


JAVA BINDINGS TO PARALLEL VIRTUAL MACHINE

by

Eric Fialkowski

A project
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science

Boise State University

Spring 2004



The project presented by Eric Fialkowsk: entitled Java Bindings to Parallel Virtual
Machine is hereby approved.

Amit Jain, Advisor Date
John Griffin, Committee Member Date
Jyh-haw Yeh, Committee Member Date

Jack Pelton, Graduate Dean Date



This is dedicated to my kids (Chelsi, Logan, Cody, and Lacey) and the rest of my
family. Without their support, understanding, and sometimes pressuring I would not

have been able to accomplish this.

v



ACKNOWLEDGEMENTS

Thank you to all of my professors for preparing me to undertake this. Without
the knowledge you helped me garner throughout my college career, I would never
have been able to complete an undertaking such as this. I would also like to thank

my family again for helping me tackle and complete this endeavor.



ABSTRACT

Java bindings to Parallel Virtual Machine allows those who know Java to start
programming for Parallel Virtual Machine without learning a new language. This
allows them to focus on the parallel aspects. The binding will also allow new appli-
cations for parallel programming by exposing all of the libraries that Java provides.
While there a multitude of other languages and parallel communication libraries, this

combines a well known language with a well known library.
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Chapter 1

INTRODUCTION

1.1 Introduction

1.1.1 Background on clusters

Computing clusters are not a new concept. Large minicomputer/mainframe class
computers had clustering capabilities. A new class of cluster computer using cheaper
components, so called COTS - commercial of the shelf components, has emerged
allowing greater access to high-end computing power. The Beowulf cluster pioneered
by Donald Becker and Thomas Sterling at NASA’s Goddard Space Flight Center [1]
combines commonly found components such as the PC and Ethernet for a cost-

effective high-performance computing resource.

1.1.2 Background about Java

Java was developed by Sun Microsystems to be a portable computing language run-
ning on everything from embedded devices to high-end computers [2]. The language
has many features that help in developing programs including memory management
and forced error handling. This with an extensive built-in library allows a developer
to write many different types of programs without having to learn vastly different pro-

gramming paradigms. Java’s portable nature also allows a programmer to develop on
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a lower cost workstation and have the end result run a a much higher-end computer.

1.1.3 Background about PVM

Parallel Virtual Machine (PVM) is a library that allows multiple, smaller computers
to be networked together to act as a single, parallel computer. To quote the PVM

website: [3]

PVM (Parallel Virtual Machine) is a software package that permits a het-
erogeneous collection of Unix and/or Windows computers hooked together
by a network to be used as a single large parallel computer. Thus large
computational problems can be solved more cost effectively by using the
aggregate power and memory of many computers. The software is very
portable. The source, which is available free through netlib, has been

compiled on everything from laptops to CRAYs.

1.1.4 Using Java, PVM, and Beowulf Clusters

It only seems fitting that Java and PVM combine. The cross-platform nature of Java
allows clusters of heterogeneous machines to be constructed, taking advantages of
the given platform’s strengths. The error handling and memory management aspects
to Java also helps in writing well-behaved code. PVM also allows heterogeneous
programs to be written when it is necessary to get the highest performance possible

or to tie to legacy applications.



1.1.5 Prior works

There have been two other attempts to combine PVM and Java. One which serves
as a major basis for this project and another which provides PVM functionality but

is a Java-only solution.

jPVM

The project JPVM [4] serves as the foundation for the work of PVM Bindings in Java
(henceforth refered to as PBJ.) It is a simple JNI wrapper that provides a single
object for accessing PVM functionality. The work in this project is leveraged into

multiple objects and a more object-oriented design.

JPVM

The JPVM project [5] (not to be confused with the lowercased “PVM”) is a PVM-

like, all Java environment. From the project website:

JPVM is a PVM-like library of object classes implemented in and for
use with the Java Programming language. PVM is a popular message
passing interface used in numerous heterogeneous hardware environments
ranging from distributed memory parallel machines to networks of work-
stations. Java is the popular object oriented programming language from
Sun Microsystems that has become a hot-spot of development on the Web.
JPVM, thus, is the combination of both - ease of programming inherited

from Java, high performance through parallelism inherited from PVM.
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While JPVM is an impressive undertaking, native PVM compatibility was desired so
it was not well suited for the problem at hand. Connecting to standard C programs
written for PVM is a desired trait that JPVM does not facilitate. Programs written

with JPVM are only compatible with other programs written in JPVM.

1.1.6 Goals

This project has some modest goals. Create a library for writing programs in Java that
use the PVM system for communication. The library should be cross platform and
should be able to interact with PVM programs written in other languages (C being
the litmus test.) The library should follow standard Java programming paradigms,

where they make sense.



Chapter 2

ADVANTAGES OF JAVA AND PVM

2.1 Java’s Advantages

Java was designed as an object-oriented program language with various features for
building robust applications. Some features, such as Exceptions, help in writing
correct applications while other features help in connecting to databases or writing
graphical applications. Java was also designed to work on a variety of platforms which

can work in conjunction with PVM’s heterogeneous nature.

2.1.1 Memory Management

Java handles memory allocation and management removing an error prone task from
the programmer. Memory errors can still occur but are not as esoteric as memory

management errors in C.

2.1.2 Exceptions

Java’s exception routines help by taking a heavy-handed approach to force developers
to handle errors. It is still possible to ignore the exception by having an empty code
block in the catch section but the program will not compile without the try-catch

mechanism.
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2.1.3 Built-in support for threads/db connections/networking/graphics

Java has built-in support for threads which are useful for programs running on multi-
processor computers. Network communication can be regulated by writing a multi-
threaded program instead of spawning multiple processes and this can improve parallel
performance in some cases. JDBC allows for connecting to relational databases and

provides an abstraction for connecting to various databases.

Why is built-in better than external libraries?

There are many add on packages for C that provide graphics and threading but by
Java’s inclusion of them in the standard libraries, there are not new programming
paradigms to learn. In the case that the user’s main role is not programming (perhaps
a scientist who needs to program a simulation) the inclusion leads to one less thing

to learn.

2.1.4 Java’s Use in Computer Science Curricula

In a majority of computer science programs, much of the curriculum is being taught
with Java. By integrating Java and PVM, courses on parallel and distributed comput-
ing do not have to teach a whole new programming language, such as C. That leaves

more time in the course to focus on the features of PVM and parallel computing.



2.2 Why PVM

PVM has the advantage that it has been around and is a tried and true set of libraries.
There are many ways to write a parallel program but PVM has abstracted the low
level details out. A programmer can focus on the algorithms and not on the details
such as opening and closing sockets or group membership. PVM provides dynamic
task creation enabling the number of processors working on a given problem to grow
or shrink as needed. Tasks are uniquely identified so that messages can be passed
by task ID without knowing anything about where the task is running. PVM is
also designed to work on with heterogeneous networks, which matches Java’s cross

platform nature.

2.2.1 Pros and Cons for alternatives to PVM for parallel programs

PVM is not the only way to write parallel programs. There are many different ways,

each with their own advantages and disadvantages. See Table 2.1.



TABLE 2.1 Alternatives for writing parallel programs in Java
Method Pros Cons
sockets cross platform and cross pro- | very verbose programs.  Very
gramming language. Very little | few details are hidden from the
overhead. programiner.
JMS defined standard. Can pass ob- | Single language. Much overhead.
jects around.
CORBA cross platform and cross program- | Complex, implementations do not
ming language inter-operate very well
RMI work at the object level. Single language, high network
traffic overhead
MPI Well defined standard. No cross-implementation interop-
erability. Designed by
community.
SOAP cross platform and cross pro- | Bandwidth inefficient. Interoper-
gramming language. XML based | ability issues.
communication.
Grid Com- | SOAP-based parallel and dis- | Very new technology.
puting [15] | tributed computing targetted for
ad-hoc clusters




Chapter 3

DESIGN OF THE SYSTEM

3.1 Core Design Decisions

PBJ is designed to be an object-oriented abstraction of PVM. It should follow stan-
dard Java paradigms to ease developer transition from single-system programming to
parallel programming. At no point should the recognized standards for either Java
or for PVM override the need to break from said changes. The combination of PVM
and Java presents new possibilities and therefore will require new standards to be set.

There are a few ideals that should be followed, which are outlined below.
1. Must be thread-safe.
2. Exceptions will be used to propagate errors.
3. As close as compatibility as possible with C-based PV M.

4. Separation of functionality into classes.

3.2 Identifying components

The first step is to identify what objects exist in the system. Figure 3.1 shows the basic

components for PVM. PVM is based on the concept of sending messages to tasks.
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PVMTask fulfills the task role and PVMMessageBuffer encapsulates the messages. PBJ
departs slightly from standard PVM in that there is no concept of a default message
buffer. In reality, the default message buffers in PVM are not different from any other

message buffer. There are some behind-the-scenes conveniences occurring to make it

1

look like only one message buffer is active. Other major components identified

include PVMException, PVMGroup, and PVM.

