

AUTOMATED INSTALLATION SOFTWARE FOR LINUX

HIGH-PERFORMANCE COMPUTE CLUSTERS

by

Paul Kreiner

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

April 2007

c© 2007
Paul Kreiner

ALL RIGHTS RESERVED

The thesis presented by Paul Kreiner entitled Automated Installation Software for
Linux High-Performance Compute Clusters is hereby approved.

Amit Jain, Advisor Date

Tim Andersen, Committee Member Date

John Griffin, Committee Member Date

John R. Pelton, Graduate Dean Date

dedicated to Edward W. Kreiner, my friend, inspiration, role model, and father

iv

ACKNOWLEDGEMENTS

First and foremost, I wish to thank my wife, Mayela, for her unwavering support

through all the long hours I spent away from her and our family. I have focused

heavily on my education over the past three and a half years, and my wife and three

children have sacrificed by not getting my full attention.

I wish to thank my parents, who are shining examples of the achievements toward

which I can (and do) strive. My mother gets special thanks, for providing me the

education and tools which have enabled me to go this far, and for continuing to

nudge, cajole, and encourage me to complete my higher education. To any who think

home schooling produces socially and/or academically disadvantaged students, I am

a living counterexample, and I thank my mother for that. Thanks to my father for

demonstrating that it is possible to support and care for a family and still achieve

academic excellence while earning an advanced education. You are my role model.

Thanks to several in academia, particularly my advisor, Dr. Amit Jain, for being

available and willing to help. If it were not for his positive attitude and personable

demeanor at my initial meeting with him in 2004, I would not have continued to

pursue my secondary education. His breadth and depth of knowledge is inspiring,

and working with him has been a pleasure. Thanks also to Dr. John Griffin, Dr. Sin

Ming Loo, and Dr. Gary Ganske (Northwest Nazarene College) for demonstrating a

personal interest in me.

v

Finally, thanks to my employer, CRI Advantage, for allowing me the flexibility

to continue my studies while maintaining my employment full-time. Without this

flexibility I would have been unable to complete either my undergraduate or graduate

coursework.

vi

AUTOBIOGRAPHICAL SKETCH

Paul Kreiner was born in Texas, and moved to Montana when he was four years

old, where he grew up loving the mountains, the great open spaces, and the snow.

An early curiosity regarding computers and how they worked, the purchase of a

Commodore C-64, and a library book which was an elementary BASIC tutorial were

enough to launch Paul on the path which he follows today. The harsh winters of

eastern Montana gave him plenty of free time to start tapping away at his C-64,

learning and mastering BASIC on that system, then adding 6502 assembly language

when the poor performance and inherent limitations of BASIC became too crippling.

Paul’s family moved to Meridian, Idaho in 1993, when his father was asked to

take over the pulpit of Meridian Assembly of God church. It was here that Paul

acquired his first IBM-compatible system (a 12MHz 80286 PC), followed about two

years later by a 90MHz Pentium R© system running Microsoft R© WindowsTM. It took

another year before Paul found his first non-crippled operating system, the venerable

FreeBSD, and installed it. The installation went well, using a stack of about forty

floppy disks, but he was unable to figure out what to do with the end result. In 1997,

Paul was finally able to take the plunge into Linux (Slackware 3.2 at the time) and

actually do something useful with the system after he got it installed. The ability to

get “under the hood” of the system and learn by interacting with the operating system

at a low level was a vast improvement from the relatively stale Windows environment,

vii

and by 1999, he was a convert. He still fondly recalls the thrill of compiling the Linux

kernel from source for the first time, then successfully booting it on his hardware.

Since then, Paul has continued to work with Linux and Open Source software,

both at home and at work, implementing existing software packages, modifying oth-

ers, maintaining some personal Linux kernel patch trees, and even starting two en-

trepreneurial endeavors based on Open Source software and technologies. This latest

foray into the world of High-Performance Computing represents another step in the

path of increased breadth and depth of exposure to the technologies and solutions

provided by Open Source software.

Paul is looking forward to many more years of challenging, rewarding work with

software that “just works”, isn’t based on undocumented or proprietary technology,

is widely supported, and doesn’t try to get in his way.

viii

ABSTRACT

The process of acquiring and building the software necessary for a complete,

fully-functional high-performance computing (HPC) cluster is complex and daunting,

even for someone experienced in building non-HPC systems and applications. While

many cluster installation utilities exist, most of them simply automate the process

of installing software across a homogeneous collection of systems. These utilities still

require the system administrator to perform significant amounts of application setup

and configuration work before a fully-functional cluster is realized.

The Boise State Automated Cluster Installer (BSACI) provides system adminis-

trators a tool which extends the automation process to include installation and config-

uration of user-space tools, job schedulers, parallel and cluster-specific development

and runtime environments, and monitoring. BSACI will deliver a fully-functional

Linux-based Beowulf HPC cluster, with minimal knowledge and intervention required

from the system administrator. No longer is the system administrator expected to di-

gest tomes of documentation regarding various cluster-specific software, just to get a

basic working configuration. Someone with basic knowledge of network configuration

and disk layout will be able to install a cluster in literally a matter of minutes.

BSACI provides a robust tool which is usable by students, instructors, and re-

searchers to build a fully-functional Linux-based HPC cluster.

ix

TABLE OF CONTENTS

LIST OF FIGURES . xv

1 INTRODUCTION . 1

1.1 Rationale and Significance . 1

1.2 Prior Work . 3

1.2.1 Yet Another Cluster Installer (YACI) 4

1.2.2 SystemImager . 4

1.2.3 IBM Extreme Cluster Administration Toolkit (xCAT) 5

1.2.4 Fully Automatic Installation (FAI) 6

1.2.5 Open Source Cluster Application Resources (OSCAR) 8

2 AN EASY-TO-USE AUTOMATED CLUSTER INSTALLER . . 10

2.1 The Ideal Automated Cluster Installer 10

2.1.1 Easy to Use . 10

2.1.2 Robust . 11

2.1.3 Broad User Base . 11

2.1.4 Good Hardware Support . 12

2.1.5 Maintainable . 12

2.1.6 Automated . 13

2.2 Design Goals . 13

x

3 BSACI DESIGN AND IMPLEMENTATION 18

3.1 Project Approach . 18

3.1.1 Build on Existing Tools . 18

3.1.2 Human-readable files . 19

3.1.3 Include useful tools for development and maintenance 20

3.1.4 Plan A: use Amit’s add-ons 21

3.1.5 Plan B: make a standalone tool 22

3.2 The YACI Framework . 24

3.2.1 The Role of the Master Node 24

3.2.2 What YACI Provides . 26

3.2.3 What’s Missing . 27

3.3 Handling Configuration Files . 28

3.3.1 The master parameters file . 28

3.3.2 Scripts, scripts, and more scripts 30

3.4 Modularity . 31

3.5 Speed and Performance . 32

3.5.1 A watched pot never boils . 32

3.5.2 Use the cluster when possible 33

3.5.3 Employ parallelism . 34

3.6 Graphical User Interface (GUI) . 35

3.6.1 Self-contained Apache and PHP 36

3.6.2 Asynchronous Javascript and XML (AJAX) 37

3.6.3 The xajax utility library . 38

3.7 Command Line Interface (CLI) . 38

xi

3.7.1 Why provide a CLI? . 38

3.7.2 Usage Scenario . 39

3.8 Core Software . 40

3.8.1 Portable Batch System (PBS) 40

3.8.2 Parallel Virtual Machine (PVM) 40

3.8.3 OpenMPI . 41

3.8.4 MPICH2 . 42

3.9 Additional Software . 43

3.9.1 Data Abstraction Layers . 43

3.9.2 Cluster Filesystems . 44

3.9.3 Cluster Management Tools . 46

4 USING THE BOISE STATE AUTOMATED CLUSTER INSTALLER
51

4.1 Prerequisites . 51

4.1.1 Supported Processors . 51

4.1.2 Supported Disks and Cluster I/O 52

4.1.3 The Data Network . 54

4.2 Preparing the master node . 55

4.2.1 Installing Fedora Core . 56

4.3 Installing the cluster . 59

4.3.1 The initial RUNME.sh setup script 59

4.3.2 MASTER-SCRIPT-1.sh: preparing the master node 61

4.3.3 Using the web wizard to enter configuration details 62

4.3.4 Detecting compute nodes . 64

xii

4.3.5 MASTER-SCRIPT-2.sh: building the node tarball 65

4.3.6 MASTER-SCRIPT-3.sh: deploying the node tarball 66

4.3.7 Final steps . 67

4.3.8 Using the Command-Line Interface 68

4.4 Restarting a cluster installation . 72

5 MAINTENANCE . 73

5.1 Maintaining the cluster . 73

5.1.1 Shared Network Filesystems 73

5.1.2 The Parallel Distributed Shell pdsh 74

5.1.3 Portable Batch System (OpenPBS) tools 75

5.1.4 ClusMon . 78

5.1.5 Patches and Software Upgrades 80

5.1.6 To upgrade or to re-install? That is the question. 84

5.2 Maintaining the Boise State Automated Cluster Installer 87

5.2.1 Acquire the most up-to-date packages 88

5.2.2 Create a list of required packages 91

5.2.3 Test the new node tarball . 94

5.2.4 Test the BSACI configuration scripts 96

5.2.5 Test the graphical and command-line user interfaces 99

5.2.6 Test other custom built packages 101

5.2.7 Test a complete installation 102

5.2.8 Test the final result . 106

5.2.9 Updating custom-compiled and embedded code 108

xiii

6 CONCLUSIONS . 113

6.1 What have we done so far? . 113

6.2 Future Directions . 114

REFERENCES . 116

APPENDIX A MASTER PARAMETERS FILE KEYS 119

APPENDIX B BUILD AND TEST ENVIRONMENTS 122

APPENDIX C INSTALLATION README FILES 126

C.1 README . 126

C.2 README.GUI . 131

C.3 README.CLI . 132

C.4 README.example-code . 134

C.5 scripts/NEWORDER . 135

C.6 scripts/NEWORDER.notes . 137

APPENDIX D DEVELOPMENT README FILES 139

D.1 README.placeholder files . 139

D.2 development-tools/README . 139

APPENDIX E PROJECT MANAGEMENT 141

E.1 Source control . 141

E.2 Where to get the code . 141

xiv

LIST OF FIGURES

3.1 Network design with private cluster network and dual-homed master
node. 25

3.2 Format of the master parameters file. 29
3.3 Code which loads network parameter keys as local shell variables. . . 30
3.4 How beosh distributes tasks. 48

xv

Chapter 1

INTRODUCTION

1.1 Rationale and Significance

In the past several years, High-Performance Computing using Linux-based clusters

has become prolific, all the way from the huge 100 teraflops/second clusters at

Lawrence Livermore National Laboratory[2] to personal clusters that run on a couple

of salvaged personal computers under students’ and researchers’ desks. As Linux-

based clusters have grown in popularity, the number of people wishing to get a taste

of this new technology has also increased. However, the tools and processes to in-

stall these clusters have remained complex and difficult to master. As a result, many

potential new users have been scared away from Linux cluster technology, simply

because they did not have the time or the desire to tackle the steep learning curve

involved in assembling a Linux cluster.

By mid-2005, several commercial and open-source projects and tools were avail-

able, each attempting to make cluster installation and maintenance a little easier.

Most of these tools were targeted toward administrators who were already familiar

with the concepts and tools necessary for cluster installation, and the tools simply

2

automated some of the mundane and error-prone parts of the installation process.

There was still not an “easy” cluster installation tool which was designed to intro-

duce someone with little to no cluster experience to the technology.

The Boise State Automated Cluster Installer (BSACI) is intended to fill that gap,

providing a cluster installation tool which can be given to students or researchers

who have little Linux system administration experience, but desire to build a fully-

functional Linux-based compute cluster. BSACI provides a turn-key Linux compute

cluster based on the Fedora Core distribution, complete with parallel development

tools, job scheduling, cluster management and monitoring tools, two cluster filesys-

tems, and additional performance tweaks specific to high-performance clusters. All

the research, coding, patching, configuration, and integration necessary to get the

various tools to work together has been done.

The driving concept behind BSACI was to provide the user a “one-click installa-

tion” experience, or as close to that as possible, including a graphical user interface

which would clearly identify and describe the information needed to configure the

cluster and would provide context-sensitive help for users. At the same time, the

tool also needed to satisfy a second role—for more experienced users, a more fully-

automated installation method (one which does not require a graphical user interface

or any user intervention) was also desired. This flexibility would allow the tool to re-

main useful to a broad set of users, from those with little experience to those who are

experienced, but need a quick, fully-automated method of bringing an entire cluster

3

on line in just a few minutes.

For example, a professor can customize the packages provided in BSACI, burn a

CD or DVD of the resulting code, and provide this to his or her students, enabling

them to easily build their own parallel clusters at home or work, with minimal user in-

tervention required. Similarly, a system administrator experienced with using BSACI

can easily bring up an entire departmental research cluster in under one hour, and

enjoy a pleasant lunch break during the process. Making Linux clustering technology

fast, automatic, and easily accessible gives users a chance to tackle and learn from

problems which they would otherwise not be exposed to, and it promotes further de-

velopment and adoption of high-performance cluster computing as these users move

into the work force. It also enables system administrators to focus their time on more

rewarding problems, instead of wasting time performing relatively mundane cluster

installation tasks.

1.2 Prior Work

Before embarking on a quest to build a cluster installation tool, it would be wise to

see what other tools are out there and how they address the problems inherent in

building a cluster installer that will work for the masses. Each of the tools that exists

does so to fill a particular niche, and none of them fill the niche of a turn-key cluster

installer. Following is a brief overview of several popular cluster installation packages.

4

1.2.1 Yet Another Cluster Installer (YACI)

YACI[1] is a lightweight tool for quickly installing Linux on a set of machines, typically

in a cluster environment. It is a relatively simple tool which restricts itself to RPM-

based distributions such as Red Hat and SuSE. Because it is lightweight and simple,

it is easy to modify, but it also has a primitive feature set compared to other cluster

tools. In this sense, it may be better to refer to YACI as a framework for cluster

installation—it provides the basics necessary to install software on multiple machines,

but there are many bells and whistles which are missing.

Documentation for YACI is relatively sparse and almost always out of date. Often,

new builds of YACI introduce new functionality and new bugs. As a result, YACI

is definitely not a tool for novices, as it requires a heavy investment of effort to get

working. However, it is a fine tool for experienced cluster installers, and those who

want a quick way to install many systems in parallel. Because of its open source

license, its simplicity, and the fact that it is built using Perl and shell scripts, it is

extremely easy to modify.

1.2.2 SystemImager

SystemImager[3] uses the “golden image” concept: it creates a filesystem-level image

of an existing system, then deploys this image to a number of computers. Sys-

temImager is unique among the tools reviewed in this chapter, because it provides a

filesystem-level ‘diff’ capability which allows existing systems to be upgraded by send-

5

ing new and changed files to update their existing installations, instead of re-imaging

the systems from scratch. It relies on a companion tool, SystemConfigurator[4] to

push out custom configuration files on a per-machine basis.

One of the key advantages of SystemImager is that is is distribution agnostic.

Because it uses filesystem-level imaging, instead of pushing out .rpm or .deb packages

to cluster nodes, it will work for any distribution. Likewise, SystemConfigurator has

“footprints” which describe the location and style of configuration for each distribu-

tion, so it is well-adapted to many distributions.

Unfortunately, SystemImager cannot easily handle situations where one system

image is to be installed on machines with different hardware, and it requires that the

original system from which the “golden image” is generated be configured carefully

by hand. While this approach is valuable, it does not meet our objective for ease of

installation on systems with differing hardware.

1.2.3 IBM Extreme Cluster Administration Toolkit (xCAT)

xCAT[5] is a collection of tools for the deployment, administration, and maintenance

of Linux clusters. Along with basic installation of the operating system across mul-

tiple machines, it includes high-performance computing software such as batch job

schedulers, parallel programming libraries, and cluster management utilities. xCAT

appears to be very well documented and supported, with new versions posted at least

once per year. It is designed specifically to support RPM-based distributions, such as

6

Red Hat and SuSE, and it supports a broad variety of hardware platforms, including

Intel’s 32-bit 80x86-compatible architecture (IA32), Intel’s 64-bit Itanium R© architec-

ture (IA64), Advanced Micro Devices’ 64-bit extended 80x86-compatible architecture

(AMD64), and Motorola’s Power PC architecture.

xCAT includes significant added functionality that is specific to IBM hardware,

such as low-level hardware monitoring and power management tools, remote console

and reboot functionality, and remote BIOS console. Interestingly, it also supports

imaging a Windows disk for deployment, although it primarily focuses on Red Hat

and SuSE Linux. While all of the non-hardware-specific capabilities of xCAT are

available in other cluster management tools, a system administrator running with

all IBM hardware would definitely benefit from the low-level tools and functionality

which are included with xCAT, especially when maintaining a compute cluster.

As one might expect, all this functionality does have a cost. In the case of xCAT,

there are actually two costs: First, xCAT is proprietary software, which must be

licensed from IBM. Second, it has a steep learning curve, simply due to the complexity

of the package. Unfortunately, these are both show-stoppers for us. Any tool we wish

to use must be freely distributable to others, and must be easy to use.

1.2.4 Fully Automatic Installation (FAI)

The Fully Automatic Installation tool[6] will install and update a cluster or network

of workstations in an unattended fashion, with minimal user intervention. It relies on

7

cfengine, Perl, and shell scripts to customize the configuration files on each machine,

and is scalable to many hundreds of nodes. It also supports a broad variety of target

hardware platforms, including IA32, IA64, AMD64, and Alpha.

Unlike most other cluster installers, FAI is designed around the Debian package

management system, and does not support Red Hat packages. It is a generic installer,

not just for installing clusters, but for any situation where a large number of similar

operating system installations must be performed. Because it is not a cluster-specific

installation tool, it operates at a lower level than cluster-specific tools such as xCAT.

The system administrator must first define the packages necessary for compute nodes,

then write and debug any new scripts and cfengine directives for maintaining the

configuration files related to these packages. Setting up FAI also involves establishing

local Debian package mirrors, setting up the master node by hand, and building class

files for each machine type to be installed.

