposition tree is given. The algorithm
owes its efficiency to the tree contraction technique, the multiselection and merging
algorithms, and using simple data structures for flow list manipulations as opposed
to finger search trees used by Booth and Tarjan. Indeed, the sequential simulation of
our algorithm gives a new sequential algorithm for computing the cost of a min-cost
flow on a series-parallel network that is as efficient as Booth and Tarjan’s [14, 15]

algorithm but uses simpler data structures.
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5.2 Open Problems

We will now discuss some open problems and further directions for research that arise
from our work.

We have given an optimal merging algorithm on the EREW PRAM. This algo-
rithm operates on two sorted arrays. Another direction for research is to investigate
the case when the two lists are given as height-balanced trees. Brown and Tarjan [18]
have given an O(m log(n/m))-time sequential algorithm to merge two lists represented
as height-balanced trees, which matches the the information-theoretic lower bound.
Note that the this lower bound can be matched only if the input sorted lists are repre-
sented as height-balanced trees. Paul, Vishkin and Wagner [53] have given a parallel
insertion algorithm for 2-3 trees that can be used to merge two lists represented as
2-3 trees in O(log m +log n) time using O(m) processors on an EREW PRAM. Obvi-
ously, their algorithm is not optimal as the total work done is O(mlogn + mlogm).
The parallel insertion algorithm is preceded by a parallel search that can be shown to
take only O(mlog(n/m)) work by extending the analysis that we have presented for
our multiselection algorithm [28]. The open problem is to design a parallel merging
algorithm, for the case when the input is represented as height-balanced trees, that
runs in O(logn) time but uses only O(mlog(n/m)) work. This would be a parallel
analogue to the classic sequential result of Brown and Tarjan.

We considered search and multisearch in square matrices with sorted rows and
sorted columns. Our search algorithm are efficient for non-square matrices as long as
m = O(n). How about sorted matrices that are very thin and long? Frederickson and

Johnson [32] have given an optimal sequential algorithm that requires O(m log(n/m))
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time using different ideas from the square case. In parallel, our algorithms for square
matrices do not directly lead to optimal algorithms for non-square matrices. For the
case of multisearch the best known sequential algorithm is O(rn) for r multisearches
in an n X n sorted matrix. There is no lower bound known for this problem except a
trivial lower bound of O(n). A very important case is the search for n elements, that
is, ¥ = n. Note that using the ideas from our parallel algorithm we can reduce the
time for the first two steps to O(ny/n) but the final step still requires O(n?) time. To
improve the sequential algorithm should be of great interest since it has important
ramifications for the knapsack problem [24, 31, 39].

Frederickson and Johnson have also given optimal sequential algorithms for the
selection problem on sorted matrices [32, 34] that have the same sequential time-
complexity as search. Sarnath and He [55] have presented a parallel algorithm for
selection in an n X n matrix with sorted rows and sorted columns that runs in
O(log nloglognlog™ n) time with O(nloglogn) work on the EREW PRAM. For the
case of selection in matrices with sorted columns, Frederickson and Johnson’s sequen-
tial algorithm can be parallelized easily to run in O(log nlog mloglog m) worst-case
time. It would be interesting to see if the time can be reduced similar to the Sarnath
and He’s parallel algorithm for matrices with sorted rows and sorted columns.

For the min-cost flow on series-parallel networks, we have left the computation of
actual flow values efficiently as an open problem. It would also be interesting to see
if we could extend the technique of tree contraction and the idea of maintaining flow
lists to obtain min-cost flow algorithms to more complex classes of graphs. Finally,

we would like to investigate if multiselection could also be applied to other problems.



1]

REFERENCES

Abrahamson, K., N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple
parallel tree contraction algorithm. Journal of Algorithms, 10:287-302, 1989.

Aggarwal, A., M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric
applications of a matrix-searching algorithm. Algorithmica, 2:195-208, 1987.

Aggarwal, A., and J. Park. Notes on searching in multidimensional monotone
arrays. In Proceedings of 28th Conference on Foundations of Computer Science,
pages 497-512, 1988.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. Network flows. SIAM Review,
33(2):175-219, June 1991.

Akl S. G., and N. Santoro. Optimal parallel merging and sorting without mem-
ory conflicts. IEEFE Transactions on Computers, C-36(11):1367-1369, November
1987.

Amir, A., and M. Farach. Adaptive dictionary matching. In Proceedings of the
32nd Annual Symposium on Foundations of Computer Science, pages 760-766,
1991.

Anderson, R. J., E. W. Mayr, and M. K. Warmuth. Parallel approximation al-
gorithms for bin packing. Information and Computation, 82:262-277, September
1989.

Atallah, M. J., D. Z. Chen, and H. Wagner. An optimal parallel algorithm for the
visibility of a simple polygon from a point. Journal of the ACM, 38(3):516-533,
July 1991.