Figure 3.1. High Level Conceptual Overview of the PVM system

3.2.1 Design of PVMTask

PVMTask represents the main execution unit in a parallel program. Any task running
in PVM must extend this task. This object mainly contains methods for receiving

messages. A task in PVM does some basic things: enrolls into PVM, exits from

lpvm_initsend() creates a new buffer and deletes the old versus actually clearing out the old
buffer.
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PVM, sends messages, receive messages, and processes data in the messages. The
PVMMessageBuffer class, which handles sending and processing messages, is unique
for each individual program (and hence the need to extend this class for tasks.) The
PVMTask object then is responsible for enrolling into PVM, exiting from PVM, and
receiving messages. There are some notification routines that also fall under receiving
messages. In order to help Java programmers migrate to writing PVM programs, the
concept of a listener for messages was created. Many Java programs are event-driven,
waiting for some input to act upon, so PBJ should mimic this behavior. In order
to achieve that, Java threading is utilized. PVM does not have a way to register
callbacks for when a given message is received. It would be very difficult to extend
callbacks from C into Java even if it did. PVM does however have a method to
look for a message waiting to be received. The PVM call “pvm_probe()” is used
from within a thread to see if there are any messages to be received. Event-driven
message reception is best suited for when the task needs to receive a various amount
of messages that can have a variety of different message tags. Such tasks are typically

the controller/master task for a given program.

TABLE 3.1 Major Methods for PVMTask

Method Name Purpose
myTID Returns the task’s TID in the system
exit Exits task from PVM system
receive Receives a PVMMessageBuffer, blocking
nonBlockingReceive | Receives a PVMMessageBuffer, non-blocking
timedReceive Receives a PVMMessageBuffer, blocks for timeout
enableMessageEvents | Starts polling thread to look for messages for
PVMMessageBufterListener
disableMessageEvents | Stops the polling thread
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Design of PVMMessageBufferListener

This interface is designed to allow PVMTask to decide which messages to listen for in
the asynchronous model and to provide a callback for processing. It is an interface
with the callback method and two selector methods. The selector methods are used to
state which TID and which message tags to accept and process messages for. A class
that wishes to process messages asynchronously needs to provide an implementation
of this interface.

TABLE 3.2 Major Methods for PVMMessageBufferListener

Method Name Purpose
lookingForMessageTag Returns the message tag to listen for
lookingForTID Returns the TID to listen for

receivedPVMMessageBuffer | Called when a message matching the tag and TID
is received (must override)

Design of PVMMessageBuffer Adapter

This object is an abstract object that provides basic implementations of the selector
methods of PVMMessageBufferListener. These default to any message from any
task. This deviates slightly from Java adapter classes in that the callback method
still needs to be overridden. This is due to the fact that the only reasonable default
processing would be to ignore the incoming message. This can just as easily be
accomplished by not receiving any messages (although there may be a build up of

waiting messages in the PVMD.)
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TABLE 3.3 Major Methods for PVMMessageBufferAdapter

Method Name Purpose
lookingForMessageTag Returns -1, the wildcard
lookingForTID Returns -1, the wildcard

receivedPVMMessageBuffer | Called when a message matching the tag and TID
is received (must override)

3.2.2 Design of PVMMessageBuffer

This class is really the work-horse of the system. Messages are the key component
in a message-passing system like PVM so most of the work happens here. Java’s
method overloading allows for some ease of use from the standard PVM message
packing routines. In standard PVM one must pack arrays and include the size of the
array (a C limitation Java overcomes) and the stride of the array. The stride is which
elements to include from the array. A stride of one means every item, two means
every other item and so on. So even when sending one item, the call includes the
size and stride (both set to one.) Java allows for methods that will handle setting
the trivial values for the programmer. Method overloading also allows for a single
function name for packing any of the different types. The data type is required to
be known to unpack data from a message. Java does not allow for the same method
name to return different data types. A PVMMessageBuffer also contains the methods

for sending itself.

Working with datatypes

Java and C have a slightly different primitive datatype set, with Java’s being more
restrictive at the same time as being more exact. Java’s datatypes are all mapped to

the underlying C routine so messages can contain any of int, short, long, float, double,
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char, byte, and boolean. The boolean is converted from true/false values to one and
zero. This allows boolean values to be sent between C and Java. There is also a
need to send Java objects for pure Java applications. Java’s built in remote method
invocation(RMI) uses a special type of object that can be sent across the network.
The java.io.Serializable interface indicates that an object can be turned into a
byte array that can be transfered across the network. This concept is well known and
works so it was extended into the PBJ system. RMI has the ability to send the class
definition across in addition to the data. PBJ does not need this capability because
the primary target operating environment is a Beowulf cluster where all programs
will have access to the same classes.

TABLE 3.4 Major Methods for PVMMessageBuffer

Method Name | Purpose
pack Places data into the buffer
unPack* Retrieves data from the buffer
freeBuffer Releases the buffer and all resources held by it
send Sends the buffer to the given task
makeBuffer | Factory method to create a PVMMessageBuffer object

3.2.3 Design of PVMException

PVMException is the class that is used to signal any error returns from the PVM
system. There are a variety of different error returns that can occur in the system.
One design idea would be to subclass PVMException for each different exception type.
This would follow a more strict object-oriented design idiom but could create extra
work for the programmer. For example, pvm_send() has three error returns, one

which is not that applicable to PBJ. If multiple exception types where used, there
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try {

}catch (I0Exception ioex) {

}catch (PVMPvmBadParamException pvmbpex) {
}catch (PVMPvmSysErrException pvmsyserrex) {

}

Figure 3.2. Verbose Catch Statements

would either need to be a catch block for each unique condition to handle or a catch
for the base class, then use instanceof to determine which condition occurred. It
was decided that having the cause in the exception and use only one exception type
would be just as useful. With a constant value in the exception, a switch case can be
used in the catch block when handling of the different exceptions is required. This
has a performance benefit over the instanceof. Many different exceptions can occur
in Java programs and by having just one type of exception for PBJ, code clutter
can be reduced. For example, in Figure 3.2 shows a verbose catch for each type of
Exception. Figure 3.3 shows a more typical condensed set of catch statements. When
handling is different for a certain error condition, the code in Figure 3.4 can be used

with higher efficiency than instanceof.

3.2.4 Design of PVMGroup

PVMGroup contains methods for group operations. These include the scatter, gather,

broadcast and reduce operations. There are some advantages to wrapping an object



try {
}catch (IOException ioex) {

}catch (PVMException pvmex) {

}

Figure 3.3. Streamlined Catch Statements

try {
}catch (I0Exception ioex) {

}catch (PVMException pvmex) {
switch ( pvmex.getReason() ) {

case PvmBadParam:
break;
default:
break;

}
}

Figure 3.4. Streamlined Catch Statements with Breakout

16
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around the group call. After a group is frozen, a flag is set in the object so no
further calls into the PVM system are required. The communication methods are
similar in nature to PVMMessageBuffer where there are overloaded methods for the
various datatypes. One missing feature is the ability to pass custom functions to the
reduce method. Callbacks from C to Java are difficult to write and add instability
to the Java program. The broadcast differs from standard PVM by requiring a

PVMMessageBuffer to be passed in instead of using the default send buffer.

TABLE 3.5 Major Methods for PVMGroup

Method Name | Purpose
getInstance | Returns which count in the group the caller is

gather* Performs a gather operation on the group returning the spec-
ified type

reduce* Performs a given reduce operation on the group returning the
specified type

scatter*® Performs a scatter operation on the group returning the spec-
ified type

size returns the current size of the group

3.2.5 Design of PVM

The PVM object represents the virtual parallel environment. There can only be one
such environment so the object is implemented as a singleton, ensuring that one
and only one instance of the object is ever created. The PVM class is responsible for
functionality such as spawning new tasks, killing existing tasks, sending signals, and
returning information about the current virtual machine. Most of the methods are
just wrapper methods to native calls but Java allows for some convenience by way of
function overloading. For instance, the spawn method has multiple versions based on

how many extra parameters are needed. The spawn method also shows a point where
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the method is more C-like than Java like. The method requires at a minimum the
task name and an array to hold the spawned tasks’ TIDs and returns the number of
tasks actual spawned. It is not common to use parameters in Java to return data. A
special spawn return type could have been created that contained the TID array and
the number of successful spawns. It was decided that returning data in parameters
was not that far of a break from standard Java coding practices and results in a little
less overhead. To check if all expected tasks where spawned, it is a simple matter to
check that the return equals the length of the passed in TID array. This should be

the norm that they are equal. The library was optimized for the common case.