As one may infer from the preceding description, FAI is a very powerful and

configurable tool. It also has the benefit of a complete, professional, and up-to-date

set of documentation. In the hands of an experienced system administrator, FAI

could be a powerful time-saving tool. However, configuring FAI generically to work

on any hardware that could be thrown at it is not an easy task, nor is the task of

modifying it to support RPM-based distributions, such as Fedora Core. As its author

states, FAI is targeted toward experienced system administrators who wish to save

time by automating mundane tasks. It is not a tool for the inexperienced.

8

1.2.5 Open Source Cluster Application Resources (OSCAR)

OSCAR[7] is a mature cluster installation tool, designed to take the best known tools

and methods for building, programming, and using clusters, and combine them into

a fully integrated and easy-to-install software bundle intended for high performance

computing. It supports RPM-based Linux distributions, including Red Hat, Fedora

Core, CentOS, and SuSE, and supports IA32 and AMD64 hardware platforms.

OSCAR was fairly immature when the Boise State Automated Cluster Installer

project was started, but it has matured immensely in the meantime, including support

for the 2.6 kernel, recent versions of several parallel job schedulers and message-

passing libraries, cluster node monitoring software, an installation graphical user

interface, etc. It also fully automates node installations, by taking a filesystem-level

snapshot of a working node and deploying it, or by building a snapshot in a chroot’ed

environment and deploying it. Overall, OSCAR supports a broad range of features

and functionality. This, plus the project’s stated goal of being a fully integrated,

easy-to-install software bundle, make it a good choice for users with some experience

in Linux system administration.

However, OSCAR still has its rough edges, and is not as user friendly as one might

hope when handing it to less experienced users. Perusing the OSCAR installation

manual[8] reveals that there are a number of manual pre-configuration steps which

the user must perform to ensure that the master node will function properly with

OSCAR. Additionally, users are admonished not to do anything unpredictable while

9

using the graphical user interface, or to try performing installation steps out of order,

because the installer will likely crash. Users are reminded to read the installation

manual thoroughly.

These restrictions are not ideal for an installer which should be robust in the

face of misuse and misunderstanding by inexperienced users. While a 100%-foolproof

software package may never be reality, our goal is to provide software that is more

forgiving and protects the user better than this. While OSCAR is undoubtedly a

good tool (probably the best of all the tools analyzed in this project), even the

current release of OSCAR is still lacking in this critical area.

Chapter 2

AN EASY-TO-USE AUTOMATED CLUSTER INSTALLER

2.1 The Ideal Automated Cluster Installer

The ideal cluster installer should meet several design criteria, and it is these criteria

which the current design of the Boise State Automated Cluster Installer attempts to

fulfill.

2.1.1 Easy to Use

First and foremost is ease of use. The installer should be easy enough to use that a

novice user can successfully install it without needing to consult reference guides or

read extensive documentation prior to starting the installation process. Current sys-

tem hardware and software configurations will be detected, missing software packages

installed, and configurations updated to allow the cluster software to operate. Auto-

matic configuration should be applied whenever possible, minimizing the number of

questions which must be asked of the user. Ideally, the users should need to know no

more about their system to install the cluster than they knew when performing the

base install of the operating system on the master node.

11

2.1.2 Robust

Along with ease of use is the concept of “idiot-proofness” or robustness. This is

important because the ideal cluster installer should gracefully and predictably handle

erroneous input. Novice users often provide input which is blatantly incorrect or

not well thought out, or they may skip critical installation and configuration steps

completely. The installer must do everything possible to avoid giving novice users the

opportunity to shoot themselves in the foot through such actions. User input must be

double-checked for validity, and the user prompted when he or she provides obviously

incorrect data. Users should be given a restricted, simple set of options which must

be completed with valid data before proceeding to the next set of options. Invalid

data should result in a meaningful error message which indicates what data should be

corrected, and context-sensitive help should be available to help the user understand

the effect(s) of each set of options.

2.1.3 Broad User Base

The installer should be a useful tool for a broad collection of users, ranging from

novices to experts. Its user interface must be simple and friendly enough that inexpe-

rienced users are not scared by complex questions, frustrated by lack of online help,

or confused by too many choices. At the same time, the installer must provide an

interface that expert users will not find limiting, annoying, or a waste of time. Put

simply, the installer must make the complex tasks of cluster installation and configu-

12

ration accessible to novices, and it must not get in the way of expert users who wish

to automate the cluster setup process.

2.1.4 Good Hardware Support

The installer must support a wide range of software and hardware. The ideal installer

should also support a broad range of Linux distributions and commodity hardware

platforms, such as IA32, IA64, AMD64, Power PC and Alpha. Because students

and independent researchers are the primary target demographic, the installer must

accommodate clusters which are built on varying (often cheap) hardware. Users

operating on a budget will probably build a cluster out of scavenged hardware, and

will not have a room full of identical hardware at their disposal.

2.1.5 Maintainable

Because software is continually evolving and being upgraded, the ideal installer should

also be maintainable—able to easily track the changes in Linux distributions as new

versions are released—without excessive work on the part of the maintainer. Code

that is specific to a single distribution or package version should be modularized, so

an upgrade that is incompatible with the current module code does not require an

audit of the entire codebase to identify what must be changed. Instead, changes will

be localized to a single module, making the job of the maintainer easier.

13

2.1.6 Automated

Finally, the installer is generally worthless if it doesn’t save time. It should be fast, and

should require minimal user interaction. Many system installation tasks require some

amount of babysitting, where the system administrator busy-waits until a prompt

informs him or her to press a key or some similar action. This type of busy-waiting is

just as wasteful in real life as it is in the programming world, and must be minimized

by the installer. Ideally, the installer should interact with the user exactly once,

when collecting configuration information for the install. After this,it should proceed

automatically through the remainder of the installation process.

2.2 Design Goals

For the BSACI project, the initial design goals stemmed from the concepts defined

as part of the ideal cluster installer. Scope for the initial design was limited to

allowing students to automatically install a working cluster on their own collection

of personal computers at home or at work. Considering the type of hardware these

target users have available, and given previous experience with clustering on the Red

Hat 9 and Fedora Core 1 platforms, it was decided that the cluster installer should

restrict support to the Fedora Core 3 distribution, running on the IA32 hardware

platform. Users were expected to perform a clean “full” installation of Fedora Core

3 on the system chosen as the master node, and then insert the BSACI DVD to

launch the cluster installer. Because the primary users were students, a full graphical

14

user interface, presented as a series of web pages, walked them through the steps

of configuring their software, building a distribution image, detecting the compute

nodes, and finally installing software on them.

As the project matured, these goals were refined, and other goals were added in an

effort to move BSACI closer to being the ideal cluster installer. The core requirement

for BSACI remains: It must make Linux high-performance computing accessible to

novice users. Plenty of installers exist which fulfill the technical requirements of being

a good cluster installer, but none of them can offer a turn-key user experience. This

is what sets BSACI apart. The following design goals were defined for BSACI:

• The primary audience is students, particularly students who may have minimal

knowledge of Linux system administration, but who wish to wet their feet with

parallel programming in a message-passing environment.

– The installer should be robust when given invalid input, sanity-checking as

many values as possible, and prompting the user if any sanity checks fail.

The interface should provide valuable feedback in the event of an error,

helping the user correct their mistake and avoid common pitfalls.

– The primary mode of interaction with the installer is by means of a mod-

ern web-based graphical user interface. This provides a rich and flexible

environment for displaying data and prompts to the user, and for acquiring

user feedback.

– Target users are familiar with “wizard-style” user interfaces, so the installer

15

will adhere to this paradigm. The advantage of this approach is that it

is naturally simple, limiting the information displayed to the user and the

questions asked of the user to only a few at a time. Users can easily see

their progress as they advance through each screen of the wizard. Another

advantage of this approach is that it keeps users from performing setup

steps in an incorrect order.

– The installer should operate as close to “one-click” as possible. The fewer

manual (or preparatory) steps the user must perform prior to starting the

installation, the better. It is recognized that a small number of exceptional

conditions may still require manual intervention, but these cases must be

minimized.

• While the primary audience is students and novice users, the installer must

remain a useful tool to advanced and expert users.

– The installer must not require the user to use the GUI, nor must it require

the user to use the physical console of the master node for performing a

cluster installation. The system administrator should be able to start and

monitor the installation from any point in the network.

– The installer must not get in the way of a system administrator who wishes

to perform a completely unattended install. It must support automation,

and be easily integrated by other automation tools, such as Perl or shell

scripts.

16

– The installer must follow standard conventions when reporting errors, and

not require system administrators to write complex text parsers to expect

scripts just to interface with the installer.

• The installer must support ubiquitous IA32 hardware, and must not require all

cluster nodes to be identical. While some similarity between systems is nec-

essary, the installer must try to accommodate systems with varying hardware.

Other hardware platforms (IA64, AMD64, etc.) are not yet popular and cannot

be fully tested, therefore they are not yet supported.

• The installer must be Free Software. This precludes the integration of any pro-

prietary or non-free software into BSACI. Inclusion of non-free software limits

the audience to whom this software may be distributed, and may alienate a

class of users entirely. While not including such software reduces the utility of

BSACI, being able to reach a wider audience is an acceptable tradeoff.

• The installer builds on a recent version of the Fedora Core operating system.

This is a widely-used Linux distribution which has a broad set of software

available for it, and is actively being maintained. It will appeal to the broadest

set of potential users, and will be widely available.

• The installer must be easy to maintain. Documentation should be provided,

giving guidelines on how to update and/or customize the available packages

and configuration scripts in the future. Each configuration change should be

17

isolated in its own script, so incompatibilities introduced by newer software

remain localized to that one script.

While the project does try to approximate the ideal cluster installer, some of the

concepts behind the ideal installer were not part of the project design goals, typically

for pragmatic reasons. For example, supporting a broad variety of hardware platforms

would be ideal; however, the BSACI author only had IA32 hardware readily available

for development and testing. Given this, and the fact that IA32 is the most widely-

available commodity hardware at the time of this writing, the decision was made to

restrict the project design so BSACI only officially supports IA32.

18

Chapter 3

BSACI DESIGN AND IMPLEMENTATION

3.1 Project Approach

3.1.1 Build on Existing Tools

There are many cluster installation tools already in existence, but many do not meet

the specific goals defined for the BSACI tool. BSACI could be implemented as an

all-new cluster installer, or it could be designed to extend and customize an existing

cluster installer. It was desirable to reuse as much existing code as possible, which

would allow development time to be focused on adding features to BSACI, instead of

reimplementing and debugging functionality already present in other cluster installers.

After reviewing the capabilities of other existing tools, YACI was found to be a

good candidate to use as a starting platform for BSACI modifications. YACI supports

Fedora Core, is designed for IA32 and AMD64 architectures, and is architected to

provide a simple, no-frills cluster installation framework. Therefore, very little of

the existing YACI code would need to be modified when adding new features and

functionality to the YACI codebase.

19

3.1.2 Human-readable files

Any cluster installer which performs more than basic system configuration must have

a means of tracking variables, options, and user-supplied parameters which affect

the installation process. For an automated cluster installer, the list of configuration

items which must be tracked gets quite large, and changes over time as new software

packages replace older versions. It is tempting to use a machine-oriented data format,

such as XML, when building a means of tracking these data elements, since such a

data format is designed for precisely this purpose.

However, BSACI was designed to make life easier for both novices and experienced

users alike. Most human users do not wish to parse through an XML data file when

trying to manually set parameters in a configuration file. Forcing users to do that, or

to use some sort of translation tool, would simply alienate them, due to the additional

steps this requires. Suddenly, the automated tool they were trying to use has become

a headache in its own right.

Instead, BSACI uses a human-readable configuration file, modeled after the Postfix[9]

configuration file format. This format uses a simple key/value pair mapping, with

one entry per line, and allows comment lines to be interspersed between key/value

mapping lines. This format lends itself well to in-line documentation of all configura-

tion options, and has proven itself to be popular among system administrators (who

are by nature rather picky about these sorts of things).

20

3.1.3 Include useful tools for development and maintenance

Cluster installation software such as xCAT and OSCAR already provide users with a

broad range of features. Although BSACI will provide better automation than either

of these cluster installers, it must also provide a compelling feature set which will

place it apart from other cluster installers.

The need for a unique and compelling feature set drove the inclusion of several ad-

vanced tools which provide cluster monitoring and management, parallel development

libraries, and distributed file systems. These tools offer compelling features to users

because they go beyond simply providing the framework for clustering and parallel

development. Instead, they build upon these framework components, and provide ad-

vanced, useful services to users, in the forms of higher-level data abstractions which

can be used to tackle tough problems without having to bother with low-level cluster

programming mechanics. Some of the tools included with BSACI are:

• The Parallel Virtual Machine (PVM)[10] message-passing library and toolkit

• The OpenMPI[11] message-passing library and toolkit

• The MPICH2[12] message-passing library and toolkit

• The OpenPBS[13] portable batch processing system tools and utilities

• The Global Arrays[14] distributed data abstraction toolkit

• The Hierarchical Data Format (HDF5)[15] distributed data abstraction library

21

and API

• The beosh[37] distributed shell

• ClusMon[36], a stable, high-performance tool for monitoring, reporting, and

alerting based upon cluster hardware health

• The Parallel Virtual Filesystem (PVFS2)[16], a filesystem optimized for high

throughput on parallel compute clusters

• GFarm[17], a fault-tolerant distributed grid filesystem

3.1.4 Plan A: use Amit’s add-ons

The scope of BSACI is ambitious and relies upon many prerequisite packages, which

may be a problem for some users. As a result, one option for deployment of the

cluster installer is to bundle it with a collection of prerequisite software, perhaps as

an add-on CD or DVD with an installation script. A user would then perform a

full installation of the base Fedora Core operating system, followed by installing all

software packages on the add-on media. After these prerequisites are installed, the

BSACI tool is launched, setting up clustering software and pushing out system images

to all the compute nodes.

This approach has the obvious advantage that it makes life easier for the user

who is installing the software, once he or she goes through the effort of acquiring both

the add-on software bundle and the cluster installer (which could be a multi-gigabyte

22

download). It also means system integrators can quickly and easily build a known-

good collection of software to bundle with the cluster installer, and they can easily

include customized software packages if necessary.

However, the approach also has a number of disadvantages. It increases the main-

tenance dependencies of the cluster installer, because it now must track with new

builds of the Linux distribution and the add-on software bundle, instead of tracking

only the new Linux distribution. It also opens the possibility that the cluster installer

package could become dependent upon an add-on software package which is non-Free.

Such a dependence would be at odds with the “Free Software” design goal of BSACI.

Finally, any bugs the system integrator introduces into their add-on collection will

also be introduced into the cluster installer software base.

3.1.5 Plan B: make a standalone tool

An alternate approach is to make BSACI a standalone tool, only dependent upon

the user to install Fedora Core before starting the cluster installation process. All

required software packages would be included in the BSACI software bundle. Instead

of trying to merge configurations with “stock” software already on the system, the

installer would include isolated copies of needed software (web server, database server,

Java runtime environment, etc.) which are specific to the cluster installer software.

The advantage of this approach is that it makes future maintenance of BSACI

easier, as only changes to the Linux distribution and any custom software packages

23

must be tracked and tested. The size of the BSACI download will increase, but

the overall amount of data which the user must download will decrease, since only

cluster-specific software will be downloaded, instead of a complete collection of many

add-on packages. This approach also protects the project from becoming dependent

on non-Free software, and it allows the included tools to utilize known-good versions

of supporting software, even if the software shipped by the distribution changes in

the future.

One disadvantage of this approach is that system integrators will have to do

more work on their add-on software package collections, because they may introduce

incompatibilities between their add-ons and the packages the cluster installer bundles.

It also means that some software and configurations which were part of the add-

ons will now have to be re-implemented as part of the cluster installer. The code

reuse principles of good software engineering dictate that this should be avoided if

possible. Finally, this approach uses additional disk space to store duplicate copies

of supporting software packages such as the web server, database server, and Java

runtime environment.

Another potential pitfall of this approach has to do with the licensing of certain

software components and subsystems which are dependencies for some of the included

tools. We must be careful not to distribute precompiled and linked software in a

manner which may violate the terms of its license agreement. (As it turns out, there

are only two software packages which have the potential of causing problems, but both

24

of these packages have licensing workarounds which we may employ. Sun JavaTM was

recently licensed in such a way as to make it easy to distribute to end users as part

of a package distribution. SZip, a compression library, allows for license-free use,

although some functionality is disabled. An SZip license is required for commercial

and non-research users to legally access high-performance SZip functionality.)

3.2 The YACI Framework

Because of its straightforward code and no-frills implementation approach, the YACI

framework was chosen as a starting point for code enhancements as the BSACI soft-

ware was implemented.

3.2.1 The Role of the Master Node

YACI splits all systems up into two groups: a single master node, and one or more

compute nodes. Compute nodes can specialize in particular areas, such as cluster I/O,

raw CPU power for computations, etc. However, for any cluster, there exists only

a single master node. This master node is the system which the automated cluster

installer deals with almost exclusively.

Typical cluster architecture is such that all compute nodes reside on a high-speed,

low-latency private network that is isolated from the rest of the world. The master

node also resides on this network, but it is unique because it also has a second network

interface that is connected to “the rest of the world”. Therefore, all traffic to and

25

from any system in the cluster must traverse the master node, which acts as a router

for this traffic, and may optionally act as a firewall and network address translation

(NAT) device. Compute nodes are typically high-density, headless systems without a

monitor or keyboard. Only the master node has a full console—it is the system which

users interface with when submitting jobs to the cluster. Figure 3.1 shows a typical

network layout using this architecture. Note that the master node acts as a firewall

and a network address translating router, allowing the private nodes to masquerade to

the outside world as though they are connecting from the master node. Connections

from the outside world to the cluster nodes are not allowed.

Outside
 World

Master Node

Internal (Cluster) Network

Headless Cluster Nodes

Figure 3.1.: Network design with private cluster network and dual-homed master
node.

Essentially, this architecture presents the master node as “the cluster”, and all

the compute nodes exist simply as semi-transparent resources which may be accessed

via message passing code submitted in batch jobs to the master node. The master

node supports the cluster nodes with specialized services. Some of these services have

already been mentioned: firewalling, NAT, and routing. Other services include DHCP

26

and TFTP services, batch scheduling, monitoring and reporting, remote management,

user management, cluster-wide shared network filesystems, etc.