Atallah, M. J., and S. R. Kosaraju. An efficient parallel algorithm for the row
minima of a totally monotone matrix. Journal of Algorithms, 13:394-413, 1992.

Batcher, K. E. Sorting networks and their applications. In Proceedings of AFIPS
Spring Joint Computer Conf., pages 307-314, 1968.

Bein, W. W.. P. Brucker, and A. Tamir. Minimum cost flow algorithms for
series-parallel networks. Discrete Applied Mathematics, 10:117-124, 1985.

Bentley, J. L., and A. C. Yao. An almost optimal algorithm for unbounded
searching. Information Processing Letters, 5:82-87, 1976.

88



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

89

Bilardi, G., and A. Nicolau. Adaptive bitonic sorting: An optimal parallel algo-
rithm for shared memory machines. STAM Journal on Computing, 18(2):216-228,
April 1989.

Booth, H. Fast algorithms on graphs and trees. Technical Report 90-76, Center
for DIMACS, Rutgers University, December 1990. (also Ph.D. Thesis, Princeton
University, 1990).

Booth, H., and R. E. Tarjan. Finding the minimum-cost maximum flow in a
series parallel network. Journal of Algorithms, 15:416-446, 1993.

Borodin, A., and J. E. Hopcroft. Routing, merging and sorting on parallel models
of computation. Journal of Computer and System Sciences, 30:130-145, 1985.

Brent, R. P. The parallel evaluation of general arithmetic expressions. Journal
of the ACM, 21(2):201-206, 1974.

Brown, M. R., and R. E. Tarjan. Design and analysis of a data structure for
representing sorted lists. SIAM Journal on Computing, 9(3):594-614, August
1980.

Chen, D. Z. Efficient geometric algorithms in the EREW-PRAM. In Proceed-
ings of the 28th Annual Allerton Conference on Communication, Control, and
Computing, pages 818-827, 1990.

Chen, D. Z. Efficient parallel binary search on sorted arrays. Technical Report
1009, Purdue University, Department of Computer Science, August 1990.

Cole, R. J. Parallel merge sort. SIAM Journal on Computing, 17(4):770-785,
August 1988.

Cole, R., and U. Vishkin. Approximate parallel scheduling. II. Applications to
logarithmic-time optimal parallel graph algorithms. Information and Computa-
tion, 92(1):1-47, May 1991.

Cosnard, M., J. Duprat, and A. G. Ferreira. Known and new results in selection,
sorting, and searching in sorted matrices and sorted X + Y. Technical Report
LIP-IMAG 89-10, LIP - CNRS, Ecole Normale Supe'rieure de Lyon, France,
1989.

Cosnard, M., J. Duprat, and A. G. Ferreira. The complexity of searching in
X 4+Y and other multisets. Information Processing Letters, 34:103-109, 1990.

Cosnard, M., and A. G. Ferreira. Parallel algorithms for searching in X + Y. In

Proceedings of the 18th International Conference on Parallel Processing, pages
[1I-16-111-19, 1989.



[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

90

Deo, N., and D. Sarkar. Parallel algorithms for merging and sorting. Informa-
tion Sciences, 51:121-131, 1990. Preliminary version in Proc. Third Intl. Conf.
Supercomputing, May 1988, pages 513-521.

Deo, N., A. Jain, and M. Medidi. Parallel multiselection and optimal parallel
merging. In Proceedings of Thirtieth Annual Allerton Conference on Communi-
cation, Control, and Computing, pages 215-224, 1992.

Deo, N.; A. Jain, and M. Medidi. An optimal parallel algorithm for merging
using multiselection. Information Processing Letters, 50(2):81-88, 1994.

Eppstein, D. Parallel recognition of series-parallel graphs. [Information and
Computation, 98:41-55, 1992.

Ferreira, A. G. The knapsack problem on parallel architectures. In Cosnard,

M., Y. Robert, P. Quinton, and M. Raynal, editors, Parallel and Distributed
Algorithms, pages 145-152. North Holland, 1989.

Ferreira, A. G. A parallel time/hardware tradeoff T.H = O(2"/?) for the knap-
sack problem. IEEE Transactions on Computers, 40(2):221-225, 1991.

Frederickson, G. N., and D. B. Johnson. The complexity of selection and ranking
in X + Y and matrices with sorted columns. Journal of Computer and System
Sciences, 24:197-208, 1982.

Frederickson, G. N., and D. B. Johnson. Finding kth paths and p-centers by
generating and searching good data structures. Journal of Algorithms, 4(1):61-
80, 1983.

Frederickson, G. N., and D. B. Johnson. Generalized selection and ranking:
Sorted matrices. SIAM Journal on Computing, 13(1):14-30, 1984.