TABLE 3.6 Major Methods for PVM

Method Name | Purpose
spawn start a new task
config returns an array of PUMHostInfo for all hosts in the virtual
machine
alltasks returns an array of PVMTaskInfo for all tasks running in the
virtual machine
kill kills the given task
halt shutdown the virtual machine and all tasks

3.2.6 Helper classes

There are some structures used in PVM that are ideal formats for the data they
contain. The structures are mapped into Java objects. These objects are not very

complex, which reflects the nature of the structures they represent.
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PVMHostInfo

This is a representation of the pvmhostinfo struct. It is a simple class to hold the
information that would normally be contained in the struct. The JNI call actually

calls back into Java to create these objects.

PVMTaskInfo

This represents the pvmtaskinfo struct. It is returned from calls to the PVM
environment requesting task information. The JNI call actually calls back into Java

to create these objects.

TimeVal

This object mimics C’s timeval struct. The struct is straightforward and there
did not seem to be any benefit from doing anything more than simply porting it to a

Java object. Various time or clock routines use this structure.

PVMObject

Java JNI libraries need to be loaded at run time. The library also should be loaded
only once. To facilitate the single point of loading, a base class was created. This
class has a static initializer to load the library. Any PBJ class that needs to access

native libraries extends this class.
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3.3 Tools used in construction

Various tools were used in the construction of PBJ. The tools reduced the complexity
of building, testing, and debugging the project. Sun’s Java Development Kit [12] was
used to develop the code. Any of the Java 2 versions (1.2, 1.3, or 1.4) should work
but development was done using the latest code. The code was developed primarily
using Redhat [7] Linux but has also been tested on Microsoft [8] Windows. Windows
would be an ideal target for development except configuring it to work with PVM
is challenging. The lack of a built in RSH daemon also provides a barrier to the

platform. The two differing platforms verified that PBJ is, indeed, cross platform.

3.3.1 Ant

Ant [9] is a build framework for Java. It is akin to make but is targeted for Java. It is
a cross platform build environment, written in Java and customizable. It is based on
the concept of tasks. Each task can depend on another task and there are a variety of
tasks that can be used (such as compiling, copying files, and creating jar files.) Since
PBJ uses C code in the JNI layer, a call to the command-line compiler was used. In

newer versions of Ant there is a task for compiling C code.

3.3.2 JUnit

Junit [10] is a unit test framework. Used in conjunction with Ant, it can perform
simple regression testing after every build. Tests for the basic functionality were
created to validate that results were consistent. Many complex aspects for PBJ could

be put into Junit test cases but was determined to not be as beneficial as just running



21

the basic tests.

3.3.3 Log4J

Log4J [11] is a logging library that abstracts out the what to log from the where to
log it to. Log4J has the concept of message hierarchy, so various levels of information
can be returned. Logging can go to various destinations - console, files, database, and
even remote receivers. The hierarchy helps by separating development messages from
error messages and can be configured without recompiling the program. The ability
to log to a remote destination can be particularly useful with parallel and distributed

programs.
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Chapter 4

SAMPLE PBJ PROGRAM

This chapter will show a basic PBJ program and then a larger program that spawns

a C program for computation.

4.1 Simple Example

There are a few basic sections in a PVM program.
1. Enroll in PVM
2. Send/receive messages
3. Process the messages

4. Exit PVM

Each of these steps will be explained where they are used in the timing code in
Appendix A.
The first step is that any task needs to extend pbj.PVMTask.

Next, to enroll in PVM it is a simple call to myTID() (Figure 4.1.)
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try
{
System.err.println("My tid: " + task.myTID());
}
catch (PVMException pvme)
{
pvme.printStackTrace() ;
System.exit(1);

Figure 4.1. Enrolling in PVM

Creating a message and sending is a call to PVMMessageBuffer.makeBuffer(),
followed by calls to pack() on the resultant buffer. The last step is to send() the

buffer (Figure 4.2).

Receiving and unpacking a message is accomplished by doing a receive() opera-
tion from PVMTask to first receive a buffer and then calling the appropriate unPack ()

methods (Figure 4.3.) to copy the data into variables.

Exiting from PVM is a simple call to exit () from PVMTask (Figure 4.4).

4.2 Mandelbrot Example

The next example is a more complete example, taking advantage of Java’s graphics

and using a C program to do the calculations. The Mandelbrot set is a computation-



public static final int SIZE = 1000;

PVMMessageBuffer sender = null;

sender = PVMMessageBuffer.makeBuffer (PvmDataRaw) ;

data = new int[SIZE];

// build up what we’re sending
for (int i = 0 ; i < SIZE ; i++)
{

datal[i] = i;

sender.pack(data) ;

// send it off
sender.send(toTID, 1);

Figure 4.2. Sending a message

24
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public static final int SIZE = 1000;

int datal] = null;

PVMMessageBuffer buffer = null;

buffer = task.receive(-1, 1);
data = buffer.unPackInt(SIZE);

Figure 4.3. Receiving a message

ally intensive program that falls under the “Embarrassingly Parallel” category [13],
so it is easy to adapt to parallel operation. The sample program has three different
ways that it can calculate the values. One is a sequential model, another uses multiple
worker threads (for testing multi-processor machines), and the third spawns off PVM
tasks to calculate the values.

The code for the PVM portion can be found in Appendix B.1. The major dif-
ferences between the simple task and the Mandelbrot task will be discussed. This
first important change comes with the class definition Figure 4.6. The class not
only extends PVMTask but also implements PVMMessageBufferListener to handle
the control messages. The PVMMessageBufferListener interface is how the object
actually processes messages and is shown in Figure 4.7. When a message is received,
the message tag is used to determine what needs to be done. The final difference

between the Mandelbrot example and the simple example is the code to spawn off
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try

{
System.err.println("Exiting from PVM");
task.exit();

}
catch (PVMException pvme)
{

pvme.printStackTrace() ;
}

Figure 4.4. Exiting from PVM

worker tasks shown in Figure 4.8. Method overloading helps with code readability
when there are no parameters or options that need to be sent in the spawn() call.

This shows how little code is required to add PVM routines to a Java application.



Figure 4.5. High Level System Overview of the Mandelbrot program

public class PVMMandelbrotMaster extends PVMTask
implements PVMMessageBufferListener {

Figure 4.6. Class Definition PVMMandelbrotMaster

27



public void receivedPVMMessageBuffer (PVMMessageBuffer buffer) {
try
{
int msgTag = buffer.getMessageTag();
int tidFrom = buffer.getSenderTID();

switch (msgTag)
{
case INITIALDATAREQUEST:

break;
case WORKREQUEST:

break;
case WORKRESULT:

break;
case WORKEREXIT:

break;
}

}
catch (PVMException pvmex )

{

pvmex.printStackTrace() ;

}

Figure 4.7.  PVMMandelbrotMaster Message Listener Callback



int tids[] = new int[count];
PVM pvm = PVM.getInstance();
int infos = pvm.spawn('"mandelbrot_worker",tids);

( infos > 0 );
Irtn ) {

for (int i = 0 ; i < tids.length; i++) {

if ( tids[i]l < 0 )
System.err.println(i + ": "
+ PVM.pvm_errlist[-1 * tids[i]]);

Figure 4.8. PVMMandelbrotMaster spawn code
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Chapter 5

PERFORMANCE FINDINGS

To test the performance overhead that Java interjects into parallel programs, a cou-
ple of simple tests were run. Loop timing for simple arithmetic will show the raw
performance difference between C and Java. Expecting Java would not win a flat out
performance race with C, it was decided to test message throughput to see what per-
formance penalty Java induced. Network communication is typically the bottleneck
for parallel and distributed programs so message throughput is an important metric.
Message throughput is tested two ways. One is with both tasks running on the same
machine. PVM uses Unix sockets for communication on the same host.! This results
in a low latency, high throughput channel. It is a good way to show the performance
penalty that Java injects without having the network communication adversely affect
the results. The other way throughput is measured is by passing messages between

two separate hosts. This shows how typical network overhead affects the results.