Because of the many services and associated configurations which reside on the

master node, it is the focal point of the cluster installer. Each compute node must

communicate with the master node at boot time in order to receive its boot configura-

tion. Therefore, the master node knows about the presence and network configuration

of each computer in the cluster. Most customized configuration files are bound to

services which the master node provides, so these files are modified and stored on

the master node. A few configuration files are specific to each compute node, but

even these files usually incorporate data from the master node. Because the master

node is central to the configuration of all cluster network services and the cluster

compute nodes themselves, it is a natural choice to use it to perform as many cluster

installation tasks as possible.

3.2.2 What YACI Provides

YACI provides a framework for building a Linux system image and deploying it to a

number of machines, with some minor customizations. It is built specifically for use

with the SuSE, Red Hat, and Fedora Core distributions, although it could work with

any distribution which uses RPM as its package management system. The master

node utilizes standard tools and scripts to build a complete Linux system image in

a chroot environment. This environment is then archived into a single tarball file

27

prior to deployment.

YACI provides a PXE boot environment which allows compute nodes to boot,

acquire a network address, format and partition hard drives, and begin downloading

and unpacking the contents of the system image tarball to the local disks. When

this process completes, a simple script will execute, customizing certain configuration

files on the newly-imaged system. The script included with YACI is rudimentary,

basically only configuring basic network settings—further functionality is left up to

the system administrator to implement and test.

3.2.3 What’s Missing

Other than basic network settings being customized after each node is installed, YACI

does not directly provide functionality for altering the software or configuration of

each node. Custom scripts must be written, tested, and maintained. These scripts

are intended to manipulate any other configuration details required for a functional

cluster, such as RSH/SSH security files and keys, a list of PBS nodes, setup of naming

via /etc/hosts, NFS exports, PVM/MPI configuration, inetd/ntpd configuration,

and much more.

During the deployment of the system image, YACI provides no easily accessible

feedback to the user as to what is happening while the nodes install. A user at the

compute node console has no way of seeing progress as YACI installs until the instal-

lation is complete and the system has rebooted. A user monitoring the installation

28

from the master node may have one or two options to view raw status output, but

even this is primitive.

Essentially, YACI provides the basics for a cluster installer: a starting point for

scripts which build, customize, and deploy the code. There isn’t much else included,

so it must be implemented as part of the Boise State Cluster Automated Installer.

3.3 Handling Configuration Files

The installation process must create and modify a number of data files, configura-

tion files, and operating parameters on the master node, and several configuration

files on the compute nodes. Building an automated cluster installer involves several

challenges related to creating and modifying configuration files, especially when the

changes to these files are inter-dependent. Maintaining a central repository for these

configuration items, and keeping this repository easy to read and modify for both

humans and computers was a critical early design decision.

3.3.1 The master parameters file

Since the automated nature of the cluster installer means that a computer must

be able to read changes and parse/modify the affected settings, and since there are

a number of files and configuration parameters which must be changed during the

course of the cluster software installation, it makes sense to keep all this data in one

central location. Because of the design goal stating that the cluster installer must be

29

KEY value {value ...}

comment (entire line ignored)

Figure 3.2. Format of the master parameters file.

able to be fully automated, the decision was made to centrally store the configuration

and settings changes in a single text file.

The file is flat text, not using any encoded formats such as XML. Entries are

restricted to one per line, with each line using the format shown in Figure 3.2. Lines

beginning with a ‘#’ are ignored as comments. All other lines are parsed as key/value

pairs, with whitespace separating tokens. The first token present on the line is a key

identifier, and the remaining token(s) are values to be assigned to the given key.

Values which must include whitespace are enclosed by double quotes. Whitespace in

key values and lines beginning with whitespace are not allowed, and the behavior of

the BSACI software in such situations is undefined.

This file format is easily parsed by both humans and machines (including native

Linux text handling tools and shells, including sed, awk, and bash). It is fairly flexible

in its usage, and acts as a simple and efficient means of ensuring that all configuration

parameters are captured in one central location.

When using this format, parsing this file from within a shell script and extracting

the keys as local shell variables becomes easy. Figure 3.3 shows some sample code

which reads and accesses the data stored in the master parameters file. This ease of

access from within a shell script turned out to be a critical design feature which was

30

Read in my configuration data:

for NAME in INTIF INTIP INTNET INTMASK EXTIF EXTIP EXTNET EXTMASK; do

eval $NAME=‘awk -vname=$NAME ’{ if ($1 == name) print $2; }’ < $CONFFILE‘

done

Figure 3.3.: Code which loads network parameter keys as local shell

variables.

used broadly throughout the cluster installer code.

3.3.2 Scripts, scripts, and more scripts

Another key point in the design process was deciding how to actually perform the

act of changing configuration files and parameters. The master parameters file was a

good means of centrally storing configuration parameters as they were defined, but a

means of merging those parameters with existing configuration files and creating new

configuration files was still necessary.

An early approach was to use Perl[35] to parse and modify configuration entries,

because of Perl’s strong feature set—it was practically designed for this type of job.

However, it soon became clear that the strengths of Perl were also its weakness. Code

written in Perl is often brief, difficult to read, and even harder to maintain. The idea

of an entire installation program written as a monolithic Perl script became something

of a nightmare when looked at from a future maintainability perspective.

Other ideas were considered and rejected for various reasons: a Java application,

possibly with a GUI front end, a C/C++ application, linked with the GTK+[34]

31

or Qt R©[33] graphical toolkits, a collection of small Perl scripts operating under one

master program.

Eventually, the age-old Unix philosophy of “do one thing and do it well” won out.

It was decided that simple bash shell scripts, augmented by native text-processing

tools, would do all the work. These scripts would be loosely coupled, either by

sharing a common configuration file (the master parameters file), or by passing data

using standard input/output pipes. Thanks to easy parsing of the master parameters

file from within a shell script, implementing this approach was natural and easy to

implement.

3.4 Modularity

Although early designs considered the cluster installer to be a single monolithic ap-

plication, it soon became clear that any monolithic application would be subject to

rapidly increasing complexity, leading to code which was difficult to maintain. In-

stead, a two-tiered approach was decided upon. In this approach, a few high-level

applications coordinate the actions of many independent and mostly self-contained

lower-level applications.

The approach works well, as each task which is to be performed by the cluster

installer is generally split out into simple steps, and each step is implemented in

a separate shell script. These shell scripts are independent, only relying upon the

presence of the master parameters file for some of their configuration data. As a result,

32

a change to the way any configuration task is processed (or the addition/deletion of

a configuration task) only means rewriting a single, short shell script, and modifying

how it interacts with the higher-level script and the master parameters file. Such a

change can be implemented and fully tested in under one hour, touching at most only

one or two dozen lines of code for all but the most extensive edits.

Keeping these tasks modular is a huge advantage for ongoing maintenance, because

each new release of the Fedora Core distribution typically changes how several BSACI

configuration processes must operate. While a monolithic application may require

extensive rewriting and testing to incorporate these changes and ensure they don’t

affect any other parts of the code, the loosely-coupled design BSACI employs requires

much less effort, and naturally keeps changes in one task from affecting other tasks.

3.5 Speed and Performance

Although a system designed using a collection of shell scripts will not be inherently

speedy, there were several design decisions which drastically altered the speed and

performance of the cluster installer as perceived by the end user.

3.5.1 A watched pot never boils

It might be better to say “no babysitting required.” As anyone who has waited for

a software install to complete knows, the seconds a user must spend waiting for the

computer to complete a non-interactive task (a.k.a “babysitting” the computer) seem

33

to stretch into infinity. Even if the wait is only a few seconds, to the user the time

spent waiting seems interminable. Therefore, it was an early design decision that

user waiting should be minimized, and all user-interactive tasks should be grouped

together at one point in time.

In this approach, the user would be asked up-front to perform many interactive

tasks, then the computer would batch all the non-interactive tasks, running them after

the interactive tasks completed. This eliminates any waiting the user might experience

between tasks, if the non-interactive tasks ran interspersed with the interactive tasks.

While the batch tasks are running, the user is free to focus on something else (such as

getting a cup of coffee, or catching up on news), and may return at his or her leisure

to complete any final interactive tasks that come after the completion of the batch

processing.

3.5.2 Use the cluster when possible

A key axiom throughout development was to recall that the software was running on

a cluster. Therefore, if possible, commands which affected each node should be run

on those nodes, and not on the master node. This was important, even if it meant

that the associated installer code would be more difficult to implement—having the

master node perform the same task 1,000 times for a 1,000-node cluster does not scale

well, especially when the installer could instruct the master node and each compute

node to perform the task once time.

34

This approach improved deployment speed significantly when generating SSH host

keys for each node, for instance. The process of generating SSH host keys is processor

intensive, and takes several CPU-seconds even on a fast processor. The master node

must know the public keys of all nodes prior to completing the installation, but it

would take hours of CPU time if the master node had to compute the keys of each

node for a large cluster. Instead, the code was rewritten so each node computes its

own SSH key when it first boots, and transmits that information to the master node.

The master node waits until all keys have been received, then proceeds with the

installation. Coding this method was more complex than simply having the master

node compute all SSH keys, but it is infinitely more scalable.

3.5.3 Employ parallelism

One of the most exciting (and most time-consuming) design decisions was choosing

to employ parallelism during the process of gathering user-provided configuration

data. Initially, the cluster installer walked the user through a series of configuration

questions, asked the user to reboot all compute nodes, then finished its configuration

and built a tarball of the entire compute node’s filesystem.

While this was a reasonable approach, there were inefficiencies to it. For example,

the process of building the node tarball is processor and disk intensive, and might

take ten minutes on a modern machine. However, before the tarball is built, the user

must spend several minutes answering questions and rebooting cluster nodes. During

35

this time, the master node is essentially idle. Was it possible to employ this idle time

to pre-build the tarball, so that it was ready to deploy as soon as the user finished

answering the configuration questions?

After an intensive rewrite of the code and the creation of several patches to the

YACI framework (which wasn’t designed for any sort of parallel tasks), the answer

was “yes.” As soon as the user answered a few basic questions, the node tarball

would begin being built in the background. The entire time the user was rebooting

cluster nodes and answering final configuration questions, the tarball was silently

being built, so that intervening time period was not wasted. If the detection of all

compute nodes took a long time, when that step completed the node tarball would

already be built. Instead of sitting back for another ten minutes waiting for the

tarball build to complete, the user could immediately proceed to the installation of

the tarball on the compute nodes.

This design decision easily cuts the amount of time the user must wait in half,

and eliminates one more “babysitting” step, making the process smoother and more

fully automated.

3.6 Graphical User Interface (GUI)

A critical component of the cluster installer is its graphical user interface. One of

the design goals of BSACI is that it be easy for novices to use. Providing a GUI

for less-experienced users gives them a sense of security, and reduces the apparent

36

complexity of the installation process.

3.6.1 Self-contained Apache and PHP

One of the first decisions in the design of the cluster installer was the choice of how

to present the GUI to the user. Several options were considered, including native

GTK+ or Qt R© graphical applications, a Java/Swing application, a web-based Java

applet, or an HTML-based web application. In the interest of keeping the installer

flexible, it was decided that the installer should not require anything more than a

text-based console on the master node. Therefore, native graphical applications were

ruled out. Allowing users to use a GUI to configure the master node from the comfort

of their own desks was a desired feature, and requiring users to install a Flash, Java,

or similar third-party module in their browser was not desired. The decision was

made to use an HTML-based web application for GUI configuration, since this is the

most broadly available GUI platform.

Because the process would be dynamic and interactive, the PHP[32] scripting

language was selected for implementation of back-end logic. PHP is naturally coupled

with the Apache[31] web server, so Apache was used as the platform on which the

PHP code was deployed. One significant problem was encountered because early

versions of the cluster installer relied on the packaged versions of Apache and PHP

included with the Linux distribution. When the distribution changed, so did the

versions of Apache and PHP which were bundled, and the resulting changes required

37

significant rewrites to portions of the cluster installer code.

To avoid this scenario in the future, the cluster installer was built using a self-

contained installation of Apache and PHP, separate from the bundled version provided

by the Linux distribution. This self-contained Apache instance is compiled statically

with a fixed version of PHP, executes within a subdirectory of /tmp, and exists only

during the installation process. As soon as the cluster installation completes, it is

removed.

3.6.2 Asynchronous Javascript and XML (AJAX)

To provide a rich environment that is similar to a native desktop application, the

web interface uses a group of technologies collectively dubbed “AJAX.” AJAX relies

on background Javascript code to update elements on the web page in real time,

providing a highly-interactive web application for the user.

The cluster installer takes advantage of this interactivity by instantly sanity-

checking many user-supplied values as they are typed in, providing real-time feedback

to the user when values do not pass the sanity checks, and displaying real-time status

updates to the user as background processes complete.

AJAX allows the user to get away from the use of static web forms which require

the clicking on a “submit” button, then waiting for the server to accept or reject the

input data. Instead, data is sent to the server and checked in real time, error messages

are displayed in real time, and the “submit” option is not even available until the

38

input data is valid. On a smaller scale, this is another way of saving the user time by

not having to submit a form and then wait for feedback from the computer.

3.6.3 The xajax utility library

One gem which was discovered during the development of the AJAX web interface is

the xajax[30] utility library. This library is a collection of PHP code that provides

a simple, robust API for modifying portions of a web page using AJAX technology.

xajax handles the low-level manipulation of Javascript code and callbacks, so the

developer only needs to know a handful of PHP function calls in order to begin using

AJAX technologies. It is under active development, and its performance and available

features continue to improve.

3.7 Command Line Interface (CLI)

3.7.1 Why provide a CLI?

Since BSACI may be used by advanced users and system administrators who have no

need of the graphical user interface, a no-nonsense, no-frills means of interacting with

the cluster installer was required. This interface was intended for use by experts, so it

did not require the same level of error checking or user friendliness present in the GUI.

The cluster installer design included a simple command-line interface which requires

nearly zero interaction from the user. This allows advanced users to enter their user

parameters ahead of time, prepare their master node, then fire off the installation

39

script as a batch job. It also allows users who do not have access to a web browser,

or for whom the web-based installation doesn’t work, a second means of installation.

3.7.2 Usage Scenario

Typically, an advanced user is already aware of the parameters documented in the

master parameters file, and is familiar with the documentation of how the cluster

installer works. Instead of wasting time setting up a web browser and navigating the

“wizard” interface, this class of user wishes to install with minimal hassle. The user

edits the master parameters file by hand, inserting the correct values in it according

to the installer documentation and file comments, then executes the RUNME.sh script

that starts the installer. After going through the steps of copying data from the

CD/DVD, the user enters the CLI mode by executing a script which is normally

processed by the system as part of the graphical installation.

When this script completes, the user is prompted to reboot all nodes so they

are detected, then a second script is launched, which completes the install process.

The expert user can further automate this process by pre-populating the MAC.info

file with the physical Ethernet addresses of each detected compute node, then writ-

ing a small expect script which automatically responds to the installer’s prompts.

Performing these final few steps would deliver a completely automated cluster instal-

lation, since all configuration data is known prior to launching the actual installation

script.

40

3.8 Core Software

The Boise State Automated Cluster Installer provides low-level message-passing func-

tionality and batch job management tools as part of the core set of software which

is installed. These packages are considered “core” because a message-passing cluster

would not properly function (or it would function poorly) without them.

3.8.1 Portable Batch System (PBS)

At the core of any multi-user compute cluster is the job scheduling system. Since most

compute clusters involve long-running batch jobs, as opposed to short-lived interactive

jobs, the job scheduling system typically is a batch processing job scheduler. Users

submit batch jobs to the scheduler, which prioritizes the job in a queue, protects its

resources and output from other users, waits for free resources and runs the job, then

delivers the results back to the requesting user. OpenPBS defines batch jobs as shell

scripts that include special job-control attributes, and it supports multiple defined

queues with differing resource limitations. For instance, job queues can allow jobs to

run only at certain times of day, or only on certain machines, or only for a limited

duration (as measured by wall clock or processor time).

3.8.2 Parallel Virtual Machine (PVM)

Any cluster must have some means of spreading computation between nodes in a

cluster. Parallel Virtual Machine uses message passing to enable a network of ma-

41

chines to be used as a distributed parallel processor. A single executable is spawned

on multiple processors by PVM software, and each process tackles a smaller subtask

that is part of the original problem (the “single-program, multiple-data” a.k.a. SPMD

approach). Message-passing functions allow these processes to send data structures,

notifications, and control messages to one another as they converge upon a solution

to the original problem.

PVM supports heterogeneous networks of compute nodes, and was one of the

earliest message passing toolkits to gain widespread use [18]. It is a mature toolkit

with an active user base. Although newer message-passing toolkits have recently

become more popular than PVM, it is still widely used.

3.8.3 OpenMPI

OpenMPI is an open source implementation of version 2.0 of the Message Passing

Interface (MPI) standard. The MPI standard was the result of the joint effort of over

40 organizations meeting in an effort to define a set of library interface standards

for message passing [19]. The MPI standard initially built upon the capabilities

of PVM, providing extensions that allowed greater flexibility and an interface that

could be implemented on many vendor’s platforms without significantly changing the

underlying communication layers or platform-specific supporting software.

MPI version 2.0, formalized as a standard in 1997, went well beyond the capabili-

ties of other message passing toolkits such as PVM, adding many new features which

42

members of the Message Passing Interface Forum had requested. MPI 2.0 extended

the MPI standard to include process creation and management, one-sided remote

memory communications, extended collective operations, external interfaces, a rich

collection of parallel I/O operations, additional language bindings, and support for

the bulk synchronous programming (BSP) model [20, 21].

Although OpenMPI is a relatively new implementation of the MPI 2.0 standard,

it is rapidly gaining popularity due to advantages it provides over other MPI imple-

mentations. OpenMPI is open source software, using a BSD-style license, so there

are no concerns over proprietary code or licensing that sometimes beleaguer other im-

plementations. OpenMPI also combines the technologies, resources, and experience

from several other MPI implementation projects, in order to built “the best MPI

library available” [11]. Since it is MPI 2.0 compliant, this implementation is already

feature-complete and being used by many organizations for MPI development.