Goldberg, A. V., Eva. Tardos, and R. E. Tarjan. Network flow algorithms.
Technical Report CS-TR-216-89, Princeton University, March 1989.

Goldschlager, L., L. Shaw, and J. Staples. The maximum flow problem is log
space complete for P. Theoretical Computer Science, 21:105-111, 1982.

Gries, D. The Science of Programming. Springer Verlag, 1981.

Hagerup, T., and C. Riub. Optimal merging and sorting on the EREW PRAM.
Information Processing Letters, 33:181-185, December 1989.

Horowitz, E., and S. Sahni. Computing partitions with applications to the knap-
sack problem. Journal of the ACM, 21(2):277-292, 1974.



91

[40] Jain, A., and N. Chandrasekharan. An efficient parallel algorithm for min-cost
flow on directed series-parallel networks. In Proceedings of the 7th International
Parallel Processing Symposium, pages 188-192, 1993.

[41] Ja'Ja’, J. Introduction to Parallel Algorithms. Addison Wesley, 1992.

[42] Johnson, D. B., and T. Mizoguchi. Selecting the Kth element in X 4+ Y and
X1+ Xo+ ...+ X SIAM Journal on Computing, 7(2):147-153, May 1978.

[43] Johnson, D. Parallel algorithms for minimum cuts and maximum flows in planar
networks. Journal of the ACM, 34:950-967, 1987.

[44] Karp, R. M., and V. Ramachandran. Parallel algorithms for shared-memory
machines. In van Leeuwen, J., editor, Handbook of Theoretical Computer Science,
chapter 17, pages 869-941. The MIT Press/Elsevier, Cambridge, MA, 1990.

[45] Knuth, D. E. The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley, Reading, MA, 1973.

[46] Ladner, R. E., and M. J. Fischer. Parallel prefix computation. Journal of the
ACM, 27(4):831-838, 1980.

[47] Miller, G., and J. Naor. Flow in planar graphs with multiple sources and sinks.
In IEEFE Foundations of Computer Science, volume 30, pages 112-117, 1989.

[48] Miller, G. L., and J. H. Reif. Parallel tree contraction part 1: Fundamentals.
In Micali, S., editor, Randomness and Computation, Advances in Computing
Research, Volume 5. Jai Press, Greenwich, CT, 1989.

[49] Miller, G. L., and J. H. Reif. Parallel tree contraction part 2: Further applica-
tions. SIAM Journal on Computing, 20(6):1128-1147, December 1991.

[50] Mirzaian, A., and E. Arjomandi. Selection in X+Y and matrices with sorted
rows and columns. Information Processing Letters, 20:13-17, 1985.

[51] Munro, J. 1., and H. Suwanda. Implicit data structures for fast search and
update. Journal of Computer and System Sciences, 21:236-250, 1980.

[52] Orlin, J. B. A faster strongly polynomial minimum cost flow algorithm. In Proc.
20th ACM Symposium on Theory of Computing, pages 377-387, 1988.

[53] Paul, W., U. Vishkin, and H. Wagener. Parallel dictionaries on 2-3 trees. In Pro-
ceedings of ICALP, 154, pages 597-609, July 1983. Also R.A.I.LR.O. Informatique
Theorique/Theoretical Informatics, 17:397-404, 1983.

[54] Sanz, J. L., editor. Opportunities and Constraints of Parallel Computing.
Springer Verlag, 1989.



[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

92

Sarnath, R., and X. He. Efficient parallel algorithms for selection and search-
ing on sorted matrices. In Proceedings of the International Parallel Processing
Symposium, pages 108-111, 1992.

Shiloach, Y., and U. Vishkin. Finding the maximum, merging, and sorting in a
parallel computation model. Journal of Algorithms, 2:838-102, 1981.

Snir, M. On parallel searching. SIAM Journal on Computing, 15:688-708, 1985.

Stein, C., and J. Wein. Approximating the minimum-cost maximum-flow is P-
complete. Information Processing Letters, 42:315-319, 1992.

Valdes, J., R. E. Tarjan, and E. L. Lawler. The recognition of series parallel
digraphs. SIAM J. Comput., 11(2):298-313, May 1982.

Valiant, L. G. General purpose parallel architectures. In van Leeuwen, J., editor,
Handbook of Theoretical Computer Science, chapter 18, pages 945-971. The MIT
Press/Elsevier, Cambridge, MA, 1990.

Varman, P. J., B. R. Iyer, B. J. Haderle, and S. M. Dunn. Parallel merging:
Algorithm and implementation results. Parallel Computing, 15:165-177, 1990.

Vishkin, U. Structural parallel algorithmics. In Proceedings of ICALP, pages
363-380. Springer Verlag, 1991.

Vishkin, U. A parallel blocking flow algorithm for acyclic networks. Journal of
Algorithms, 13:489-501, September 1992.