5.1 Basic Loop Timing

Java is not known for being the fastest processing language. Doing simple arithmetic

shows C’s strengths. For example, Figures 5.1 and 5.2 show two simple programs

!Linux and many other Unix versions use Unix sockets, Windows using TCP /IP sockets
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that just loop doing simple addition. Both were compiled with full optimizations and
no debug informations to get the results in Table 5.1. C is almost three times faster

than the Java equivalent.

int main(void) {
long start = 0, stop = O;
int i = 0, loop = O;
start = GetTickCount();
for ( loop = 0 ; loop < 100000000 ; loop++ )
{
i += loop;
}
stop = GetTickCount();
fprintf (stderr," %1d\n", (stop-start));

}
Figure 5.1. Simple C Counter
TABLE 5.1 Simple Counter performance
Timing
C | 0.063s
Java | 0.177s

5.2 Message Timing

Message throughput was measured by timing the time to send, receive, and verify
various sizes of messages. Messages of size one, two, four, eight, sixteen, thirty-two,
and sixty-four megabytes where used. Messages where sent in all combinations of
Java programs and C programs and sending messages to the same host and to differ-
ent hosts. The same hosts timing was done using a dual processor machine and the

different hosts timing was done using two single processor machines. Send time is the
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public class Counter

{
public static void main(String[] args)
{
int i = 0;
long start = System.currentTimeMillis();
for ( int loop = 0; loop < 100000000 ; loop++)
{
i += 1loop;
}
long stop = System.currentTimeMillis();
System.err.println(" " + (stop - start));
}
}

Figure 5.2.  Simple Java Counter

amount of time it takes to send the message. The receive timing is a combination of
the receiving program receiving the message, re-sending it, and the sending program
receiving the message. The validation step adds some processing to the timing by
having the sending program validate that the message it sent matches the message
it received. The total time metric was used for all comparisons. While Java cannot
keep up with C for raw performance, once network traffic is included the difference
becomes smaller. In Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8 comparing the percent
speed up that C programs sending to C programs have over Java to Java programs
shows that the speed up percentage decreases as the message size increases. The
same host timing shows that there is penalty for using Java. A C to C program can
be as high as 180% faster for small messages. A C program sending a one megabyte

message to a C receiver on a different host is 35% faster than Java to Java com-
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munication. For a 64MB message, however, the difference is only 20%. This can
be particularly relevant for programs that access large databases or other data from
across the network. Smaller sized messages show similar tendancies, with the differ-
ence widening slightly between Java and C. Communication overhead will drastically

hurt any parallel program if too many small messages are being transmitted, however.

TABLE 5.2 Speed up Data 1MB Message

Send (ms) | Receive Verification | Total (ms)
(ms) (ms)
Percent Percent Percent Percent
Speedup Speedup Speedup Speedup
Java sender to Java | 10 43 2 56
receiver
same host 0% 0% 0% 0%
Java sender to C |10 25 2 38
receiver
same host 0% 2% 0% 47%
C sender to Java |8 29 1 38
receiver
same host 25% 48% 100% 47%
C sender to C receiver | 8 11 1 20
same host 25% 291% 100% 180%
Java sender to Java | 11 133 2 147
receiver
different hosts 0% 0% 0% 0%
Java sender to C |11 115 2 128
receiver
different hosts 0% 16% 0% 15%
C sender to Java |8 117 1 127
receiver
different hosts 38% 14% 100% 16%
C sender to C receiver | 8 100 1 109
different hosts 38% 33% 100% 35%
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TABLE 5.3 Speed up Data 2MB Message

Send (ms) | Receive Verification | Total (ms)
(ms) (ms)
Percent Percent Percent Percent
Speedup Speedup Speedup Speedup
Java sender to Java | 23 68 3 95
receiver
same host 0% 0% 0% 0%
Java sender to C |23 42 4 69
receiver
same host 0% 62% -25% 38%
C sender to Java | 16 49 1 67
receiver
same host 43% 39% 200% 42%
C sender to C receiver | 15 23 1 40
same host 53% 196% 200% 138%
Java sender to Java | 25 248 4 277
receiver
different hosts 0% 0% 0% 0%
Java sender to C | 24 221 3 250
receiver
different hosts 4% 12% 33% 11%
C sender to Java | 17 226 2 245
receiver
different hosts 47% 10% 100% 13%
C sender to C receiver | 17 196 2 215
different hosts 47% 27% 100% 29%

5.3 Mandelbrot Timings

The Mandelbrot program was not used to provide timing comparisons. The purpose
of it was to show that a PVM program could be written using Java for part of the
program and use C to get higher performance. This combination illustrated what
would be a typical PBj program with some parts in Java and others in C. No adverse

affects were seen in the combination.



TABLE 5.4 Speed up Data 4MB Message

Send (ms) | Receive Verification | Total (ms)
(ms) (ms)
Percent Percent Percent Percent
Speedup Speedup Speedup Speedup
Java sender to Java | 47 120 7 175
receiver
same host 0% 0% 0% 0%
Java sender to C | 46 74 7 128
receiver
same host 2% 62% 0% 37%
C sender to Java | 32 89 3 125
receiver
same host 47% 35% 133% 40%
C sender to C receiver | 32 46 3 125
same host 47% 161% 133% 116%
Java sender to Java | 50 477 7 935
receiver
different hosts 0% 0% 0% 0%
Java sender to C | 50 428 7 486
receiver
different hosts 0% 11% 0% 10%
C sender to Java | 33 446 3 483
receiver
different hosts 52% 7% 133% 11%
C sender to C receiver | 33 394 3 432
different hosts 52% 21% 133% 24%
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TABLE 5.5 Speed up Data 8MB Message

Send (ms) | Receive Verification | Total (ms)
(ms) (ms)
Percent Percent Percent Percent
Speedup Speedup Speedup Speedup
Java sender to Java | 96 218 15 331
receiver
same host 0% 0% 0% 0%
Java sender to C |93 139 15 248
receiver
same host 3% 57% 0% 33%
C sender to Java | 66 169 7 242
receiver
same host 45% 29% 114% 3%
C sender to C receiver | 65 91 7 163
same host 48% 140% 114% 103%
Java sender to Java | 100 934 15 1050
receiver
different hosts 0% 0% 0% 0%
Java sender to C | 99 839 15 954
receiver
different hosts 1% 11% 0% 10%
C sender to Java | 66 884 7 959
receiver
different hosts 52% 6% 114% 9%
C sender to C receiver | 66 796 7 959
different hosts 52% 17% 114% 21%
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TABLE 5.6 Speed up Data 16MB Message

Send (ms) | Receive Verification | Total (ms)
(ms) (ms)
Percent Percent Percent Percent
Speedup Speedup Speedup Speedup
Java sender to Java | 193 420 34 648
receiver
same host 0% 0% 0% 0%
Java sender to C | 186 266 34 486
receiver
same host 4% 58% 0% 22%
C sender to Java | 137 328 13 479
receiver
same host 41% 28% 162% 35%
C sender to C receiver | 133 180 14 327
same host 45% 133% 143% 98%
Java sender to Java | 199 1829 36 2065
receiver
different hosts 0% 0% 0% 0%
Java sender to C | 197 1670 35 1902
receiver
different hosts 1% 10% 3% 9%
C sender to Java | 133 1736 13 1885
receiver
different hosts 50% 5% 177% 10%
C sender to C receiver | 133 1568 18 1719
different hosts 50% 17% 100% 20%

37



TABLE 5.7 Speed up Data 32MB Message

Send (ms) | Receive Verification | Total (ms)
(ms) (ms)
Percent Percent Percent Percent
Speedup Speedup Speedup Speedup
Java sender to Java | 388 813 93 1297
receiver
same host 0% 0% 0% 0%
Java sender to C | 375 519 93 989
receiver
same host 3% 57% 0% 31%
C sender to Java | 277 642 28 951
receiver
same host 40% 27% 232% 36%
C sender to C receiver | 262 354 27 644
same host 48% 130% 244% 101%
Java sender to Java | 389 3602 93 4087
receiver
different hosts 0% 0% 0% 0%
Java sender to C | 396 3298 93 3786
receiver
different hosts -2% 9% 0% 8%
C sender to Java | 262 3446 32 3741
receiver
different hosts 48% 5% 191% 9%
C sender to C receiver | 261 3147 32 3741
different hosts 49% 14% 191% 19%
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TABLE 5.8 Speed up Data 64MB Message

Send (ms) | Receive Verification | Total (ms)
(ms) (ms)
Percent Percent Percent Percent
Speedup Speedup Speedup Speedup
Java sender to Java | 826 1661 206 2701
receiver
same host 0% 0% 0% 0%
Java sender to C | 802 1075 204 2083
receiver
same host 3% 55% 1% 30%
C sender to Java | 551 1268 54 1875
receiver
same host 50% 31% 281% 44%
C sender to C receiver | 529 698 54 1282
same host 56% 138% 281% 111%
Java sender to Java | 799 7166 187 8159
receiver
different hosts 0% 0% 0% 0%
Java sender to C | 780 6611 187 7589
receiver
different hosts 2% 8% 0% 8%
C sender to Java | 528 6829 63 7418
receiver
different hosts 51% 5% 197% 10%
C sender to C receiver | 535 6243 57 6834
different hosts 49% 15% 228% 19%
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Chapter 6

PROBLEMS/ISSUES

6.1 Java Induced Issues

Java behaves differently than C so that are some differences in PVM programs written
in C versus those written in Java. PvmDataInPlace cannot be used due to Java’s
memory model and the use of JNI. This can provide some performance penalties
from copying data mutliple times. Another Java requirement is that objects can only
be sent using the encoding type PvmDataRaw. This really is not a problem since the
only task that would receive the object would also be a Java task. Java defines the

endianess for the run-time so no ill-transitions will occur.

6.2 JNI Layer

Using JNI presents a variety of problems with Java programs. Executing code outside
of the JVM introduces another layer of complexity and also the possibility of program
crashes. The concept of the JVM class loader also has problems with JNI access from
classes loaded from different classloaders. For instance, the popular Servlet container
Tomcat [6] uses multiple class loaders to isolate the various web-apps that are being

served. Loading the JNI library through one of these auxillary class loaders creates
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stability issues that were discovered when developing a simple servlet to show tasks
running in the virtual machine. Many recommended work-arounds failed to solve the

problem.