3.8.4 MPICH2

Similar to OpenMPI, MPICH2 is an implementation of version 2.0 of the MPI stan-

dard. MPICH2 is also open source software, it is mature, and it is widely used. In

many cases, MPICH2 is the de facto standard implementation of MPI 2.0. In ad-

dition to its maturity and popularity, one of the greatest advantages of MPICH2 is

its well-developed parallel I/O implementation (ROMIO). Developers looking for a

feature-complete, high performance parallel I/O toolkit for use on a message passing

43

cluster will find that ROMIO is currently the best in its class. Due to the widespread

use of MPICH2, BSACI would not be complete if it did not provide this MPI imple-

mentation.

3.9 Additional Software

The Boise State Automated Cluster Installer sets itself apart by including a rich set

of higher-level tools and utilities which rely on the message passing and batch job

management software included as part of the cluster’s core software collection. These

tools make development of distributed and parallel code easier, unlock some of the

advantages of massively parallel and distributed I/O, and make maintenance of a

compute cluster less time consuming.

3.9.1 Data Abstraction Layers

Global Arrays This toolkit provides an efficient shared-memory programming in-

terface for clusters of individual machines, allowing an array of data elements to be

accessed by any machine in the cluster, even though the actual array elements may be

stored on any cluster node. Global Arrays complement the message passing program-

ming model, allowing the programmer to use the message passing (MPI) approach

and the Global Array shared memory approach in the same program. The Global

Arrays toolkit is public domain code, and is actively maintained.

44

Hierarchical Data Format (HDF5) This library provides efficient storage and I/O

operations for storing scientific data in the form of data sets (multidimensional arrays)

and groups (similar to C structs). HDF5 was created to address the needs of scientists

and engineers working on projects which require massive amounts of data processing.

It has been tuned to perform at high speed using parallel I/O and threading. HDF5

relies on a solid MPI implementation, and recommends using MPICH2 with ROMIO

for the best parallel I/O performance. HDF5 also supports using gzip or szip for data

compression. The former is free software, but the latter is proprietary, and released

under a restrictive license. As a result, the version of HDF5 included with BSACI

does not include szip compression support. (However, eligible users may activate an

alternative version of the szip library which includes full compression support. Run

the command switcher szip --list on a fully-installed BSACI cluster for more

information.)

3.9.2 Cluster Filesystems

Parallel Virtual Filesystem (PVFS2) Users looking for a high performance filesys-

tem which utilizes the collective storage capacity of each compute node, maximizes

filesystem bandwidth, and can be accessed via message passing (MPI-IO) or native

Unix filesystem semantics need look no further than PVFS version 2. PVFS2 is

intended to be built and deployed with the MPICH2 message passing library and

the ROMIO parallel I/O implementation that is part of MPICH2, so it introduces

45

a dependency on these lower-level tools. PVFS2 is open source, mature, and in

widespread use by many institutions and researchers. Partly due to its widespread

use and maturity, it also has relatively good documentation.

By designing PVFS2 to operate in a manner similar to NFS (as a stateless filesys-

tem and without the need for explicit file-level locks), file contention and node syn-

chronization bottlenecks are removed, allowing for highly scalable parallel perfor-

mance. PVFS2 further increases performance by striping data across all nodes in

a cluster, opting for maximum parallel saturation of available network bandwidth

in lieu of adding fault tolerance to the filesystem. As a result, PVFS2 is extremely

fast, its speed continues to scale as the cluster size increases, and it can present very

large storage capacities to users. However, the loss of a single participating storage

node will render the data stored on that node unavailable until it is brought back

into service. Therefore, PVFS2 may be classified as a high performance, scalable,

non-fault-tolerant network filesystem.

GFarm Grid Filesystem The author discovered the GFarm Grid Filesystem while

researching methods of adding reliability and fault tolerance to PVFS2. GFarm is

a shared, distributed cluster filesystem that attempts to realize scalable I/O band-

width, parallel processing, and NFS-style operation, similar to PVFS2. However, the

comparisons end at this point. GFarm can only be accessed using Unix filesystem

semantics, although the current implementation offers several means of presenting

the filesystem to users.

46

The key advantage of the GFarm filesystem is its use of multiple replicas to ad-

dress the need for performance and reliability. By storing multiple data replicas on

several compute nodes, the loss of a single node can be tolerated without loss of data.

Similarly, highly parallel use of available network bandwidth can be attained by re-

questing different pieces of a single file or data block from multiple replica servers in

parallel. Distributed bandwidth usage can be optimized by ensuring data is replicated

to the storage nodes which are closest to the compute nodes and/or users which are

using this data.

The cost of adding reliability and fault tolerance is a reduction in the amount of

disk space available for use across the cluster. Other disadvantages of GFarm are its

relatively sparse documentation, and the fact that it is not currently in widespread

use.

3.9.3 Cluster Management Tools

Parallel Distributed Shell (pdsh) The pdsh distributed shell is a must-have

tool for anyone looking to manage a number of similar or identical Linux systems,

whether they are in a compute cluster, a web server farm, or a computer lab. Written

at Lawrence Livermore National Laboratory as a high performance, multithreaded

parallel shell, pdsh lets a system administrator enter a shell command which is then

executed in parallel on a number of machines. A new thread is spawned for handling

the connection and command execution of each destination system, and standard

47

remote-command protocols rsh or ssh are used for remotely executing the shell com-

mand. The output and error streams from each machine are captured and reported

to the user, enabling a quick review of the results from executing the command on

all systems in the cluster.

Once a computing cluster is fully configured and operational, there are very

few reasons to perform individualized updates on each machine—most updates and

changes apply uniformly across all systems. pdsh allows cluster administrators to save

time by issuing a change or update command only once, and having the command

execute in parallel across all systems (or a selected subset of systems) in the cluster.

Distributed Cluster Shell (beosh) beosh takes the parallel approach of pdsh one

step further, and also provides another unique approach to utilizing cluster resources:

it can operate as an explicitly parallel shell, much like pdsh, or it can operate as a

distributed shell.

In parallel mode, beosh goes one step further than pdsh. It allows users to

execute commands in parallel across a set of systems in the cluster, but instead of

issuing them one at a time, beosh provides a fully-interactive shell environment that

executes every command in parallel across all selected systems. Feedback from all

systems is collected and presented to the user in a fashion similar to pdsh.

However, beosh has a distributed mode which takes a novel approach to the task

of fully utilizing cluster resources. In this mode, the user is presented with a fully-

interactive shell environment, each shell job is broken up into individual processes, and

48

each process is assigned to a different cluster node to execute. In this way, a series

of processor or I/O intensive tasks that would normally execute on one system is

distributed, taking advantage of the additional resources available on other machines

in the cluster. For example, beosh in distributed mode would break up the command

cat FILE | grep xyz | sort |uniq | wc into five separate tasks, distributing the

tasks as shown in Figure 3.4.

cat

FILE

grep

 xyz

sort uniq wc

STDIN STDOUT

(node 1) (node 2) (node 4) (node 5)(node 3)

(master
 node)

beosh

Figure 3.4. How beosh distributes tasks.

This distributed mode of operation is useful in cases where the user or system

administrator needs to perform a series of processor or I/O intensive tasks which

sequentially depend upon one another (typically in a pipeline). Although a near-

linear speedup is possible if all tasks in the pipeline are processor-bound, in practice

users should see a very modest speedup, since usually only one or two processes in a

pipeline are processor-bound.

49

The Cluster Monitor (ClusMon) No computing cluster would be complete with-

out including provisions for ongoing monitoring and status reporting. At some point,

monitoring the cluster’s health and utilization becomes a necessary and important

task, as more users rely on the uninterrupted availability and performance of the

cluster. A cluster system administrator may wish to proactively be made aware of

impending problems before they result in a loss of service, thus providing a more

robust computing environment for the cluster’s users.

For example, the system administrator may wish to be informed of a node which

is experiencing abnormally high operating temperatures. If it went undetected, this

condition could lead to the sudden failure of the compute node, and the failure would

disrupt any users relying on that node—currently running jobs would be lost, and

any data stored on that node would be unavailable. Another scenario is a cluster

which is beginning to see increasing utilization over time. This may be indicative of

heavy cluster usage, meaning additional compute nodes should be added, or it may

mean that there are some runaway processes which are taking up CPU time and

should be killed. In either of these situations, if the system administrator has a tool

which monitors and reports on system health and utilization, keeps track of historical

trends, and sends alerts when the values go out of normal operating thresholds, then

he or she may proactively research and fix problems before they trigger a failure.

ClusMon is just such a tool. It interfaces with the Linux kernel and the lm sensors

hardware monitoring toolkit to collect information about hardware health, system

50

utilization, and resource availability. A small subset of the data ClusMon collects

includes: system temperature and fan speeds, processor, disk, and memory utilization,

system uptime, and network utilization. ClusMon presents real-time updates of this

data on a web-based graphical console, and stores historical data in a local database

for future reference and reporting purposes. If current sensor readings fall outside

predefined limits, ClusMon will take immediate action, paging or emailing the cluster

system administrator. For less severe situations or trends, the system administrator

can review historical data and charts, looking for trends which should be watched

or researched. In this way, the cluster system administrator can stay ahead of most

failures, being proactive about correcting issues before they cause a node failure,

instead of reacting to the emergency situation when a node fails.

ClusMon is architected so it can monitor any group of Linux machines, not just a

high performance computing cluster. Its author states that it has been designed to be

robust and efficient, in terms of processor utilization, memory and disk consumption,

and network bandwidth.

51

Chapter 4

USING THE BOISE STATE AUTOMATED CLUSTER

INSTALLER

4.1 Prerequisites

4.1.1 Supported Processors

Prior to installing software on the cluster nodes, the cluster hardware must be installed

and data interconnections must be established. BSACI is designed to accommodate

commodity computing hardware, which means the compute nodes must be commodity

systems utilizing Intel architecture 32-bit processors and typical on-board or off-the-

shelf hardware for interfacing with network and disk storage devices. In other words,

the cluster nodes should be a collection of personal computers or PC-class servers,

without any exceptionally fancy hardware. Although 64-bit processors are becoming

more common, the most commonly-available processors remain the IA32 variety, and

is it these processors which are most likely to be at the heart of any cluster built of

commodity components.

Although any collection of systems with IA32 processors may be used to build

the cluster, it is generally a best practice to have some similarity between the master

52

node and the compute nodes. If possible, all compute nodes should have the same

number and speed of processor—this helps the job control system ensure a uniform

distribution of work between all compute nodes. The master node should have at

least as much processing power as the compute nodes, and if possible, more processing

power, since the master node has more concurrent processes to attend to: it is the

primary point of user interaction, and ultimately all running parallel jobs will report

their results back to the master node.

4.1.2 Supported Disks and Cluster I/O

Although current clusters focus largely on maximizing available processing power,

cluster I/O is beginning to come into focus as a key bottleneck in current designs. As

parallel problems become larger and more complex than local compute node memories

can handle, cluster I/O becomes the limiting factor in cluster performance. Although

a commodity cluster does not have the specialized components available to provide

maximal I/O throughput, recent cluster filesystems such as PVFS2 can take advan-

tage of parallelism to provide excellent throughput using commodity hardware.[22]

Local Storage Most commodity computers will include local data storage, in the

form of one or more hard drives mounted as part of the system. These hard drives

typically use the Intelligent Device Electronics (IDE) interface, although some drives

use the Small Computer Systems Interface (SCSI). Because most high-performance

compute clusters are processor-bound, and not disk I/O bound, the performance of

53

these devices is not critical. However, some cluster applications use large amounts of

disk storage as a substitute for physical memory, so the disks used must not be too

slow. Typical modern IDE disks have a throughput of 30-50 megabytes per second,

which is adequate for general cluster usage and experimentation.

Local RAID Disks If greater local disk throughput is desired, a commodity IDE or

SCSI RAID controller may be employed, so long as the RAID controller is supported

by the Fedora Core Linux distribution. During the partitioning step of BSACI, the

appropriate disk device names will need to be changed to match the Linux device

names presented by the RAID controller.

Shared Storage Shared storage, such as a storage area network (SAN) or network

attached storage (NAS) installation, is not supported by BSACI, although more ex-

perienced Linux system administrators may certainly employ it. To get BSACI to

utilize SAN or NAS storage, the system administrator will need to manually intervene

during the cluster installation. For a SAN, host bus adapter drivers must be installed

on all systems accessing the SAN, disk storage must be allocated and mapped to

each system, logical disks partitioned, formatted, and mounted, and the /etc/fstab

and associated files edited appropriately. For NAS, filesystems must be allocated

and mapped, and the associated files and mount points modified to record where the

filesystems have been mounted.

54

4.1.3 The Data Network

Topology The cluster data network is designed in a similar fashion as the cluster

compute nodes—both are composed of commodity hardware. Although there are

various network interconnection designs, the simplest and most widely available is

packet-switched Ethernet, and this is the network topology which BSACI is designed

to support.

Network Interface Hardware Although any data interconnection which appears

to the Linux operating system as an Ethernet networking device can be used, the

most cost-effective data interconnection at the time of this writing is Ethernet over

copper wire, operating at 1 gigabit per second (1Gbps). Network interface cards for

1Gbps Ethernet are broadly supported in Linux and are widely available, as are high-

quality 1Gbps network switches. The only requirement that must be met is that the

network interface cards selected for use be supported by the Fedora Core distribution

of the Linux operating system.

It is critical that the network cards and systems used as compute nodes support

the Intel Pre-Boot Execution Environment (PXE) [38] standard. BSACI relies on

the functionality provided by the PXE cards in each compute node to detect and

subsequently boot and configure the operating system on each node. At the time

of this writing, most network interface cards capable of operating at 1Gbps speeds

typically include PXE boot capabilities, and systems which have on-board 1Gbps

55

Ethernet controllers almost always support PXE. If unsure, check that the system

BIOS is configured to boot from the network card, and ensure the network card itself

supports PXE.

Confirming Connectivity Each compute node should be connected via 1Gbps-

capable cabling to a 1Gbps network switch. Although multiple switches may be used

in a variety of formats, the design and analysis of Ethernet switching topologies is

beyond the scope of this document. We will assume that all nodes are connected via a

single 1Gbps Ethernet switch. Once connected and powered on, the appropriate net-

work link indicators should light on all connected switch ports and network interface

cards, demonstrating a low-level network link. Any network connections which do

not have link lights at both ends are faulty, and should be investigated and corrected

before proceeding.

4.2 Preparing the master node

Once the hardware has been set up, the first software components of the cluster

must be installed and configured. BSACI relies wholly on the master node, since all

software is installed there. Collections of software for the compute nodes are built

and distributed from the master node to the compute nodes.

56

4.2.1 Installing Fedora Core

Fedora Core 5 [23, 24] is the Linux distribution which must be installed on the master

node. A typical installation is to be performed, selecting defaults for most installation

questions. After identifying a locale and keyboard settings, the user may be asked

about upgrading an existing system. If so, users should select the option to “Install

(or re-install) Fedora Core”.

Disk Partitioning Advanced users may opt to create various disk partitions on

the master node, but this is not required. The simplest approach is to remove all

partitions on the first disk and create a default partition layout on it. Additional

disks may be partitioned and mounted at a later time. The only requirements for

disk partitioning are that the / (root) filesystem have at least five gigabytes of free

space, or that a separate /tftpboot/ filesystem with at least two gigabytes of free

space is created. This is because /tftpboot/ is where all files for node installation

will be decompressed and built into node installation tarballs.

Network Devices Most cluster installations are not entirely isolated from the rest

of the world. Instead, they are connected to other networks via a second network

connection in the master node. For a master node which is connected to “the outside

world” via a second network card, users must be sure to identify which network device

name corresponds to the internal network that the rest of the cluster is attached to,

and which network device corresponds to the external network. During the Fedora

57

Core installation, information about both network devices will be required.

Network Configuration Both the internal and external network devices should

be configured using static IP addresses and subnet masks, and should be set to start

at boot. The IP addresses assigned on the internal network are not critical, since

they will only be visible by systems in the cluster. Most users will find RFC 1918[25]

network addressing standards to be appropriate for the internal interface.

Applicable default gateway addresses for communication with external networks

should be entered, along with the addresses of any domain name (DNS) servers.

Finally, the hostname should be manually configured, and should consist of at least

one period (.) symbol. Often, users will choose names such as “master.cluster” for

the master node, to be followed later with “node1.cluster”, “node2.cluster”, etc., for

each compute node. Other users may opt to use fully-qualified domain names, if their

network administrators have assigned such names for their cluster machines.

Additional Configuration During the first boot of the newly installed Fedora

Core system, several configuration options will be presented. The following selections

should be made:

• Firewall: Disabled. The internal network should not require firewalling, since

it is private. For the interface on the external network, the system administrator

can manually edit firewalling after the cluster has been set up. Note that BSACI

will apply a restrictive default firewall rule set to the external interface during

58

cluster installation. This rule set allows inbound traffic on TCP ports 22 and

81 only.

• SELinux: Disabled. Several cluster software components will not work if

SELinux is enabled (in the ‘enforcing’ or ‘permissive’ state). SELinux must be

disabled at boot time for full cluster functionality. Selecting the ‘disabled’ state

at this point during the installation will ensure SELinux does not interfere with

proper cluster operation in the future.

• Network Time Protocol (NTP): Enabled. The system clock of the master

node will be published to all compute nodes in the cluster, and they will syn-

chronize their system clocks with the master node’s clock. It is a best practice

to keep the master node’s system clock synchronized with the true time of the

outside world. The NTP server(s) configured must be reachable by the master

node. If the master node is isolated, then NTP can be disabled, but this is not

an optimal configuration.

• System User(s): At least one non-root user should be created. Several

cluster-oriented tools, such as the Portable Batch System, will not run as root

(UID 0) for security reasons. A non-root user account must be created for

using these tools.

After these configuration options have been selected and applied, the installer

may recommend a reboot of the system. Once the system has finished rebooting and

59

is displaying the user login prompt, the next steps of the cluster installation may

proceed.

4.3 Installing the cluster

Once the prerequisites are complete and the master node is configured, it is time

to begin installing the cluster software itself. The Boise State Automated Cluster

Installer is designed to be as close to a “single-click” installation as possible. The

entire script is triggered by mounting the BSACI installation disk and executing a

single shell script.