6.3 Performance

In the simplest of problems, C outshines Java’s performance. A simple loop and
count for integers shows a nearly three-fold speed benefit for C. Once processing
becomes more complex, however, the performance gains are not as great. Sun’s
own cryptography library was implemented in Java instead of native code because it

actually performed better. [14]
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Chapter 7

CONCLUSIONS

PVM bindings in Java provides a useful tool for developing parallel programs. Not
only can Java’s features be leveraged to provide new uses for parallel programs, but
exising PVM programs can be enhanced via Java extensions (for instance by adding
a GUIL) Future enhancements to PBJ could include re-writing the underlying JNI
calls to use straight Java but as it stands, PBJ is ready to be used for non-trivial
programs. Another possible enhancement would be to take the work done to link
Java and PVM and extend the same ideas and principles to MPI. This would provide
two communications primitives for parallel programs written in Java. Even though
Java cannot keep up with C for raw performance, other factors weigh into making a

tool useful for writing parallel programs.
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Appendix A

TIMING CODE

A.1 Java Timing Task

package samples.timing;

import PBJ.x;

public class TimingTask extends PVMTask
{

public static final int SIZE
public static final int LOOP

1000;
1000000000;

public static void main(String[] args)

{
int datal[] = null;
int toTID = -1;

if (args.length > 0)
{
toTID = Integer.parselnt(args[0]);

TimingTask task = new TimingTask();

//
// Enroll in PVM
//
try
{
System.err.println("My tid: " + task.myTID());
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catch (PVMException pvme)

{
pvme.printStackTrace();
System.exit(1);

PVMMessageBuffer buffer = null;
PVMMessageBuffer sender = null;

for (int 1 = 0; 1 < LOOP; 1++)

{
sender = null;
buffer = null;
data = null;

// Look to see if task is the receiver or sender
if (toTID < 0)

{
// receiver....
try
{
sender = PVMMessageBuffer.makeBuffer (PvmDataRaw) ;
System.err.println("Waiting...." + 1);
// receive
buffer = task.receive(-1, 1);
data = buffer.unPackInt(SIZE);
// return
sender .pack(data) ;
sender.send(buffer.getSenderTID(),1);
System.err.println("Received " + data.length
+ " integers");
buffer.freeBuffer();
sender.freeBuffer();
}
catch (PVMException pvme)
{
pvme.printStackTrace();
}
}
else
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// sender

try
{

}

sender = PVMMessageBuffer.makeBuffer (PvmDataRaw) ;
data = new int[SIZE];

// build up what we’re sending
for (int i = 0 ; i < SIZE ; i++)
{
datali] = i;
}
System.out.print(l + ",");
long start = System.currentTimeMillis();
sender.pack(data) ;

// send it off
sender.send(toTID, 1);

long sent = System.currentTimeMillis();
// wait for the rebound

buffer = task.receive(-1, 1);

int rtn[] = buffer.unPackInt(SIZE);

long rxed = System.currentTimeMillis();
for (int i = 0 ; 1 < SIZE ; i++)

{
if ( rtn[i] != data[i] )
{
System.err.println("Data mismatch at index "
+1);
}
}

buffer.freeBuffer();
sender.freeBuffer();

long stop = System.currentTimeMillis();
System.out.print((sent - start) + ",");
System.out.print((rxed - sent) + ",");
System.out.print((stop - rxed) + ",");
System.out.println((stop - start));

catch (PVMException pvme)

{

pvme.printStackTrace();



}

} // end of LOOP

//

// Exit from PVM

//

try

{
System.err.println("Exiting from PVM");
task.exit();

}

catch (PVMException pvme)

{

pvme.printStackTrace() ;

A.2 C Timing Task

#include <stdio.h>
#include <pvm3.h>
#include "timing.h"

#tdefine SIZE 1000000
#define LOOPS 1000

void CheckReturn( int rtn )

{
if ( rtn < PvmOk ) {
pvm_perror( "Fatal Error" );

exit( 1 );
b
}
int main( int argc, char * * argv )
{
int myTid = -1;
int toTid = -1;

int info = 0;
int 1list1[SIZE];
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int 1ist2[SIZE];

int loopl, loop2 = 0;

int bufID = 0, bytes = 0, msgTag = 0, sendTID = O;
long start = 0, stop = 0, recv = 0, sent = 0;

if ( argec > 1)
toTid = atoi( argv[1] );

myTid = pvm_mytid();
CheckReturn( myTid ) ;

fprintf( stderr, "My tid: %d\n", myTid );

for ( loop2 = 0; loop2 < LOOPS; loop2++ ) {
if ( toTid < 0 ) {
/* receiver x/

fprintf( stderr, "Waiting...%d\n", loop2 );
bufID = pvm_recv( -1, 1 );
CheckReturn( bufID );

info = pvm_upkint( listl, SIZE, 1 );
CheckReturn( info );

info = pvm_bufinfo( bufID, & bytes, & msgTag, & sendTID );
CheckReturn( info );

bufID = pvm_initsend( PvmDataRaw ) ;
CheckReturn( bufID );

info = pvm_pkint( listl, SIZE, 1 );
CheckReturn( info );

info = pvm_send( sendTID, 1 );
CheckReturn( info );

fprintf( stderr, "Received %d integers from %d\n",
bytes / sizeof( int ), sendTID );

} else {
bufID = pvm_initsend( PvmDataRaw );

CheckReturn( bufID );
/* sender */



for ( loopl = 0; loopl < SIZE; loopl++ ) {
list1[loopl] = loopi;
}

printf( "%d,", loop2 );
start = GetTickCount();

info = pvm_pkint( listl, SIZE, 1 );
CheckReturn( info );

info = pvm_send( toTid, 1 );
CheckReturn( info );

sent = GetTickCount();

info = pvm_recv( -1, 1 );

info = pvm_upkint( 1list2, SIZE, 1 );
CheckReturn( info );

recv = GetTickCount();

for ( loopl = 0; loopl < SIZE; loopl++ ) {
if ( list1[loopi] != list2[loopi]l ) {
fprintf( stderr, "Data mismatch at index ’%d\n", loopl );
}
}
stop = GetTickCount();

printf( "%d,%d,%d,%d\n", ( sent - start ), ( recv - sent ),
( stop - recv ), ( stop - start ) );

}
}
fprintf( stderr, "Exiting from PVM\n" );
info = pvm_exit();
CheckReturn( info );

return O;



Appendix B

MANDELBROT PVM CODE

B.1 Java code

package samples.mandlebrot;
import PBJ.x;

public class PVMMandelbrotMaster extends PVMTask
implements PVMMessageBufferListener {

Mandelbrot mb;
int count;

protected static final int INITIALDATAREQUEST = 1;
protected static final int INITIALDATARESPONSE = 2;
protected static final int WORKREQUEST = 3;
protected static final int WORKRESPONSE = 4;
protected static final int WORKRESULT = 5;
protected static final int ENDWORKER = 6;
protected static final int WORKEREXIT = 7;
protected static final int PARENTEXIT = 8;

public PVMMandelbrotMaster (Mandelbrot _mb)
{
mb = _mb;
addPVMMessageBufferListener (this) ;
}

public void receivedPVMMessageBuffer (PVMMessageBuffer buffer)
try

20



}
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int msgTag = buffer.getMessageTag();
int tidFrom = buffer.getSenderTID();

PVMMessageBuffer sendBuffer = PVMMessageBuffer.makeBuffer();

switch (msgTag)

{

}

case INITTALDATAREQUEST:
count++;
sendBuffer.pack(Mandelbrot.getRealMin()) ;
sendBuffer.pack(Mandelbrot.getRealMax()) ;
sendBuffer.pack(Mandelbrot.getImaginaryMin()) ;
sendBuffer.pack(Mandelbrot.getImaginaryMax()) ;
sendBuffer.pack(mb.getDisplayWidth()) ;
sendBuffer.pack(mb.getDisplayHeight());
sendBuffer.pack(mb.getMax());
sendBuffer.send (tidFrom, INITIALDATARESPONSE);
break;

case WORKREQUEST:
int next = mb.getNextIter();
sendBuffer.pack(next) ;
sendBuffer.send (tidFrom, WORKRESPONSE) ;
break;

case WORKRESULT:
int col = buffer.unPackInt();
int data[] = buffer.unPackInt(mb.getDisplayHeight());
mb.drawColumn(col, data);
break;

case WORKEREXIT:
int workDone = buffer.unPackInt();
System.out.println("Worker: " + tidFrom + " did "

+ workDone + " work units");

if ( --count == 0 )

{
mb.endit();
disableMessageEvents();
}
break;

catch (PVMException pvmex )

{

}

pvmex.printStackTrace();



public boolean spawn(int count)
{
enableMessageEvents (100) ;
boolean rtn = true;
try
{
int tids[] = new int[count];
PVM pvm = PVM.getInstance();
int infos = pvm.spawn("mandelbrot_worker",tids);
rtn = ( infos > 0 );
if ( !'rtn ) {
for ( int 1 = 0 ; i < tids.length; i++) {
if ( tids[i] < 0 )
System.err.println(i + ": "
+ PVM.pvm_errlist[-1 * tids[i]1);

}
catch ( PVMException pvmex )

{
pvmex.printStackTrace() ;
rtn = false;

}

return rtn;

public int lookingForTID() {
return -1;

}

public int lookingForMessageTag() {
return -1;

3

B.2 C code

#include <stdio.h>
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#include <stdlib.h>
#include <string.h>
#include <pvm3.h>

#include <sys/time.h>

/%
* gcc -L/usr/share/pvm3/1ib/LINUXI386/ -I/usr/share/pvm3/include/ \
* -0 mandelbrot_worker mandelbrot_worker.c -1lpvm3

*/

/*
* While these would normally go in a .h file, there is no "sharing"
* between Java and C so we just stuff them here
*/

#define INITIALDATAREQUEST

#define INITIALDATARESPONSE

#define WORKREQUEST

#define WORKRESPONSE

#define WORKRESULT

#define ENDWORKER

#define WORKEREXIT

#define PARENTEXIT

0O ~NO O WN -

void checkPVMError(int result, char *msg)

{
//printf ("Checking result from %s\n", msg);
if ( result < PvmOk ) {
pvm_perror (msg) ;
exit(1);
}
}

void checkParentExit(int parentTID) A
int info = pvm_probe ( parentTID, PARENTEXIT );
if ( info > 0 ) {
printf ("Parent exited. Exiting.\n");
pvm_exit () ;
exit(1);

// does the actual calculation for a pixel
int calculatePixel(float c_real, float c_imaginary, int max)
{

int count = 0;
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float temp = 0.0F, lengthSq = 0.0F;
float z_real = 0.0F;
float z_imaginary = 0.0F;

do {
temp = (z_real * z_real) -

(z_imaginary * z_imaginary) + c_real;
z_imaginary = (2 * z_real * z_imaginary) + c_imaginary;
z_real = temp;
lengthSq = z_real * z_real + z_imaginary * z_imaginary,

} while ( (lengthSq < 4.0F) && (++count < max) );

return count;

int main(int argc, char **argv)

{

// things to fetch before starting
float realMin = 0.0F;

float realMax = 0.0F;

float imaginaryMin = 0.0F;

float imaginaryMax = 0.0F;

int displayWidth = 0;

int displayHeight = 0;

int max = 0;

// Lets us know when we are done
int more = 1;

int myParent = pvm_parent();
checkPVMError (myParent, "pvm_parent");

int tids[1];
tids[0] = myParent;
int info = pvm_notify( PvmTaskExit, PARENTEXIT, 1, tids );

// time out so we don’t just wait for ever
struct timeval tmout;

tmout.tv_sec = 60;

tmout.tv_usec = 0;

// request inital data
info = pvm_initsend(PvmDataDefault) ;
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checkPVMError(info,"initsend - ask for initial data");
info = pvm_send(myParent,INITIALDATAREQUEST) ;
checkPVMError(info,"send - ask for initial data");

checkParentExit (myParent) ;

// receive the inital data

int bufid = pvm_trecv(myParent,INITIALDATARESPONSE, &tmout) ;
checkPVMError (bufid,"recv - initial data");

info = pvm_upkfloat(&realMin,1,1);
checkPVMError (info, "pvm_upkfloat - realMin");

info = pvm_upkfloat(&realMax,1,1);
checkPVMError (info, "pvm_upkfloat - realMax");

info = pvm_upkfloat(&imaginaryMin,1,1);
checkPVMError (info, "pvm_upkfloat - imaginaryMin");
info = pvm_upkfloat(&imaginaryMax,1,1);
checkPVMError (info, "pvm_upkfloat - imaginaryMax");
info = pvm_upkint(&displayWidth,1,1);
checkPVMError (info,"pvm_upkint - displayWidth");
info = pvm_upkint(&displayHeight,1,1);
checkPVMError (info, "pvm_upkint - displayHeight");
info = pvm_upkint(&max,1,1);
checkPVMError (info, "pvm_upkint - max");

float scaleReal = (realMax - realMin)/displayWidth;
float scaleImaginary =
(imaginaryMax - imaginaryMin)/displayHeight;

int workdone = 0;

do {
float c_real = 0.0F;
float c_imaginary = 0.0F;

// request a round of work....

int info = pvm_initsend(PvmDataDefault) ;
checkPVMError(info,"initsend - ask for work");
info = pvm_send(myParent,WORKREQUEST) ;
checkPVMError (info,"send - ask for work");

checkParentExit (myParent) ;
// receive a round of work....

tmout.tv_sec = 60;
tmout.tv_usec = 0;



int bufid = pvm_trecv(myParent,WORKRESPONSE,&tmout) ;

checkPVMError (bufid,"recv - work");

// get the work

int column = -1;

info = pvm_upkint(&column,1,1);
checkPVMError (info,"pvm_upkint - column");

// do the work....

if ( column < 0 ) {
more = 0;
printf("Done with work...\n");
continue;

workdone++;

int vert[displayHeight];

int y = 0;

for (y = 0; y < displayHeight ; y++ )
{

c_real = realMin + ((float)column * scaleReal);

o6

c_imaginary = imaginaryMin + ((float)y * scalelmaginary);

vert[y] = calculatePixel(c_real, c_imaginary,max);

// send the results
info = pvm_initsend(PvmDataDefault);
checkPVMError (info,"initsend");

info = pvm_pkint(&column,1,1);
checkPVMError (info,"pkint") ;
info = pvm_pkint(vert,displayHeight,1);

checkPVMError (info, "pkint") ;

info = pvm_send(myParent,WORKRESULT) ;
checkPVMError (info,"send") ;

checkParentExit (myParent) ;

} while ( more );

info = pvm_initsend(PvmDataDefault) ;
checkPVMError (info,"initsend");



info = pvm_pkint (&workdone,1,1);
checkPVMError (info, "pkint") ;

info = pvm_send(myParent,WORKEREXIT) ;
checkPVMError (info,"send") ;

printf ("Exit...\n");
return pvm_exit();
} // end of main....

o7
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Appendix C

PERFORMANCE DATA

Values obtained from the Beowulf cluster maintained by the Computer Science De-
partment at Boise State University and funded by NSF Grant 0321233. The head
node is a dual 2.4 GHz Xeon processor Linux system with 4 GB of RAM running
a 2.4.24 kernel. The nodes are dual 2.4 GHz Xeon processors with 1 GB of RAM.
The heap size for Java was increased to 256 megabytes so that memory allocation
would not be a problem. Tests where run ten times. Results where paired down to
eight by removing minimum and maximum values. The Java programs where com-
piled using Java 1.4.2 turning off debug options (-g:none). The C programs where
compiled using GCC 3.2.2 with -O3 optimizations turned on. Timing in Java used
System.currentTimeMillis() . The C timing used some custom subroutines based

on gettimeofday().



C.1 Loop Timing

Time (seconds)
217
184
207
.168
.168
.168
.168
184
.168
172
77

Time (seconds)
.062
.063
.062
.063
.063
.062
.063
.063
.063
.063
.063

TABLE C.1 Java Loop Timings

TABLE C.2 C Loop Timings
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C.2 Message Timing

TABLE C.3 C Sender to C Receiver, 1 Megabyte Message, Same Host

Send | Receive | Verify | Total
9 13 1 23
8 11 1 20
8 11 1 20
8 11 1 20
8 11 1 20
8 12 0 20
8 12 1 21
8 12 1 21
7 12 1 20
8 12 1 21
8 11 1 20

TABLE C.4 C Sender to C Receiver, 1 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
9 102 1 112
8 101 1 110
8 101 1 110
9 100 1 110
9 101 1 111
8 100 1 109
8 98 2 108
8 99 1 108
9 100 1 110
9 99 1 109
8 100 1 109




TABLE C.5 C Sender to C Receiver, 2 Megabyte Message, Same Host

Send | Receive | Verify | Total
18 34 2 54
15 23 2 40
16 23 2 41
16 23 2 41
15 24 1 40
16 23 2 41
15 23 2 40
16 23 1 40
16 23 2 41
16 23 2 41
15 23 1 40

TABLE C.6 C Sender to C Receiver, 2 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
19 202 2 223
16 201 2 219
17 200 2 219
17 196 2 215
17 193 2 212
17 193 2 212
18 192 2 212
17 197 2 216
17 197 2 216
17 198 2 217
17 196 2 215




TABLE C.7 C Sender to C Receiver, 4 Megabyte Message, Same Host

Send | Receive | Verify | Total
37 51 3 91
32 46 4 82
32 45 4 81
32 46 4 82
33 46 3 82
32 46 3 81
32 45 4 81
32 46 3 81
32 47 3 82
32 48 3 83
32 46 3 81