4.3.1 The initial RUNME.sh setup script

Note that a user must have root user privileges to install the cluster software. Users

must log in as root, insert the media into their CD/DVD drive, and mount it. There

are two ways to proceed at this point. Users may choose between the two installation

methods either because of personal preference, or technical limitations.

Executing directly from CD/DVD If hard disk space is at a premium and

the user has convenient local access to the master node, installing directly from the

CD/DVD installation media may be preferable. In this case, the root user must

mount the media in such a way that executing scripts are allowed. A typical command,

assuming the CD/DVD drive is named /dev/cdrom0 is:

mount -o ro,exec /dev/cdrom0

60

A user executing this command should successfully mount the installation media

in a manner which allows executing of scripts. A successful mount can be confirmed

be executing the command

mount | grep cdrom0

and looking for the device /dev/cdrom0 and its associated mount point to appear.

Assuming the media is mounted in /mnt/media/cdrom, the user would then start the

installation process by executing the RUNME.sh script located in the root directory of

the installation media. This can be done by issuing the command

/mnt/media/cdrom/RUNME.sh

Executing from local filesystem Some users may not wish to install directly

from CD/DVD media, opting instead to copy the BSACI files in their entirety from

the installation media to a directory on the master node’s filesystem. This provides

faster overall access to installation files, and is more convenient for situations where

the master node is located in a remote machine room or similar location that makes

insertion and removal of physical media inconvenient. A user must ensure they have

enough free disk space to copy the entire installation media to the disk, and must

ensure that the destination filesystem allows executables.

Once the files are copied, the RUNME.sh script located in the root directory of the

installation media must be executed. If the user copied the entire contents of the

BSACI installation media to /root/bsaci/, then the command to start the cluster

61

installation is

/root/bsaci/RUNME.sh

What RUNME.sh does The RUNME.sh script ensures it has basic access to read some

initial files from the installation media. It then creates a generic configuration file,

initializes a few values indicating what directory the BSACI files are in, and starts

the first installation script, MASTER-SCRIPT-1.sh.

4.3.2 MASTER-SCRIPT-1.sh: preparing the master node

This first installation script goes through several steps which prepare the master

node for later steps, including building, customizing, and deploying the node tarball.

First, however, the script warns the user of the irreversible nature of the BSACI

cluster setup process, and asks for confirmation before proceeding. It then reminds

the user of a few prerequisites which should be satisfied before installing the cluster.

If the user chooses to proceed, the script performs basic sanity checks, then installs

the YACI software and several other cluster-oriented software packages which will be

used during and after the installation. It also installs several Fedora Core software

packages which are included in the distribution, but never installed. It then copies a

base collection of RPMs which will be installed on the compute nodes, placing these

files in the /tftpboot directory hierarchy created when YACI was installed.

Once the necessary software and files are on the system, the installation script

will ensure there are no daemons listening on TCP ports 80, 81, or 3307. It will

62

then set up a temporary web server to listen on that port for the remainder of the

cluster installation process. This web server will provide a graphical user interface to

easily guide users through the remainder of the cluster configuration and deployment

process.

4.3.3 Using the web wizard to enter configuration details

The web wizard is a graphical HTML/AJAX application which provides a friendly,

easy-to-use interface that guides users through the configuration and deployment

of the cluster software. After the first installation script finishes, the user will be

prompted with a message similar to the following:

Congratulations, the first part of setup is complete!

The remainder of the setup process will be performed using a

web-based interface. Please point your browser at the IP of any interface

configured on this system to continue the setup process.

(For example, http://192.168.0.1, http://172.16.2.221, etc)

The user may direct his/her browser to any of the addresses listed, assuming the

chosen address is reachable from the browser the user is operating.

Once the web wizard page opens, all other attempts to access the page from an-

other browser will be denied. This introduces some basic security, isolating all access

to the configuration wizard to a single web browser session. The user is presented with

a screen, a frame showing progress through the cluster installation steps, some config-

uration questions to answer, and three navigation buttons, labeled “Back”, “Help”,

63

and “Next”. The “Help” button will pop up a window with a page of instructions

specific to the screen the user is currently seeing. The “Back” button allows the user

to return to a previous step, if there was one. The “Next” button allows the user

to proceed to the next configuration step. It is not enabled until the user provides

satisfactory information to all questions on the current step.

Part of the dynamic technology used in this web-based wizard allows each field

of data to be checked as part of an asynchronous background thread in the browser,

independent of what the user is currently doing. Results are returned to Javascript

code in the browser, and this code determines if the “Next” button may be enabled,

if the current data is invalid, or if an error message should be displayed to the user.

As each field is edited and the focus moves to the next field (or the focus moves to

the “Next” button), all data is asynchronously checked for validity. Once all data is

valid, the “Next” button is automatically enabled, allowing the user to click it and

proceed.

Once the “Next” button has been clicked, all data from the current screen is

submitted to the web server for further scrutiny. It is checked again, and if the data

is still valid, then the user will see a new web page. The progress frame on the left

of the user interface will be updated, and the configuration data from the previous

page will be saved to a configuration file on the master node’s /tmp filesystem.

Using this interface, the user enters data about the master node’s network in-

terfaces, associated IP addresses and subnet masks, DNS servers, default gateways,

64

network time protocol servers, locale and time zone, and internal network DHCP

pool. The user also specifies the hard disk device names, partitions, filesystem mount

points, cluster network devices, and base name for the compute nodes.

4.3.4 Detecting compute nodes

After initial data collection, the web user interface initiates the process of detecting

compute cluster nodes and collectively naming them. Asynchronously, as a back-

ground process, another script (MASTER-SCRIPT-2.sh) begins building the node tar-

ball.

The user is asked to provide a base name for the compute nodes. This name will

be appended with a unique number for each node in the cluster, thus naming each

of the nodes. For example, if the base name is “worker,” then the compute nodes

will be named “worker1,” “worker2,” etc. Leading zeros are included as necessary to

ensure that all names are of uniform length. If there were 100-999 machines, then the

names would be “worker001,” “worker002,” etc.

Once the user chooses to detect compute nodes, a script will execute, showing the

hardware addresses of all unique compute nodes found thus far. At this point, the

user must reboot each compute node. As the nodes reboot, their PXE boot cards will

send out DHCP lease request packets, searching for a boot configuration server which

has not been set up yet. The master node detects each of these broadcast packets,

and logs them to the screen as they are detected. In this manner, a complete list of

65

compute nodes is built.

As soon as the user finishes detecting compute nodes, the foreground process

rejoins the background process, waiting for the node installation tarball to finish

building before the next step of the process can continue.

4.3.5 MASTER-SCRIPT-2.sh: building the node tarball

As soon as the user begins detecting compute nodes, a background process begins

the time-intensive task of assembling a tarball file which contains all the files nec-

essary for the complete install of a compute node. While the core scripts from the

YACI framework perform most of the heavy work, installing the preselected list of

RPM packages into a chroot’ed environment, there are several configuration files

which must be customized. Some of these files are customized based on data the

user provided during the early steps of the web installation wizard, while others are

automatically probed from the system by scripts. However, a significant number of

these configuration files are based upon the number of nodes in the compute cluster,

and this number is not yet known.

Instead, the complete node installation tarballs are built, minus the configuration

files which are based on the number of compute nodes. Fortunately, these files can be

placed on the respective compute nodes separate from the rest of the node installation

tarball, although a significant portion of YACI and BSACI code had to be rewritten

to allow this two-stage deployment of configuration files.

66

As soon as the user finishes detecting compute nodes, the user interface advances

to show the progress of the script which builds the node tarball. In this way, the

foreground “thread” which detects compute nodes rejoins the background “thread”

which builds the node tarball.

After the node tarball is fully built and the foreground and background processes

have rejoined, the final count of compute nodes is known. The remaining files which

depend on knowing the number of compute nodes are built, and are compressed

into a small secondary tarball for deployment after the main node tarball has been

deployed. This secondary tarball is read and decompressed by each node into its /

(root) filesystem during its first boot.

4.3.6 MASTER-SCRIPT-3.sh: deploying the node tarball

The third script ensures that the foreground and background processes have joined,

then it restarts various system services which have been reconfigured by the cluster

installation software. Once these services have successfully restarted, the user is told

to begin rebooting the compute nodes. As they reboot, the nodes acquire DHCP

addresses and information regarding the location of the server that contains their

pre-boot environment. The nodes PXE boot from the network card, download the

YACI installer, partition and format their disks, then decompress the node tarball to

them.

After the node tarball is decompressed, each node reboots. This time, the PXE

67

environment detects that an install has successfully completed for that node, so the

node boots from its local disk instead of the network boot server. This first boot after

the operating system installation performs some initial setup, including generation of

ssh keys for the node, copying over the second-stage customized files, and copying

some node-specific data to the master server. Once these tasks have completed, the

install for that specific node is complete. A brief message similar to the following

appears on the GUI or CLI, informing the user that the installation for the named

node has successfully completed.

Node ’node17’ install & reboot completed successfully. (For more information,

see /tftpboot/logs/node17.log).

The master node keeps track of the number of unique compute nodes which have

successfully completed their installation, and will wait until all compute nodes have

reported success before allowing the user to proceed to the final steps of the installa-

tion process.

4.3.7 Final steps

On the master node, some final cleanup steps are performed. Permissions which were

changed during the installation are reset to normal, and the temporary web server

files are marked for deletion. The master node has a count of the number of compute

nodes, and the final script waits until each node has completed its installation and

reboot before continuing. Once the ssh key data from all compute nodes is collected,

68

the installer knows that all compute nodes have successfully installed and booted. It

then finishes deleting temporary files, builds a list of node SSH keys (this will enable

cluster users to enjoy prompt-free ssh sessions from the master node to the compute

nodes), and informs the user that it is ready for a reboot.

When the user has rebooted the master node, the cluster is ready for use. To try it

out, the user should log in using a non-privileged account, and try to compile and run

a parallel (PVM or MPI) program. For convenience, the BSACI distribution includes

the file /srcs/example-code.tar.gz, which has a collection of simple applications

for PVM and both flavors of MPI implementations (MPICH2 and OpenMPI). The

file /README.example-code in the distribution includes instructions on how to use

this code, and each program’s subdirectory includes a brief README file which lists

commands to compile and run the programs. These instructions include steps for

reserving nodes, starting the message-passing daemons, executing the programs in

parallel, and shutting down/cleaning up the environment later.

4.3.8 Using the Command-Line Interface

The command-line interface, or CLI, shares a process similar to the graphical user in-

terface which is described in the preceding sections. Both the CLI and GUI interfaces

share a great deal of low-level code, and some intermediate scripts are the same as

well. However, the code which directly interfaces with the user differs between these

two interfaces.

69

Initial Setup The initial setup of the CLI mode is exactly the same as the setup

of the GUI mode; however, when the initial RUNME.sh script prompts the user to

PRESS ENTER TO EXIT THIS SCRIPT

the user must instead enter the letters CLI and press the enter key. The script will

complete a few additional steps, then present the following prompt to the user:

CLI MODE!

Open another shell, edit & save the configuration file,

(/tmp/BSU_CLUSTER_INSTALLER_DATA_FILE) then...

PRESS ENTER TO PROCEED WITH PHASE 2

Before pressing enter at this prompt, the user must edit the configuration file

listed, and save the resulting changes.

Editing the master parameters file The master parameters file contains all

details that govern how the various installation scripts will generate and modify the

necessary configuration files on all cluster systems. Normally, the web-based wizard

interface will sanity-check inputs and use the results to enter data into this file.

However, an expert user may edit the master parameters file directly, eliminating the

need to use an intermediate graphical interface.

The master parameters file is located at /tmp/BSU CLUSTER INSTALLER DATA FILE

on the master node. The file is a plain text file, with a format as described in Figure

3.2. The various entries in this file are described in Appendix A. After a user edits

70

and saves the master parameters file, he or she may then proceed with phase two of

the installation, by pressing the enter key at the

PRESS ENTER TO PROCEED WITH PHASE 2

prompt. Note that almost no error checking of this file is performed. It is critical that

the file be error free, or the installation process must be restarted. For this reason,

it is recommended that a user unfamiliar with the format and meaning of the entries

in the master parameters file first attempt an installation using the graphical user

interface. During the installation process, the machine-generated master parameters

file may be studied and used as a template for the appropriate format when modifying

the file by hand in later installations.

Identifying compute nodes Once the user proceeds to phase two of the command-

line installation, another script will execute, creating and modifying various configu-

ration files according to the data found in the master parameters file. If all goes well,

the user will see a message similar to the following:

Generating passwordless SSH keys for users, and

running ’create_image’ to create a tarball node image...

...

...

Waiting for SSH account creation to complete...

At this time, the master node is creating SSH keys for users, and at the same time

is beginning to build the node tarball in the background. When the SSH keys are

built, it is time to identify all compute nodes.

71

The user will be shown a brief message:

Getting MAC addresses...

(press ENTER when all nodes have been detected)

As each node is detected, its hardware address will be shown on screen. Once all

nodes have been detected and displayed by the script, the user should press enter to

proceed with the installation.

Building and deploying the node tarball As soon as the compute nodes have

been detected, the script will re-join the background process, which has been building

the node tarball in the background. The system will wait for the tarball build process

to complete. As soon as the process completes, system services will be restarted in

preparation for node deployment, various temporary files will be removed, and some

system changes for the duration of the install will be reverted. The following message

will be displayed:

OK. The nodes are now downloading data over NFS. When the final node

is finished and has rebooted, you should probably reboot this server.

This installation script is complete.

Final steps Actually, the script is not quite complete, as it will continue monitoring

the output of all nodes as they finish the installation, reboot, and perform some final

processing during their first boot. The script will not exit until SSH keys and data

72

from each compute node has been sent to the master node, indicating that each

compute node has successfully rebooted.

When all nodes have reported, the script will clean up the final leftover temporary

files, set services to start upon reboot, and exit to a shell. At this point the master

node must be manually rebooted. After the master node reboots, the cluster should

be fully installed and operational. The user should log in using a non-privileged

account, and try to compile and run a simple parallel (PVM or MPI) program to test

proper cluster functionality.

4.4 Restarting a cluster installation

For various reasons, the installation of a cluster may be interrupted and need to

be restarted. For this reason, a simple shell script (/scripts/stuff/cleanup.sh)

has been provided which attempts to return the system to a relatively clean pre-

installation state when run by the root user. Services started by the cluster instal-

lation process are stopped, software which was installed is removed, and some data

directories and temporary-use files are deleted. While this tool does not return the

system completely to its pre-installation state, it does return the system to a point

where the BSACI tool can be run again without further manual intervention.

73

Chapter 5

MAINTENANCE

5.1 Maintaining the cluster

Although the subject of maintaining an operational Linux compute cluster could fill

an entire book, this document will only devote part of one chapter to the subject. This

section is not an exhaustive treatment of cluster maintenance. Instead, it presents the

reader with some ideas about how the included tools can be used to make maintaining

the cluster faster, easier, and more automated—all goals toward which any good

system administrator strives.

5.1.1 Shared Network Filesystems

One of the most critical components to easily maintaining a cluster is the use of

shared network filesystem mount points for certain parts of the master and compute

node filesystems. By exporting a directory from the master node as a shared NFS

filesystem, it can be accessed transparently from all compute nodes as if it were

a local filesystem. This becomes especially important when the /home, /opt, and

/usr/local directories are transparently shared across all systems.

74

By sharing these directories, user files and software, and custom local software

installations can be accessed simultaneously by all nodes in the cluster, without the

path to the file being different from node to node. This helps maintain a uniform

environment across the cluster, limiting maintenance of those shared filesystems to a

single point—the master node. It also simplifies the task of writing software to run

on the cluster, since programmers can be confident that any files in /home will always

refer to the same filesystem, regardless of which computer is executing their code.

5.1.2 The Parallel Distributed Shell pdsh

One of the most powerful tools for system maintenance is pdsh. With pdsh, a system

administrator can type a single command and have it execute in parallel on all systems

in the cluster, or a subset of them. The subtle power provided by this tool comes

from the fact that all compute nodes in the cluster are installed as virtually identical

systems. Therefore, a single command or series of commands to perform a particular

task can often be executed, unchanged, on all nodes in the cluster.

Checking system vital signs, such as free disk space or memory, spawning a system

cleanup script, and upgrading to newer software packages are all examples of some

of the tasks which can be executed by a single unchanged command running on all

systems in the cluster. The time savings of pdsh increase linearly as the number of

nodes in a cluster increases, since each command still only needs to be executed one

time for the entire cluster, instead of once per node.

75

Two lesser-known advantages of pdsh are its scalability and security when using

a modern remote transport protocol. It can be configured to use either rsh or ssh

as a transport when executing commands on remote systems. By default, BSACI

supports ssh, since it has several advantages over rsh. ssh encrypts all communica-

tions between nodes, providing privacy, integrity, and strong authentication of remote

systems and users. It also uses any non-privileged TCP source port for communica-

tions, meaning ssh has over 64,000 ports from which to choose, allowing it to scale to

managing very large clusters. By comparison, rsh offers no privacy or integrity, and

authentication which is trivial to defeat. rsh is also restricted to TCP source ports in

the range 512-1023, meaning it cannot scale well when executing parallel commands

on clusters of more than a few hundred nodes.

5.1.3 Portable Batch System (OpenPBS) tools

The Portable Batch System includes several tools which can aid a system administra-

tor in the day-to-day operation and maintenance of a compute cluster. The primary

function of a job batching system is to allow maximum utilization of computing re-

sources, while maintaining fair access to all users and ensuring that users’ jobs do

not interfere with one another. Batch queuing systems sometimes require manual

intervention on behalf of the system administrator to continue fulfilling their primary

function. Runaway jobs, hung or “stuck” job queues, and user errors can contribute

to minor maintenance headaches.

76

The qsub tool helps automate the complex task of submitting a new job to the

batch system for queuing. A specially-formatted batch job script defines the exe-

cutable(s) which will be run during the job, the batch system resources which the

job will utilize, any environmental or command-line parameters which will be passed

to the job executable(s), and other options which modify the behavior of the batch

processing system on a per-job basis. qsub communicates with the job scheduler,

registering the job in the correct queue, setting PBS-specific job and environment

parameters, parsing the job script to look for additional queue directives, and telling

the server what notifications to send out when the job completes.