TABLE C.8 C Sender to C Receiver, 4 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
37 398 3 438
34 385 4 423
33 400 3 436
33 402 3 438
33 402 3 438
33 400 4 437
34 390 4 428
34 388 3 425
34 388 3 425
34 392 3 429
33 394 3 432




TABLE C.9 C Sender to C Receiver, 8 Megabyte Message, Same Host

Send | Receive | Verify | Total
76 109 7 192
65 92 6 163
66 91 7 164
65 91 7 163
65 92 7 164
66 91 7 164
64 90 7 161
66 90 7 163
66 90 7 163
65 93 7 165
65 91 7 163

TABLE C.10 C Sender to C Receiver, 8 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
75 808 7 890
66 793 7 866
66 797 8 871
66 789 8 863
65 799 8 872
68 781 8 857
66 792 8 866
65 799 8 872
65 800 8 873
66 800 8 874
66 796 7 869




TABLE C.11  C Sender to C Receiver, 16 Megabyte Message, Same Host

Send | Receive | Verify | Total
148 203 14 365
131 180 14 325
132 179 14 325
133 181 13 327
133 181 14 328
133 181 14 328
133 178 14 325
134 180 14 328
134 180 14 328
132 184 14 330
133 180 14 327

TABLE C.12 C Sender to C Receiver, 16 Megabyte Message, Different Hosts

Send | Receive | Verify | Total

147 1633 18 1798
135 1543 18 1696
132 1562 18 1712
135 1551 18 1704
131 1599 18 1748
135 1574 18 1727
131 1576 18 1725
133 1570 18 1721
131 1575 18 1724
135 1540 18 1693

133 1568 18 1719




TABLE C.13 C Sender to C Receiver, 32 Megabyte Message, Same Host

Send | Receive | Verify | Total

279 435 27 741

260 353 28 641
260 352 28 640
260 354 27 641
265 353 28 646
263 354 27 644
262 356 27 645
262 354 27 643

264 355 27 646
262 358 28 648

262 354 27 644

TABLE C.14 C Sender to C Receiver, 32 Megabyte Message, Different Hosts

Send | Receive | Verify | Total

293 3156 33 3482
262 3126 33 3421
264 3137 32 3433
261 3168 32 3461
261 3173 33 3467
260 3137 33 3430
261 3130 33 3424
260 3156 33 3449
262 3114 33 3409
260 3181 33 3474

261 3147 32 3444




TABLE C.15 C Sender to C Receiver, 64 Megabyte Message, Same Host

Send | Receive | Verify | Total
600 808 54 1462
533 701 55 1289
527 694 55 1276
528 697 55 1280
529 695 55 1279
531 701 55 1287
530 695 54 1279
528 693 55 1276
528 700 55 1283
532 701 55 1288
529 698 54 1282

TABLE C.16 C Sender to C Receiver, 64 Megabyte Message, Different Hosts

Send | Receive | Verify | Total

289 6420 o8 7067
524 6333 o7 6914
042 6126 26 6724
922 6368 57 6947
933 6243 57 6833
042 6138 57 6737
041 6141 57 6739
042 6211 57 6810
541 6241 o7 6839
522 6273 o8 6853

935 6243 57 6834
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TABLE C.17 C Sender to Java Receiver, 1 Megabyte Message, Same Host

Send | Receive | Verify | Total
9 37 1 47
8 29 1 38
8 29 1 38
7 31 1 39
8 29 1 38
8 29 1 38
8 29 1 38
8 29 1 38
8 29 1 38
8 29 1 38
8 29 1 38

TABLE C.18 C Sender to Java Receiver, 1 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
10 123 1 134
9 116 1 126
9 117 1 127
9 118 1 128
9 117 1 127
9 118 1 128
8 118 1 127
8 116 1 125
9 117 1 127
9 117 1 127
8 117 1 127
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TABLE C.19 C Sender to Java Receiver, 2 Megabyte Message, Same Host

Send | Receive | Verify | Total
18 63 1 82
16 49 1 66
16 49 1 66
16 50 2 68
16 50 2 68
16 50 2 68
16 49 2 67
16 50 1 67
16 49 2 67
16 49 2 67
16 49 1 67

TABLE C.20 C Sender to Java Receiver, 2 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
19 235 2 256
17 226 2 245
16 229 2 247
17 228 2 247
17 227 2 246
17 225 2 244
17 225 2 244
17 225 2 244
17 225 2 244
17 230 2 249
17 226 2 245




C Sender to Java Receiver, 4 Megabyte Message, Same Host
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C Sender to Java Receiver, 4 Megabyte Message, Different Hosts

TABLE C.21
Send | Receive | Verify | Total
37 111 4 152
33 86 4 123
32 87 4 123
33 88 3 124
32 89 4 125
32 89 4 125
32 90 4 126
32 90 4 126
32 90 3 125
33 90 5 128
32 89 3 125
TABLE C.22
Send | Receive | Verify | Total

38 454 4 496
33 442 4 479
35 434 3 472
33 451 3 487
33 445 4 482
34 447 3 484
34 439 4 477
34 448 4 486
33 449 4 486
33 451 4 488
33 446 3 483




TABLE C.23 C Sender to Java Receiver, 8 Megabyte Message, Same Host

Send | Receive | Verify | Total
76 208 7 291
66 163 7 236
66 162 7 235
66 167 7 240
66 170 7 243
65 171 7 243
66 169 7 242
66 170 7 243
66 171 7 244
66 171 11 248
66 169 7 242

70

TABLE C.24 C Sender to Java Receiver, 8 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
7 884 7 968
67 874 8 949
66 885 7 958
65 883 7 955
65 883 7 955
65 896 8 969
68 871 8 947
66 894 8 968
65 883 8 956
66 890 8 964
66 884 7 959




C Sender to Java Receiver, 16 Megabyte Message, Same Host

TABLE C.25
Send | Receive | Verify | Total
154 385 13 552
137 317 14 468
137 317 14 468
136 320 13 469
138 333 14 485
139 332 14 485
137 333 14 484
137 334 13 484
138 330 14 482
136 330 14 480
137 328 13 479
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TABLE C.26 C Sender to Java Receiver, 16 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
151 1746 13 1910
132 1747 13 1892
136 1701 13 1850
131 1738 13 1882
132 1744 14 1890
131 1757 13 1901
137 1704 13 1854
136 1725 13 1874
132 1734 13 1879
133 1769 13 1915
133 1736 13 1885
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TABLE C.27 C Sender to Java Receiver, 32 Megabyte Message, Same Host

Send | Receive | Verify | Total
318 685 28 1031
280 616 27 923
276 621 28 925
278 616 55 949
277 648 29 954
275 651 28 954
275 647 28 950
274 653 28 955
278 651 28 957
277 654 33 964
277 642 28 951

TABLE C.28 C Sender to Java Receiver, 32 Megabyte Message, Different Hosts

Send | Receive | Verify | Total

302 3479 33 3814
262 3411 32 3705
260 3404 32 3696
260 3435 32 3727
260 3445 33 3738
259 3474 32 3765
259 3452 32 3743
260 3491 32 3783
269 3390 32 3691
268 3475 33 3776

262 3446 32 3741




TABLE C.29 C Sender to Java Receiver, 64 Megabyte Message, Same Host

Send | Receive | Verify | Total
620 1498 54 2172
547 1216 55 1818
547 1220 54 1821
554 1208 54 1816
553 1287 54 1894
552 1284 54 1890
549 1282 55 1886
551 1285 55 1891
555 1286 55 1896
553 1287 69 1909
551 1268 o4 1875
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TABLE C.30 C Sender to Java Receiver, 64 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
606 6912 63 7581
537 6826 62 7425
537 6745 63 7345
537 6699 63 7299
523 6885 64 7472
522 6866 63 7451
521 6794 63 7378
536 6804 63 7403
517 6862 63 7442
515 6856 63 7434
528 6829 63 7418
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TABLE C.31 Java Sender to C Receiver, 1 Megabyte Message, Same Host

Send | Receive | Verify | Total
14 31 2 47
11 27 2 40
10 25 2 37
11 26 2 39
11 25 2 38
11 25 2 38
10 26 1 37
10 26 2 38
10 25 2 37
11 27 2 40
10 25 2 38

TABLE C.32 Java Sender to C Receiver, 1 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
14 115 2 131
12 117 1 130
12 115 2 129
11 114 3 128
12 114 2 128
11 115 2 128
12 116 2 130
11 116 2 129
11 115 2 128
12 113 2 127
11 115 2 128




TABLE C.33 Java Sender to C Receiver, 2 Megabyte Message, Same Host

Send | Receive | Verify | Total
26 45 4 75
23 45 4 72
23 41 4 68
23 43 4 70
23 41 4 68
24 41 4 69
23 42 3 68
22 42 4 68
22 42 4 68
23 42 4 69
23 42 4 69
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TABLE C.34 Java Sender to C Receiver, 2 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
27 223 4 254
25 224 4 253
25 217 4 246
24 224 3 251
25 218 3 246
25 221 4 250
24 223 4 251
25 223 4 252
25 222 4 251
25 217 4 246
24 221 3 250
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TABLE C.35 Java Sender to C Receiver, 4 Megabyte Message, Same Host

Send | Receive | Verify | Total
52 90 8 150
46 78 8 132
46 73 8 127
46 7 8 131
46 74 8 128
46 74 7 127
46 74 7 127
46 74 8 128
46 73 7 126
46 74 7 127
46 74 7 128

TABLE C.36 Java Sender to C Receiver, 4 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
56 437 8 501
51 435 8 494
50 434 8 492
50 431 7 488
51 416 8 475
50 425 8 483
49 430 7 486
51 426 8 485
50 427 7 484
51 421 7 479
50 428 7 486
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TABLE C.37 Java Sender to C Receiver, 8 Megabyte Message, Same Host

Send | Receive | Verify | Total
107 175 16 298
92 146 16 254
93 137 15 245
93 145 15 253
93 137 16 246
94 137 15 246
93 138 15 246
94 137 16 247
94 137 15 246
94 140 15 249
93 139 15 248

TABLE C.38 Java Sender to C Receiver, 8 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
107 870 16 993
101 847 15 963
100 838 15 953
100 832 16 948
98 826 15 939
97 849 15 961
100 840 15 955
100 829 15 944
97 841 16 954
99 843 16 958
99 839 15 954




TABLE C.39 Java Sender to C Receiver, 16 Megabyte Message, Same Host

Send | Receive | Verify | Total
205 297 34 536
185 280 34 499
186 265 34 485
185 277 35 497
186 260 35 481
184 260 34 478
186 262 35 483
186 259 35 480
187 262 35 484
187 263 35 485
186 266 34 486
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TABLE C.40 Java Sender to C Receiver, 16 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
214 1725 35 1974
197 1693 36 1926
198 1660 35 1893
197 1681 36 1914
198 1644 35 1877
198 1663 35 1896
197 1659 35 1891
197 1663 36 1896
196 1682 35 1913
192 1661 35 1888
197 1670 35 1902
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TABLE C.41 Java Sender to C Receiver, 32 Megabyte Message, Same Host

Send | Receive | Verify | Total

400 646 64 1110
377 oll 108 996
375 010 108 993
375 233 68 976
378 012 108 998
376 209 108 993
377 534 69 980
374 206 108 988
373 209 108 990
375 238 68 981

375 519 93 989

TABLE C.42 Java Sender to C Receiver, 32 Megabyte Message, Different Hosts

Send | Receive | Verify | Total

421 3435 69 3925
405 3245 107 | 3757
391 3308 107 | 3806
391 3300 69 3760
398 3246 109 | 3753
395 3254 108 | 3757
399 3314 69 3782
400 3298 107 | 3805
389 3292 108 | 3789
391 3375 69 3835

396 3298 93 3786




TABLE C.43 Java Sender to C Receiver, 64 Megabyte Message, Same Host

Send | Receive | Verify | Total
855 1234 137 | 2226
739 1012 217 | 1968
741 1015 218 1974
812 1138 162 2112
818 1029 240 | 2087
809 1075 240 | 2124
807 1144 161 2112
812 1031 240 2083
811 1004 241 | 2056
810 1156 155 | 2121
802 1075 204 | 2083
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TABLE C.44 Java Sender to C Receiver, 64 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
860 6670 139 | 7669
783 6650 215 | 7648
786 6588 216 | 7590
771 6690 139 | 7600
786 6652 217 | 7655
790 6562 217 | 7569
770 6605 140 | 7515
772 6581 217 | 7570
771 6577 217 | 7565
783 6572 140 | 7495
780 6611 187 | 7589
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TABLE C.45 Java Sender to Java Receiver, 1 Megabyte Message, Same Host

Send | Receive | Verify | Total
13 52 2 67
10 46 2 58
11 43 2 56
10 46 2 58
10 43 2 55
10 43 2 55
10 43 2 55
11 43 2 56
11 43 1 55
10 43 2 55
10 43 2 56

TABLE C.46 Java Sender to Java Receiver, 1 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
14 141 2 157
11 137 2 150
11 134 2 147
12 134 2 148
12 133 2 147
12 134 2 148
11 133 2 146
12 133 2 147
12 132 2 146
12 132 1 145
11 133 2 147




TABLE C.47 Java Sender to Java Receiver, 2 Megabyte Message, Same Host

Send | Receive | Verify | Total
26 82 4 112
24 71 4 99
23 67 4 94
23 71 3 97
23 68 4 95
23 68 4 95
24 68 3 95
23 68 4 95
24 68 3 95
23 67 4 94
23 68 3 95
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TABLE C.48 Java Sender to Java Receiver, 2 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
28 257 4 289
25 255 4 284
24 251 4 279
25 250 4 279
26 245 4 275
25 245 4 274
25 247 4 276
24 247 4 275
26 247 4 277
25 247 4 276
25 248 4 277
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TABLE C.49 Java Sender to Java Receiver, 4 Megabyte Message, Same Host

Send | Receive | Verify | Total
52 142 7 201
47 123 7 177
47 118 7 172
48 123 8 179
47 120 7 174
46 120 8 174
47 119 8 174
47 120 7 174
47 118 7 172
47 120 10 177
47 120 7 175

TABLE C.50 Java Sender to Java Receiver, 4 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
55 488 8 551
51 486 8 545
50 473 8 531
49 479 8 536
52 468 8 528
51 474 7 532
50 475 8 533
51 470 7 528
50 478 7 535
50 483 7 540
50 477 7 535




Java Sender to Java Receiver, 8 Megabyte Message, Same Host
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Java Sender to Java Receiver, 8 Megabyte Message, Different Hosts

TABLE C.51

Send | Receive | Verify | Total
101 237 16 354
95 218 16 329
95 210 15 320
95 223 15 333
96 218 15 329
96 219 15 330
97 217 15 329
97 218 15 330
97 217 16 330
97 221 24 342
96 218 15 331

TABLE C.52

Send | Receive | Verify | Total
107 962 15 1084
99 944 16 1059
100 913 15 1028
102 937 15 1054
100 924 16 1040
98 948 15 1061
101 931 16 1048
99 933 16 1048
101 932 15 1048
102 930 16 1048
100 934 15 1050
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TABLE C.53 Java Sender to Java Receiver, 16 Megabyte Message, Same Host

Send | Receive | Verify | Total
210 438 34 682
194 422 34 650
193 400 35 628
190 420 34 644
194 421 34 649
195 418 35 648
192 421 35 648
194 415 30 644
193 419 34 646
192 429 36 657
193 420 34 648

TABLE C.54: Java Sender to Java Receiver, 16 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
219 1876 36 2131
200 1814 35 2049
199 1811 36 2046
202 1835 36 2073
197 1835 36 2068
200 1828 36 2064
201 1811 36 2048
200 1815 36 2051
196 1861 36 2093
200 1838 36 2074
199 1829 36 2065
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Java Sender to Java Receiver, 32 Megabyte Message, Same Host

TABLE C.55

Send | Receive | Verify | Total
427 959 68 1454
387 785 108 | 1280
391 785 108 | 1284
387 802 69 1258
385 811 108 | 1304
389 808 108 | 1305
391 835 69 1295
387 809 108 | 1304
388 806 109 | 1303
388 852 68 1308
388 813 93 1297

TABLE C.56: Java Sender to Java Receiver, 32 Megabyte Message, Different Hosts

Send | Receive | Verify | Total
434 3672 70 4176
392 3560 108 | 4060
382 3611 108 | 4101
395 3580 70 4045
383 3653 108 | 4144
391 3568 108 | 4067
388 3579 70 4037
383 3646 109 | 4138
393 3570 109 | 4072
388 3616 70 4074
389 3602 93 4087




87

TABLE C.57 Java Sender to Java Receiver, 64 Megabyte Message, Same Host
Send | Receive | Verify | Total
791 1803 138 | 2732
768 1537 216 | 2521
765 1626 229 | 2620
842 1569 163 | 2574
839 1679 245 | 2763
866 1672 241 | 2779
848 1743 163 | 2754
837 1625 240 | 2702
847 1660 241 | 2748
842 1714 162 | 2718
826 1661 206 | 2701

TABLE C.58: Java Sender to Java Receiver, 64 Megabyte Message, Different Hosts
Send | Receive | Verify | Total
844 7292 139 | 8275
801 7184 216 | 8201
779 7214 216 | 8209
804 7077 139 | 8020
799 7197 216 | 8212
803 7108 215 | 8126
800 7198 139 | 8137
794 7153 216 | 8163
799 7109 216 | 8124
795 7172 140 | 8107
799 7166 187 | 8159