With the qstat tool, users and system administrators can readily check the status

and resource utilization of jobs in queue, using a variety of reporting formats to track

and identify jobs and users which may be unfairly monopolizing cluster resources.

Queues which are “hung” or are administratively shut down can also be identified

and corrective measures taken. qstat tracks and reports on a wide variety of cluster

usage metrics, including actual used resources and requested resources, which are

invaluable when troubleshooting certain cluster performance issues.

qalter allows a system administrator to modify the attributes of one or more

jobs from the command line. Job parameters which can be altered include the time(s)

when the job is eligible to be scheduled for execution, which user account is associated

with the job, how frequently the job will be checkpointed during execution, where the

job’s standard input/output/error streams are redirected, what resources are needed

77

by the job, how to alert users and system administrators upon completion of the job,

the job’s priority, and many others.

The qsig, qdel, and qdisable tools allow for control and removal of execut-

ing batch jobs. qsig will send a specified signal to the job leader of a batch job.

qdel deletes one or more batch jobs after killing them with SIGTERM and SIGKILL.

qdisable disables the addition of jobs to an existing batch execution queue, allowing

the jobs already in the queue to continue executing until the queue is emptied.

Other tools which interact with the Portable Batch System operate at the node

level. pbsget allows users to allocate computing resources via PBS, then spawn an

interactive shell session which has access to these resources. Users who employ pbsget

can take advantage of an interactive alternative to the batch-based environment which

PBS typically provides. This is a boon when developing and debugging parallel code,

as it allows for a rapid test/debug development cycle.

For both users and system administrators, pbs usage allows cluster usage to be

displayed. The total number of jobs executed, the number of wall-hours of processor

time utilized, and the total hours of processor time utilized are displayed. System

administrators can see a summary of cluster usage for each user on the system, while

individual users can see only their own usage statistics.

Finally, the pbsnodes utility allows the cluster administrator to mark individual

compute nodes as down, free, or offline, allowing for administrative maintenance to

occur on some compute nodes, while the rest of the cluster remains active. This tool

78

also allows users and system administrators to see a snapshot of cluster utilization at

any time, with a list of all cluster nodes and their current state (exclusively locked

by a running job, free, down, or offline).

5.1.4 ClusMon

ClusMon is a project started by Conrad Kennington while he was at Boise State

University. Although ClusMon has several applications, its primary purpose is for

monitoring the physical health of each node in the cluster, and alerting a system

administrator when problems arise. Maintaining the hardware of a compute cluster

is as important as maintaining the cluster software. Arguably, maintaining the cluster

hardware may be more of a demanding task than maintaining the software, since the

number of potential problems in the cluster increases as the number of compute nodes

in the cluster increase, while the number of potential problems caused by software

only increases when more software is added.

When used to notify system administrators of malfunctioning nodes, ClusMon is

critical to maintaining the cluster in good working order after the initial installation of

the cluster. ClusMon continually monitors the status of node hardware temperature

sensors, cooling fan speeds, and processor, memory, and disk usage. Should any of

these data samples fall outside expected bounds, there is likely a problem with the

node which should be investigated and repaired. System administrators are notified

of the failure time, location, and type, and if warranted, other actions may be taken

79

(such as marking a node offline, or disabling a batch queue).

However, ClusMon is more than just a reactive alerting tool that notifies system

administrators of problems. Because it stores past data samples and averages in a

database, it can be used to report historical trends and to perform trend analysis to

predict future bottlenecks or problems proactively. A system administrator who uses

ClusMon to perform this type of proactive analysis can identify and correct potential

problem areas before they advance to a “system down” situation. For example, a

node which has been showing a trend that its local temperature is increasing may

indicate a dirty air filter, poor air conditioning circulation, or a cooling fan which

is beginning to fail. By proactively identifying this trend, a system administrator

can examine the node, identify the cause of increased system temperatures, and take

corrective action prior to the system crashing.

ClusMon makes real-time monitoring and analysis easy, because it includes an

integrated web-based monitoring and reporting interface, including a dashboard-style

real-time monitoring page. Every few seconds, every node in the cluster reports its

current operating conditions to the database server, and the web interface periodically

queries the database server to collect the latest sample data. These data are displayed

in the form of performance gauges that indicate collective cluster memory, processor,

and disk usage, as well as a chart listing the individual usage for each node. Clicking

on a node brings up more detail, allowing for easy drill-down to accurately identify

problem areas.

80

In this installation, ClusMon has been given a dedicated instance of Apache, a

dedicated instance of MySQL, and a dedicated installation of the Java 1.5 runtime

environment. This means that any changes to the system’s versions of these packages

will not affect the cluster monitoring tool, because it uses dedicated, isolated instances

of them. In this case, the ClusMon Apache (web server) instance is listening on TCP

port 81 and the ClusMon MySQL (database server) instance is listening on TCP port

3307. This avoids “clobbering” the commonly-used Apache and MySQL ports (80

and 3306, respectively), keeping them available for other uses.

5.1.5 Patches and Software Upgrades

Frequently, performance problems, software bugs, and security holes in system soft-

ware are found, fixed, and a new version of the affected software released. A critical

task for anyone maintaining a compute cluster is staying abreast of new software

releases, analyzing them, and applying selected software upgrades to the cluster. In

an environment where some cluster users must protect the privacy of their data from

other cluster users, system administrators must ensure that software upgrades which

fix security holes are applied in a timely fashion.

RPM Upgrade Packages While there are several approaches to installing up-

dated software across multiple systems, the following approach works well for the

majority of software updates in an RPM-based system such as Fedora Core:

1. Download the updated system software as RPM packages, and store the pack-

81

ages on a filesystem which is shared across all nodes in the cluster (for instance,

/home or /usr/local).

2. Log in to the master node as root. Install the software on the master node

(called masternode in this example, using the command rpm -Uvh <package.rpm>.

Check to be sure it installed without errors.

3. Repeat the above process on a single compute node (called computenode1 in

this example), checking to be sure the installation is successful.

4. If the initial installations were problem-free, then the software update should be

applied to the remaining nodes in the cluster. A command such as pdsh -a -x

masternode,computenode1 rpm -Uvh <package.rpm> will complete the in-

stallation in parallel across all remaining compute nodes (except masternode

and computenode1, which were already upgraded).

With any change to a production system, it is a best practice to first attempt the

change or upgrade on a “test” system. If possible, perform the steps of the above

upgrade on a “test” cluster first, then test to ensure the software and the cluster

behaves as expected after the upgrade. If the test installation is successful, then the

upgrade process may be performed on the production cluster.

Patches and Unpackaged Upgrades Some upgrades are not available as RPM

packages, and must be applied in other ways. While the general approach to applying

82

an unpackaged upgrade is similar to the approach when applying an RPM-packaged

upgrade, many details are notably different.

In this case, having a good “test” platform, preferably a small cluster, is invaluable.

The system administrator must still download and store upgrade files on a shared

network filesystem that is available to all systems in the cluster. After this, different

steps apply.

The system administrator may need to compile source code into a binary exe-

cutable or kernel module, then distribute the compiled code to all nodes. Alterna-

tively, code may be ready for deployment, but packaged as a tarball file that must

be decompressed into a specific destination directory. Or, the upgrade may consist

simply of a binary or text patch to an existing file on the system. Each of these

scenarios requires a different approach, and will require some manual intervention.

Often, the system administrator performs some manual steps to prepare for the

installation (compiling, untarring, etc). The system administrator may also write a

short script which will be executed as part of the installation (for example, a script

which copies files and resets their ownership and permissions, or which applies a patch

file to a directory). After this script is written, it is tested, then when ready, it is

used for deployment to all compute nodes. A typical sequence for upgrading a cluster

using non-packaged software might look something like this:

1. Download the updated files to a development machine which is configured sim-

ilarly (or identically) to the cluster nodes.

83

2. Perform any preparatory tasks (e.g. unpacking, compiling, etc).

3. If necessary, write an installation script which performs additional installation

actions, such as copying files to the appropriate locations, resetting file permis-

sions and ownership, restarting services, etc. Test this script until it is functional

and robust!

4. Identify the files which must be accessed as part of the installation process,

and move these files to a shared filesystem that is accessible by all nodes in the

cluster.

5. Log in to the master node as root. Perform a test installation on the cluster

master node. Check for errors.

6. If all is well, perform a second test installation, this time on one of the cluster

compute nodes. Again, check for errors.

7. If all is well, then install on the remaining compute nodes, using pdsh to execute

installation commands (such as running the installation script) in parallel on

each node of the cluster.

As stated earlier, with any change to a production system, it is a best practice

to first attempt the change or upgrade on a “test” system. This is especially critical

when the system administrator is writing new custom code for installation of the

unpackaged software, since undiscovered bugs in the installation script may severely

damage the cluster, especially if they are running with root permissions.

84

If possible, perform the steps of the above upgrade on a “test” cluster first, then

test to ensure the software and the cluster behaves as expected after the upgrade. If

the test installation is fully successful, then the upgrade process may be performed

on the production cluster.

5.1.6 To upgrade or to re-install? That is the question.

As the cluster ages, newer versions of the Fedora Core distribution will be released.

When these releases occur, a decision must be made regarding when to upgrade the

cluster to this new Fedora Core version, and how to best perform the upgrade when

the scheduled time comes.

Conservative system administrators will often choose to remain at least one full

release behind the current latest Fedora Core release, to allow most of the bugs to

be found and fixed prior to upgrading the cluster. However, some users may opt

to upgrade sooner, so they can take advantage of newer features, better hardware

support, and improved performance.

Regardless, at some point the cluster will need to be upgraded to a later Fedora

Core release. When this time comes, there are two approaches: either perform an

upgrade of the installed RPM packages for all systems in the cluster, or start over,

wiping out the current cluster and reinstalling the master node and compute nodes

“from scratch” using the newer Fedora Core release.

85

In-place Upgrade When performing an in-place upgrade, the system is upgraded

from one release of Fedora Core to a newer release, by upgrading individual RPM

packages to the versions distributed as part of the new Fedora Core release. After

upgrading existing packages, any new RPM packages which are part of the new release

are also installed, and any old RPM packages which have been deprecated in the new

release are removed.

The process is essentially a large-scale version of the software upgrade process

described in Section 5.1.5. All software packages for the new release are downloaded

and saved, then each package is upgraded on all cluster nodes. New packages are

identified and installed on all cluster nodes, and old packages are removed.

Note that this is a complex process, which must be attempted on a “test” cluster

first. The nature of Fedora Core and the RPM package management system are such

that new dependencies are often introduced, and these dependencies must be resolved

by installing, removing, and upgrading other packages. At times, dependencies cannot

be resolved using standard RPM tools, and software packages must be installed,

removed, and upgraded by hand. When the upgrade is complete, some “cruft” (old,

orphaned files that are no longer tracked in the RPM database) will typically be left

over on the system, and will need to be identified and cleaned up manually.

While this is a time-consuming and error-prone process, it can work well if thor-

oughly tested and documented on a non-production cluster first. Custom software

and user files remain in place, and need not be backed up or restored to other systems.

86

Wipe and Re-Install Instead of an in-place upgrade, other users opt for a fresh

re-install of the cluster, using the new Fedora Core distribution. This is another

time-intensive process, but it often has better results than an in-place upgrade.

Because each new Fedora Core release introduces significant changes to the op-

erating system, including configuration file changes, the BSACI scripts may need to

be modified slightly to accommodate the changes. Again, a test cluster is invaluable,

since these script changes must be tested, corrected, and re-tested until they work

correctly in a variety of situations. The processes and recommendations given in

Section 5.2 should be followed when updating the cluster installer.

After the cluster installation using the new Fedora Core release and the updated

BSACI code has completed successfully on the test cluster, it is time to upgrade the

production cluster. The cluster should be fully backed up, and the backups verified

for readability and restorability. This ensures that user data, custom software, license

keys, and custom configuration data are all able to be restored to the new cluster after

it is rebuilt.

The cluster installation may then proceed, just as if the cluster was new. Drives

will be partitioned and formatted, data will be pushed out to all compute nodes, and

the new cluster software will be configured. When the cluster installation is complete,

the backed-up data (user files, custom software, etc) from the old version of the cluster

must be restored.

Briefly, the steps for a wipe and re-install cluster upgrade are:

87

1. Download new Fedora Core release.

2. Update the Boise State Automated Cluster Installer to be compatible with the

new Fedora Core (see Section 5.2).

3. Test the new BSACI until it works reliably and predictably.

4. Back up current cluster, and test to be sure data can be restored from backup.

5. Re-install the cluster as though it were new, using the updated BSACI code.

6. Restore user data, custom software, license keys, etc. from backup.

5.2 Maintaining the Boise State Automated Cluster Installer

As newer software packages are released and eventually completely new Fedora Core

versions are released, the amount of work necessary to update a freshly-installed

cluster to a fully patched and updated state will increase. This largely-manual work is

time consuming, and it defeats the purpose of building an automated cluster installer

as a time saving device. It also introduces the phenomenon known as “bit rot,” which

is the progressive decay of unmaintained software into a state of uselessness, due to

untracked changes in the software and the environment in which the software is used.

To avoid “bit rot” and to remain a useful time saving tool, the Boise State Au-

tomated Cluster Installer must be maintained and periodically refreshed to ensure it

tracks and integrates changes in newer software packages and Fedora Core releases.

88

This section of the document provides information and guidelines which are intended

for use by anyone who is maintaining the cluster installer software. This is also useful

information for someone who is trying to include their own custom or updated soft-

ware packages as a part of the cluster installer’s standard installation. The concepts

presented in this section are the same, regardless of whether the new packages being

included with the cluster installer are due to a new Fedora Core distribution being

released, due to a number of updated software packages being required, or due to a

system integrator, system administrator, instructor, or developer wanting to include

some specific packages of his or her own.

The following steps will provide a user with guidelines, best practices, and typical

scenarios that are applicable when updating software packages that are included with

the cluster installer. In general, the instructions provided are not to be followed as

verbatim steps, since each scenario will vary somewhat. Instead, the instructions are

guidelines and reminders of what to look for and what to do. If certain instructions

are intended to be followed verbatim, the document will explicitly state this intention.

5.2.1 Acquire the most up-to-date packages

The first step in building an updated cluster installer is to include all updated software

packages, both custom packages and Fedora Core packages for the targeted Fedora

Core release which the cluster installer is built against. We need to build a local

mirror of the most recent versions of all system and custom RPM software packages.

89

1. Mirror the release RPMs for the current Fedora Core version. This means

downloading the targeted (current) Fedora Core release RPMs from a mirror,

and saving these files in a directory called dist/base.

2. Mirror the update RPMs for the current Fedora Core version. Download

all update RPMs from a mirror, and save these files in a directory called

dist/updates.

3. Create the dist/extras directory. If the cluster installer uses any RPMs

from the “extras” repository (for example, some mathematical packages such

as blacs, blas, or lapack), download and save the RPM files in this location.

4. Create the dist/others and dist/others/master directories. Any custom

software which has not already been included in one of the above directories

will go here. Packages which are to be installed on the compute nodes will be

stored in the dist/others directory, while packages which are to be installed

on the master node will be stored in the dist/others/master directory.

5. Remove duplicate packages from the above directories. Examine each directory,

removing alternate and outdated versions of RPM packages in each directory.

When this filtering step is complete, there will be only one version (the most

recent) of each package, and that package will only exist in one location. (The

only exception are “others” packages—these can exist in both the dist/others

and dist/others/master locations if necessary).

90

The most time intensive portion of this process is the filtering step, where only

the most recent version of an RPM package remains in the dist/ directory tree,

and all other versions are deleted. While this should be an automatable step, the

exact naming conventions of Fedora Core RPM packages make scripting and testing

a time-intensive task. While a script was built to automate this process, it was found

to have several tricky bugs which sometimes resulted in keeping non-recent software

package files.

It should be noted that YACI does include several scripts that also attempt to

make the maintenance of RPM lists a bit easier. These scripts include:

• /tftpboot/tools/update rpmdir, which attempts to merge the contents of an

“update” RPM directory with an existing directory of RPMs. This could be use-

ful when adding and updating packages in the /tftpboot/dist/updates and

/tftpboot/dist/extras directories, for example. While not 100% automated,

this script has good potential.

• /tftpboot/tools/update rpmlist, which updates the rpmlist file to match

the contents of the RPM repository. While this is a useful tool, the layout of the

BSACI repository, being split up into several directories, makes it a bit more

difficult to use.

• /tftpboot/tools/create rpmlist, which turns out to be quite a useful tool if

used properly. One way to get a guaranteed good build is to perform a minimal

Fedora Core installation on one system, and tailor the selection of packages

91

installed on that system to reflect exactly what a compute node would require.

Then, once all packages and dependencies are satisfied, and all updates are

applied, simply run this script on that node. It will generate a list of all RPM

packages installed on the system, and this list can be used to drive the YACI

installer process.

• /tftpboot/tools/test rpmlist is another good tool, especially when making

changes to an RPM list file and needing to check basic dependency information.

This script performs a “dry run” installation, solving dependencies and actually

installing the RPMs in a sandboxed environment. This sandboxed environment

can then be examined later, if necessary. Any obvious errors, such as failed

dependencies or missing libraries, will be caught when running this script.

5.2.2 Create a list of required packages

Once all Fedora Core packages are downloaded, a subset of RPMs which will form

the base installation of the compute nodes must be identified. Once identified, these

RPM packages will be installed in an empty chroot’ed filesystem, creating a new

system image, and the results will be stored in a tarball for future deployment to the

compute nodes. The list of RPMs used to create this system image will be stored in

a file called rpmlist. A sample version of this file may be found on the master node

(after installing the BSACI software), in the /tftpboot/site-specific-local path.

It may also be extracted from the srcs/tftpboot-script-overlay.tar tarball on

92

the BSACI installation media.

While there are several approaches to creating an updated rpmlist file, the ap-

proach we present involves updating an existing rpmlist file to include the latest

RPM software packages, plus any new dependencies, and minus any deprecated pack-

ages. Since we already have an existing rpmlist file from the current BSACI release,

we will use this file as the starting point for updates and modifications. The process

is iterative, and generally proceeds as follows:

1. Get the rpmlist file from the current BSACI release. As noted above, there

are a few ways to get this file.

2. For each line in the rpmlist file, search the dist/ directory tree created earlier

for an RPM file which is of the same name, but possibly a newer version. Create

a new rpmlist file and copy these new RPM file names into the file, one line

at a time, in the same order as they appear in the source rpmlist file.

3. Try to build a node image using the new rpmlist file, and watch for errors.

(a) Log in as root on a master node which has had the BSACI software in-

stalled, run the create image script, found under the /tftpboot/scripts

directory, using the new rpmlist file name and a “test” node type. Here,

we assume the new rpmlist file is named rpmlist-new, and it is stored

in root’s home directory):

93

su - root

cd /tftpboot/scripts

create_image ~/rpmlist-new test

(b) Watch the build process for dependency errors, missing RPMs, and version

mismatches. Correct these errors by identifying missing dependencies and

adding the RPM files to the new rpmlist file, confirming RPM versions,

and resolving version mismatches.

(c) Clean up any files left over from the previous build attempt:

rm -f /tftpboot/tarfiles/test.*

rm -rf /tftpboot/images/test

(d) Repeat the build process until it completes successfully. When is success-

fully completes, there will be a file called test.tgz or test.tar located

under the /tftpboot/tarfiles directory.

4. Re-examine the new rpmlist file, removing any RPMs which are no longer

necessary or which have been deprecated. This helps control “cruft” and keeps

the image file size small.

5. Try rebuilding the node image again, making sure that it still completes success-

fully. Repeat the previous step until all unnecessary RPMs have been removed

and the node image still builds successfully.

Congratulations! Once of the more time consuming parts of updating the cluster

installer is getting a functional, updated rpmlist file prepared. Now that the file

94

is built, make a backup copy of it somewhere so all that work isn’t lost. Further

testing of the rpmlist file is still necessary, but the hardest part of updating the file

is complete.

5.2.3 Test the new node tarball

Note that this step is optional. Although this step is optional, it is recommended to

catch any discrepancies early on in the installation process. Although a node tarball

may be built successfully, there is no guarantee that the resulting filesystem image

will actually run as expected (although it usually will). Identifying and correcting a

faulty node image build early on may save a lot of potentially wasted time later on if

and when a node refuses to boot.

Moderate to advanced familiarity with Linux is expected: Since the installation

will not be automatic, certain key files (such as /etc/fstab) will not have been

defined by the installation, and disk partitioning and formatting must be done by

hand. There also may be troubleshooting steps which require familiarity with the

Linux boot process.

The general steps to test the initial build on a compute node are as follows:

1. Create a blank, formatted partition on the compute node. This partition should

be large enough to store the entire node filesystem after decompressing it from

the node tarball, and it should be a native (ext2 or ext3) formatted filesystem.

2. Create and format a second partition on the compute node as swap space. This

95

swap partition should be the same size as the swap partitions will be when the

compute nodes are put into production.

3. Mount the native-formatted filesystem, and decompress the node tarball onto

it. Tools such as Knoppix[28] and Netcat[29] may be useful for this.

4. Edit the /etc/fstab in the native-formatted filesystem, so it reflects the lo-

cations and device names of the root and swap partitions. Also edit the sys-

tem name (in /etc/hostname) and network configuration (various files under

/etc/sysconfig/network*) to reflect how the compute node will be configured

when deployed.

5. Edit the bootloader configuration to boot the system from the new filesystem.

Alternatively, use a boot floppy or boot CDROM to boot the kernel version that

was included as part of the node tarball. Mount the newly-created filesystem

as the root filesystem.

The intent of this testing is to get the filesystem tarball mounted and booted,

then check for obvious errors which may be caused by the tarball. Things to look for

include: unsupported and/or unconfigured hardware devices, critical missing system

files, and version mismatches between the Linux kernel and any third-party modules.

Things that are expected to fail, which should not cause alarm, include: many ser-

vices, especially cluster-related services, advanced network functionality (such as host

name resolution), and mounting of additional filesystems.

96

5.2.4 Test the BSACI configuration scripts

As newer Fedora Core releases are made, the location, format, and handling of various

configuration files changes. These changes must be expected to cause some problems

with the cluster installer, necessitating the need to update the cluster installer code.

There are five ways the cluster installer interfaces with system configuration files,

though an update to the Fedora Core operating system will probably impact only

two. The cluster installer uses several probe-* scripts to read the current system

state and record probed values in the installer’s master parameters file. Later, the

cluster installer uses several config-* and do-* scripts to alter configuration files

which will be deployed to the master and compute nodes. The other touch points

include a script which uses system utilities to detect compute nodes, several “utility”

scripts which the cluster installer uses internally, and a small collection of patches

to the YACI code and configuration files. Of these, the first two (the probe-* and

config-*/do-* scripts) are by far the most likely to be impacted by changes in Fedora

Core, since they directly read and write the distribution’s configuration files. We will

focus on how Fedora Core changes affect the operation of these two cluster installer

components.

The probe-* scripts These scripts rely on the bash shell and staple awk, grep, and

sed text-manipulation utilities, along with few other tools, to read and parse various

files. The locations or functions of these files may change when a new Fedora Core is

97

released, or the internal format of these files may change. Any of these changes will

require matching changes to the probe-* scripts which attempt to read the files.

Generally, a change is minor, such as a file format being slightly altered, or the

name/location of a file changing. A quick edit to either the script which reads the

configuration file, or to the master parameters file which contains the path to the

configuration file, will often be enough to update the script. Sometimes, however,

more elaborate changes are required.

Although they are relatively mature, sometimes the text-manipulation tools re-

leased as part of Fedora Core have changes which alter their behavior in subtle ways

from one version to the next. When this happens, the scripts using these tools must

be debugged and analyzed, and the tool usage altered to account for this change.

In some cases, an entirely new script will need to be created, because configuration

data must be generated in some format that doesn’t already exist. In this case, an

existing script can be used as a starting point, and the appropriate modifications

to the master parameters file (entries denoting where the input and output file(s)

are, and listing any probed data that is needed) must be made. The script is then

tested and re-tested with varying inputs until it works reliably. It will then be tested

further, as part of a complete test installation. But that will be addressed later in

this document.

The config-* and do-* scripts Similar to the probe-* scripts, these scripts rely

on the bash shell and standard text-processing tools to get most of their job done.

98

They take input data, in the form of probed data stored in the master parameters

file, combine it with existing system configuration files and cluster installer data files,

and output new configuration information and changes to existing configuration files.

The do-* scripts also perform the menial tasks of copying and renaming various files

so they reside in the correct locations in the master node’s filesystem.

Many changes that affect these scripts are minor. The format of a configuration

file will change somewhat, requiring the script which writes data into the file to be

edited in order to maintain the new format. The location of configuration files may

also change, requiring a quick change to either the associated script or the master

parameters file to update the file location. These kinds of changes, particularly the

location of configuration files, seem to happen with some frequency between successive

Fedora Core releases. An individual maintaining the BSACI code should expect to

perform at least one or two of these script edits each time the cluster installer is

updated to keep pace with a new Fedora Core release.

As noted previously, the text-manipulation tools released as part of Fedora Core

may include changes which alter their behavior in subtle ways. When this happens,

the scripts using these tools must be debugged and analyzed, and the tool usage

altered to account for this change.

Although Fedora Core tries to follow the Linux Standard Base (LSB)[26] for filesys-

tem layout hierarchy, it is not, as of Fedora Core 5, LSB compliant[27]. Since part

of LSB compliance involves having standard locations for system configuration files,

99

one can reasonably expect a distribution which is compliant to have a fixed location

for configuration files. This is true of any LSB compliant distribution, beginning

with LSB version 3.0, which provides strict backward compatibility. However, be-

cause Fedora Core is not compliant with the LSB standard, the location and format

of configuration files can and does change between releases. More importantly, new

configuration files and locations are created, and older files and locations are depre-

cated.

What this means for the BSACI maintainer is that new scripts may need to be

created to handle configuration files which did not previously exist in earlier Fedora

Core releases. Based on experience, this is a common occurrence. In this case, an

existing script can be used as a starting point, and the appropriate modifications to

the master parameters file (entries denoting where the input and output file(s) are,

and listing any probed data that is needed) must be made. The script is then tested

and re-tested with varying inputs until it works reliably. Further testing will occur

later, as part of a complete installation.

5.2.5 Test the graphical and command-line user interfaces

After making changes to the scripts and/or master parameters file, both the graphical

and command-line user interfaces should be tested to ensure that they still function

correctly, especially as they interface with the newly written code. If code within

the graphical or command-line user interfaces had to be added (for instance, the user

100

must be asked to set an additional configuration variable), then both user interfaces

must be tested for proper behavior and for their ability to gracefully and robustly

handle erroneous and invalid input.

Because the graphical interface is web-based, testing requires the use of a web

browser. Currently, Mozilla Firefox[39] versions 1.5 and 2.0 are the primary supported

browsers. If part of the changes are intended to make the web interface compatible

with other browsers or other Firefox versions, then the graphical interface must be

tested against each supported browser to ensure no regressions were introduced.

Basic graphical interface testing includes verifying that each page of the web

based graphical interface renders correctly, that AJAX code operates properly without

logging Javascript errors, and that users can use the “Next”, “Back”, and “Help”

buttons of the user interface without confusing the web application or causing it to

generate invalid output. Advanced testing and output validation includes examining

the master parameters file and any other files generated by the graphical interface, and

ensuring that the format and content of these files is correct. It also means ensuring

that status updates and error conditions are presented to the user with meaningful

messages.

For the command line interface, basic testing essentially means ensuring that any

additional or changed messages still fit the screen format used by the rest of the

command line interface. Advanced testing and output validation are the same as for

the graphical interface: ensure that all output files are formatted correctly, that the

101

master parameter file is of a valid format and contains correct information, and that

the user is properly informed of status updates and error conditions.

Testing the user interfaces can be a time-consuming process, simply because of the

number of variables which must be tested. The maintainer should plan for a minimum

of 3-4 hours per interface variation (e.g. each web browser used to test the graphical

interface is one variation) for testing, and must restart testing for all variations when

one test results in a code change. As a result, testing of user interfaces should only be

performed once the back-end code (scripts, node tarball, etc.) is mature and unlikely

to change, since any change in back-end code which affects the user interface code

will require a new round of user interface testing.

5.2.6 Test other custom built packages

If there are custom (non Fedora Core) software packages which are included as part

of the cluster installer, these packages should now be tested for proper behavior, and

to ensure that they install cleanly on the system. The cluster installer itself relies

on several custom-built software packages, such as custom-packaged Apache, PHP,

MySQL, Java, ClusMon, beosh, and OpenPBS, to name a few. Cluster maintainers

may add other packages which contain software that is site or application specific.

Each of these packages must be tested against a new Fedora Core build to ensure

that the packages install cleanly and the installed software behaves as expected.

Should there be a problem, the source of the problem must be identified. Often,

102

RPM version dependencies will cause issues. Other issues may be triggered by system

files and directories which have changed location or content, system tools and/or

libraries which have changed behavior, and newer kernel versions. Once the source of

each problem is identified, a workaround (preferably a workaround which only affects

the custom package) must be found.

These workarounds will often involve repackaging the software after the fix is

applied. Often the software will need to be patched and recompiled from source code.

Occasionally, the only workaround to a particular problem involves changing the

behavior of software which is installed as part of Fedora Core. In this extreme case, the

Fedora Core software package must be removed and re-created as a custom package.

Note that this can adversely impact a lot of other dependencies, and increases the

future work of the cluster installer maintainer. It is a last-resort fix, and every other

option should be thoroughly investigated prior to replacing a standard Fedora Core

package with a custom one.

5.2.7 Test a complete installation

The critical test is the final test of a complete cluster installation. Testing the com-

plete installation process from beginning to end assures that no errors managed to

slip through the cracks, and that each updated software component interacts with

the others as it should. Often, small glitches and oversights in the installation process

will be discovered when testing the complete installation. These bugs can then be

103

corrected by adjusting the affected code and re-testing the cluster installation.

The complete installation test process should be performed at least twice, once

using the graphical user interface, and once using the command line user interface.

Although both interfaces share a lot of the same back-end code, there are significant

differences between the code paths for the two installers once the bulk of the instal-

lation data has been copied to the master node’s hard drive. Both code paths must

be fully tested to ensure they behave as expected.

The process for testing the complete installation requires a “test” cluster. The

general process is as follows:

1. Build the new BSACI software image.

(a) Copy the complete current BSACI installation media to a working di-

rectory (for example, /bsaci-new). The following assumes the BSACI

installation source media is mounted under /media/cdrom:

cp -a /media/cdrom/ /bsaci-new

(b) Compress the entire dist/ directory (which contains all the new packages)

into a tarball, and copy the tarball to srcs under the BSACI working

directory:

tar -cvf tftpboot-distro-overlay.tar dist

mv tftpboot-distro-overlay.tar /bsaci-new/srcs

104

(c) Update the tftpboot-script-overlay.tar file with the new rpmlist file

and any additional files from the /tftpboot/local and /tftpboot/site-specific-local

directories. Note that the new rpmlist file should be stored in the /tftpboot/site-specific

directory so it will be included in the tarball.

cd /tftpboot

tar -cvf tftpboot-script-overlay.tar local site-specific-local

mv tftpboot-script-overlay.tar /bsaci-new/srcs

(d) Update the apache-overlay.tar file with any newly edited content for

the web interface. Note that this content is stored by default under the

/tmp/bsu/apache directory, although it temporarily changes the /etc/sudoers

file as well.

cd /

tar -cvf apache-overlay.tar /etc/sudoers /tmp/bsu

mv apache-overlay.tar /bsaci-new/srcs

(e) If there have been any changes to the master parameter file (which is simply

named FILE), it should also be copied to the /bsaci-new/srcs directory.

(f) If new YACI packages or patches are required, they should be put in the

/bsaci-new/srcs directory, and the old packages and patch files removed.

(g) Update the Linux kernel, but note that at the time of this writing, PVFS2

depends on the 2.6.15 kernel shipped with Fedora Core 5, and will not

compile with some later versions. This bug is expected to be fixed soon.

105

(h) All files in the /bsaci-new/scripts directory should be updated with the

latest versions of the installation script files. New files should be added,

and any files which have been deprecated may be deleted or moved to the

attic subdirectory for historical reference.

(i) Check and update the various README files located in the /bsaci-new/scripts

and /bsaci-new directories. These files should reflect any user-visible

changes, particularly process changes, which were introduced by the up-

dates to BSACI.

(j) At this point, the /bsaci-new directory tree contains an updated build of

BSACI. The cluster installer may be launched directly from this location,

or the files may be burned to CD or DVD media.

2. Prepare the master node on the test cluster for the installation of BSACI.

Run the cleanup.sh shell script (located in the /bsaci-new/scripts/stuff

directory) to ensure that extra packages and directories have been removed.

3. Install BSACI on the master node of a test cluster. If testing the graphical

user interface, proceed with the web-based wizard. Otherwise, proceed with

the command line user interface.

4. Follow through the installation process, identifying at least one compute node

to install. Ideally, the installation should go to all compute nodes, since this

will provide a more realistic test.

106

5. Pay special attention to the code which detects compute nodes and the code

which builds the node tarballs, since these are the areas most likely to cause

errors during an installation.

6. Once these steps complete and the software has been pushed out to the compute

nodes, ensure that all the nodes in the cluster successfully reboot. If they do,

then the cluster installation process was successful.

5.2.8 Test the final result

After the cluster installation has completed, the final test is to ensure that it all works.

Often, small bugs and oversights will be identified in this step, as certain features and

functionality which should be present in the cluster do not work as expected. This

document does not present an exhaustive test plan, but performing the following

basic tests will guarantee essential cluster functionality, and will identify any obvious

oversights which need to be corrected.

1. Ensure you can log into the master node successfully as a normal user and as

root.

2. Check network connectivity.

(a) Ensure the master node can at least ping each compute node.

(b) Ensure the master node can communicate with external systems, and that

name resolution (DNS) is working correctly.

107

(c) Ensure the master node clock is synchronizing with external NTP sources.

The command /usr/sbin/ntpq -c peer can help diagnose errors.

(d) From a compute node, check to be sure it can communicate with the

outside world, using the master node as a gateway and network address

translation device. A simple ping test will suffice.

3. Check basic cluster management and automation software.

(a) Use pdsh to try communicating with each node. A classic test is to check

the local time on each compute node (this also checks to be sure they

are synchronizing their time with the master node). Try: pdsh -a date.

Each node in the cluster should respond with the current date and time.

(b) Use OpenPBS tools to verify that the Portable Batch System can commu-

nicate with the PBS agents on each compute node. Executing pbsnodes

-a will return a list of all configured nodes in the cluster. The “state”

entry for each node should read “state = free”.

4. Try compiling and building a simple “Hello World” application that uses PVM

or MPI. The software should compile and link. Note that you may need to ex-

ecute switcher to switch MPI environments and libraries (e.g. between Open-

MPI and MPICH2). See the contents of example-code.tar.gz for some simple

PVM and MPI test applications.

5. Once a test program is compiled, try reserving a compute node and executing

108

it. Use pbsget to reserve interactive nodes, then run the test program, and type

exit to release the nodes and return to a normal shell. The program should

run successfully.

6. Finally, have some sample users run tests of their own, trying to simulate normal

use of the cluster. If any errors are uncovered, identify their causes and what

must be done to correct them.

7. Repeat the above cycle as necessary. When the cluster appears to be operating

well, and any incidental errors are minor, the BSACI maintenance may be

considered successful.

Once the BSACI build is fully successful, the new version may be published.

Typically this involves building an ISO image of the installation media, testing a

CD/DVD disk burned with this ISO image to be sure it works, then posting the ISO

image for users.

5.2.9 Updating custom-compiled and embedded code

Because several of the BSACI components are embedded and isolated from the rest

of the system, they may periodically need to be updated. Specifically, the ClusMon

monitoring system relies on a custom-built version of Apache, compiled with a custom

PHP module, and interfacing with a custom-compiled MySQL server. Clusmon also

depends on Java 1.5, so a copy of the Java runtime environment is included, separate

from the system’s Java environment.

109

Why have an embedded environment in the first place? The reason these

dependencies are kept isolated is simple—we know the state of the system when it

is first installed, but it is quite possible that the user may wish to make changes

and updates to the system in the future, and we will strive to keep the cluster-

related software from interfering with these updates whenever possible. For instance,

a user may decide to install a web-based bulletin board, which means they will be

altering Apache, PHP, and possibly MySQL configurations. Or, they may have a Java

application they want to run which explicitly requires the 1.4 runtime environment. If

we did not isolate our software from the system-installed versions of this software, the

user may inadvertently disable portions of the cluster software without even realizing

it!

Unpacking the code

For our example, let’s assume that we wish to compile an updated Apache web server.

The source code for Apache is not part of the regular distribution. However, the

version built for use with BSACI may be found in the BSACI source code repository.

See Appendix E for details about how to access this repository. Once the code

repository has been retrieved, look for the development-tools directory. Inside this

directory are several subdirectories, listed as follows:

README

build-scripts/

built-packages/

110

notes/

other-scripts/

sources/

The sources directory contains the source code used to compile all the custom-

built tools. In that directory, locate the httpd-2.0.59.tar.bz2 tarball, and decom-

press it to a “work” directory:

cd /tmp/apache-build

bunzip2 -c httpd-2.0.59.tar.bz2 | tar -xv

Compiling the code

Once the Apache source code is unpacked, we need to compile it. The compilation

commands used to create each package are also included in the source code repository,

in the build-scripts directory. Copy the Apache build script into the top level of

the “work” directory that we just unpacked the source code into:

cp build-scripts/build-apache-2.0-clusmon.sh /tmp/apache-build/build.sh

Once there, you may open the file in an editor if you’re curious about any config-

uration and/or compilation settings. Otherwise, start the compile process:

cd /tmp/apache-build

sh build.sh

111

Installing and packaging the code

After the compilation process completes, the code needs to be installed on the sys-

tem. We also need to be sure we include any externalities, such as init scripts or

configuration files, which may not be installed by performing a make install of the

code base. The involved way to do this is to examine which files and directories were

included in the original tarball, compare that list to the files and directories installed

by running a make install of the compiled code, and delete all common occurrences.

Then make install is run again, and the files it installs are added to a tarball,

making sure that the same set of directories included in the original tarball is included

when building the new one. This is a good way to build a clean package without

picking up any cruft. It is, in fact, the method your author used when building his

distribution packages.

Another, “cheaper” way to do this is to simply install the old package, the run

the make install to overwrite the older files with newer ones, and finally tar the

results. This is faster and simpler, and is the method given below.

First, locate the tarball containing the original compiled installation files for the

Apache package. In our case, it is /tftpboot/dist/others/master/httpd-clusmon.tar.bz2.

cd /

tar -jxf /tftpboot/dist/others/master/httpd-clusmon.tar.bz2

cd /tmp/apache-build

make install

cd /

tar -cf /tmp/httpd-clusmon.new.tar /etc/init.d/httpd-clusmon /opt/bsaci/apache

112

bzip2 -9 /tmp/httpd-clusmon.new.tar

mv /tmp/httpd-clusmon.new.tar.bz2 /tftpboot/dist/others/master/

Note that the last step of the above process overwrites the original file. You

probably want to keep a backup version of that file around for a little while, just in

case there turns out to be a problem with your new packaged build.

That’s it – you now have a new package for the ClusMon Apache server. To fully

close the circle, re-pack the tftpboot-distro-overlay.tar file to include your new

package:

cd /tftpboot

tar -cf <...>/srcs/tftpboot-distro-overlay.tar dist/ rpms/

This newly-repackaged file can be included as part of your standard test and in-

stallation procedure. Note that the process for compiling other code is very similar.

The only (slight) difference is for the ClusMon Java runtime environment, which is in-

cluded as part of the clusmon.tar.bz2 tarball. To upgrade the Java runtime environ-

ment, the clusmon.tar.bz2 must be unpacked, then in the usr/local/clusmon sub-

directory, the new JRE (deleting the old one) must be unpacked. The java symlink in

that directory must be updated to point to the new JRE, then the clusmon.tar.bz2

tarball must be re-packed.

113

Chapter 6

CONCLUSIONS

6.1 What have we done so far?

The Boise State Automated Cluster Installer presents a new, more user-oriented tool

for performing automated builds of Linux-based high-performance computing clus-

ters. It builds upon existing tools and concepts, extending them to be useful to a

broad range of users. It focuses specifically on being user-friendly and robust, and on

integrating a set of higher-level parallel development and cluster management tools

which are not integrated by other cluster installation systems.

Because of this focus, the Boise State Automated Cluster Installer is poised to

become a useful tool for researchers, instructors, students, and casual users who might

not otherwise attempt to build their own compute cluster. It is also a time-saving

tool for more experienced cluster administrators, providing a single human-editable

configuration file and a command-line based installation process.

It attempts to isolate and protect several core cluster software components from in-

advertent damage by the user, allowing the user to find additional uses for the master

node in the future, should such a need arise. It also presents a user-friendly inter-

114

face to users, allowing the rapid changing of development environments and parallel

toolkits. Because it employs “multithreading” concepts during the installation pro-

cess, BSACI can complete CPU and I/O bound tasks in the background while waiting

for user input, which saves a significant amount of the installer’s time. Finally, it pro-

vides more useful high-level parallel development tools to the users, including data

abstraction libraries, management and monitoring utilities, and parallel/distributed

filesystems.

6.2 Future Directions

While there are many advances which have been made by combining these various

tools, there remain several areas which could provide ample opportunities for further

work:

• Multicast installation support. YACI includes the tools to do this, but BSACI

does not make use of it at this time. Multicast installation would save even

more time, especially when installing clusters of more than a dozen or so nodes.

• Even more multithreading. It appears we could start building a generic node

image almost immediately after the “stage 1” bootstrap finishes, then customize

some of the files with data we’ve collected later on. This is in contrast to what

we do now, building the node image after “stage 7”. Another thought would be

to pre-build the node image and distribute it as a tarball, so all that the cluster

installer does is customize the configuration files. This puts more work on the

115

BSACI maintainer to build and test, and might restrict flexibility somewhat,

but should make for a very streamlined and speedy installation.

• Better/broader web support, and less buggy web code. The code works well

right now in Firefox, but it would be good to get it working in at least Internet

Explorer and Konqueror, possibly Opera as well.

• Updated support for Fedora Core 6. This is a significant undertaking, not

particularly difficult, but time consuming, due to all the testing required.

• Detection and support of AMD64 platform and packages – moving beyond

generic “i386” and “i686” packages for the IA32 architecture.

• Improved methods of “auto updating” reliably across a running cluster. There

are many tools which can help in this task, but the primary problem is that of

keeping the cluster from breaking when updating, especially across Fedora Core

releases. Most of this work ends up as manual testing right now.

• Addition of Kirsten Allison’s parallel toolkit library (currently a work in progress).

This came too late in the process to be added as a part of BSACI, but it would

provide another very useful set of parallel development tools for cluster users.

116

REFERENCES

[1] D’Hooge, Trent. Yet Another Cluster Installer.
http://www.llnl.gov/linux/yaci/yaci.html

[2] SYS-CON Media. Appro Delivers the Largest Linux Supercomputing Clusters to
LLNL.
http://linux.sys-con.com/read/300135.htm

[3] Finley, Brian. Official SystemImager Manual.
http://www.systemimager.org/documentation/systemimager-datasheet-1.5.0.pdf

[4] S. Dague, B. Finley, and J. Greenseid. What is System Configurator?
http://sisuite.org/systemconfig/

[5] Ford, Egan. What is xCAT?
http://www.alphaworks.ibm.com/tech/xCAT

[6] Lange, Thomas. Fully Automatic Installer (Flyer)
http://www.informatik.uni-koeln.de/fai/flyer.pdf

[7] The Open Cluster Group. OSCAR 5.0.
http://oscar.openclustergroup.org/

[8] The Open Cluster Group. The OSCAR 5.0 Installation Manual.
http://oscar.openclustergroup.org/public/docs/oscar5.0/

OSCAR5.0 Install Manual.pdf

[9] Venema, Wietse. The Postfix Home Page.
http://www.postfix.org

[10] Geist, Al. PVM: Parallel Virtual Machine.
http://www.csm.ornl.gov/pvm/

[11] The Open MPI Team. Open MPI: Open Source High Performance Computing.
http://www.open-mpi.org

[12] World Wide Web. MPICH2 Home Page.
http://www-unix.mcs.anl.gov/mpi/mpich2/

[13] Altair Grid Technologies. About OpenPBS.
http://www.openpbs.org/about.html

117

[14] Computational Sciences and Mathematics, Pacific Northwest National Labora-
tory. The GA Toolkit.
http://www.emsl.pnl.gov/docs/global/

[15] The HDF Group. HDF5 Home Page.
http://www.hdfgroup.org/HDF5/

[16] World Wide Web. Introduction to the Parallel Virtual Filesystem, Version 2.
http://www.pvfs.org/pvfs2/

[17] World Wide Web. What is the Gfarm Grid File System?
http://datafarm.apgrid.org/document/

[18] Wikipedia contributors. Parallel Virtual Machine.
http://en.wikipedia.org/w/index.php?title=Parallel Virtual Machine&

oldid=95101051

[19] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
University of Tennessee, Knoxville, Tennessee, 1994.

[20] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface.
University of Tennessee, Knoxville, Tennessee, 1997.

[21] Gropp, William and Lusk, Ewing. Why Are PVM and MPI So Different?
Argonne National Laboratory, 1997.

[22] Mache, et. al. How to achieve 1 GByte/sec I/O throughput with commodity IDE
disks.
http://www.lclark.edu/~jmache/sc2001.html

[23] The Fedora Project. Fedora Project, sponsored by Red Hat.
http://fedora.redhat.com/

[24] The Fedora Project. Download the Fedora Project, Core 5.
http://download.fedoraproject.org/pub/fedora/linux/core/5/

[25] Rekhter, et. al. RFC 1918 - Address Allocation for Private Internets.
http://www.faqs.org/rfcs/rfc1918.html

[26] Free Standards Group. About the Linux Standard Base (LSB).
http://www.freestandards.org/en/LSB

[27] Free Standards Group. LSB Distribution Status.
http://www.freestandards.org/en/LSB Distribution Status

118

[28] Knopper, Klaus. What is Knoppix R©?
http://knopper.net/knoppix/index-en.html

[29] Giacobbi, Giovanni. The GNU Netcat – Official Project Page.
http://netcat.sourceforge.net

[30] White, Jared and Wilson, J. Max. xajax PHP Class Library - The easiest way
to develop asynchronous Ajax applications with PHP.
http://www.xajaxproject.org

[31] The Apache Software Foundation. The Apache HTTP Server Project.
http://httpd.apache.org

[32] The PHP Group. PHP: Hypertext Preprocessor.
http://php.net

[33] Trolltech AS. Qt - Cross-Platform C++ Development.
http://www.trolltech.com/products/qt/features

[34] The GTK+ Team. GTK+ - The GIMP Toolkit.
http://www.gtk.org

[35] Wall, Larry and The Perl Foundation. The Perl Directory.
http://www.perl.org

[36] Jain, Kennington, and Mazzarelli. Clusmon: A Beowulf Cluster Monitor.
http://onyx.boisestate.edu/clusmon

[37] Jain, Amit and Vail, Mason. beosh: The Beowulf Cluster Shell.
http://cs.boisestate.edu/~amit/research/beosh/

[38] Intel Corporation. Preboot Execution Environment (PXE) Specification, Version
2.1.
http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf

[39] The Mozilla Foundation. Firefox - Rediscover the Web.
http://www.mozilla.com/en-US/firefox/

Appendix A

MASTER PARAMETERS FILE KEYS

The following table lists the name of each master parameters file key which is recog-

nized by the installer software. A brief description of what the value represents and

the data format the value should be supplied in (if not a single word) is also given.

Key Name Description

INTIF Device name of the internal network interface

EXTIF Device name of the external network interface

INTIP IP address of the internal network interface

EXTIP IP address of the external network interface

INTMASK Network mask of the internal network

EXTMASK Network mask of the external network

INTNET Network number of the internal network

EXTNET Network number of the external network

DHCP_POOL_START IP Address of the first entry in the DHCP pool

DNS_SERVERS Space-separated list of IP addresses, one per

server

NTP_SERVERS Space-separated list of IP addresses, one per

server

DNS_DOMAIN DNS domain that the master node is part of

DNS_SEARCH List of up to six DNS domains to search,

separated by spaces

TIMEZONE Time zone in continent/locality format, e.g.

America/Boise

DISTRO Name of the distribution being installed to.

RUNME.sh automatically populates this.

NODE_NAME_BASE Base name for compute nodes

120

NODE__NETDEV Network device name for cluster network

interface on compute nodes

NODE__DISKDEV Device name of node disk device to partition

NODE__DISKSIZE Size of node disk, in gigabytes

NODE__MEMSIZE Amount of RAM in node, in megabytes

NODE__PARTLIST List of partitions to create on the node disk,

listed as a space separated series of

device,mountpoint,filesystem,size,boot tuples

e.g. "hda,/boot,ext2,100,yes"

FILENAME__RCSCRIPT_PATH Location of initialization scripts (usually

/etc/init.d)

FILENAME__RESOLVCONF Location of the resolv.conf file (master node)

FILENAME__NTPCONF Location of the ntp.conf file (compute node)

FILENAME__BASHRC Location of the bashrc file (compute node)

FILENAME__NTPCONF_s Location of the ntp.conf file (master node)

FILENAME__MACINFO Location of the MAC.info file (master node)

FILENAME__DHCPDCONF Location of the dhcpd.conf file (master node)

FILENAME__HOSTS Location of the hosts file (all nodes)

FILENAME__HOSTSEQUIV Location of the hosts.equiv file (all nodes)

FILENAME__HOSTSALLOW Location of the hosts.allow file (all nodes)

FILENAME__XINETDRSH Location of the xinetd.d/rsh file (all nodes)

FILENAME__XINETDRLOGIN Location of the xinetd.d/rlogin file (all nodes)

FILENAME__ROOTRHOSTS Location of root’s .rhosts file (all nodes)

FILENAME__SECURETTY Location of the securetty file (all nodes)

FILENAME__MOMPRIVCONFIG Location of the MOM config (master node)

FILENAME__EXPORTS Location of NFS exports file (master node)

FILENAME__NODES Location of the PBS nodelist (master node)

FILENAME__PBSSERVERNAME Location of the PBS servername (all nodes)

FILENAME__POSTCREATE Location of YACI post-create script (master)

FILENAME__POSTINSTALL Location of YACI post-install script (master)

FILENAME__VARIABLES Location of YACI variables file (master)

FILENAME__PARTITION_LIST Location of YACI partition_list file (all)

FILENAME__ETCMACHINES Location of machines file (master)

FILENAME__PVMD Location of pvmd binary (all)

FILENAME__PVFS2TAB Location of PVFS2 pvfs2tab file (all nodes)

FILENAME__ETCPVFS Location of PVFS2 config directory (all nodes)

FILENAME__PVFS2GENCONFIG Location of PVFS2 config generator (master)

FILENAME__PVFS2SLOG Location of PVFS2 server logfile (all nodes)

FILENAME__PVFS2STORE Location of PVFS2 backing store (all nodes)

FILENAME__CLUSMON_HEADCFG Location of ClusMon head daemon config (master)

FILENAME__CLUSMON_NODECFG_TEMPLATE Location of ClusMon node configuration

template file (compute node)

121

FILENAME__CLUSMON_NODECFG Location of the master node’s ClusMon node

configuration file (master node)

FILENAME__CUSTOMIZED Location of 2nd stage tarball file (all)

MASTER__SCRIPTDIR Relative directory for executing scripts

MASTER__CDROM_ROOT Where the CDROM root directory is

MASTER__SCRIPT_TARFILE Name of the tarball containing scripts

MASTER__DISTRO_TARFILE Name of the tarball containing node RPMs

MASTER__APACHE_TARFILE Name of the tarball containing Apache content

MASTER__APACHE_FLAGFILE Path where the Apache "in use" marker file is

to be stored

MASTER__DISTDIR Path where node RPM files are stored

MASTER__RPMLIST Path to file listing all node RPMs to install

MASTER__POST_CREATE_SCRIPT Alternate location for YACI post-create script

(master)

MASTER__QMGR_CONFIGFILE Path to PBS QMGR initial configuration

Appendix B

BUILD AND TEST ENVIRONMENTS

Primary testing for this software was done using a hodge-podge collection of comput-

ers. I built and tested a lot of BSACI code using cluster at my home. The primary

test build/test cluster was in my garage, and consisted of four compute nodes and

one master node, configured as follows:

• Master Node:

– One Intel R© Pentium-4 R© processor running at 1.5 GHz

– 512 MB system memory

– Two 18 GB, 7200 RPM SCSI disks, arranged in RAID-0 (striping)

– One Intel R© PRO/1000 1000Base-T (gigabit) ethernet controller, used to

interface with the cluster network

– Two on-board Intel R© 100Base-T ethernet controllers, one of which was

used to interface with the outside world

• Compute Nodes:

– One Intel R© Pentium-3 R© processor running at 667 MHz

123

– 128-256 MB system memory

– One 20-40 GB 7200 RPM IDE disk

– One Intel R© PRO/1000 1000Base-T (gigabit) ethernet controller, with PXE

boot ROM enabled

• Cluster Network:

– All gigabit ethernet over copper

– One Netgear 8-port unmanaged gigabit ethernet switch

– Master node performs network address translation for outbound traffic

from compute nodes

Because of the limited storage of the master node and the large amount of data

used when developing this project (each complete working copy of the release code

could use 11-12GB just for various tarballs, system images, and collections of RPM

files), additional working storage space was claimed from other systems in my home

network, operating over NFS.

For mobile development and testing of relatively simple changes, I employed a

3-node virtual cluster, running under a VMWare virtual machine environment on my

laptop. This allowed for fast turnarounds when testing minor tweaks and changes

to RPM packaging and the cluster installation process. One key advantage of this

approach was the ability to “snapshot” the virtual machine disks in a particular state.

124

This allowed me to install the base Fedora Core operating system on the virtual master

node once, then snapshot the virtual disk in the final installed state, so I could return

to this pristine environment with a single command whenever I was ready to start

my testing over.

Unfortunately, VMWare is very slow at executing I/O bound processes, and most

of the cluster installation process is I/O bound. VMWare also severely constrained

my available memory to 96 MB per node, so by no means was VMWare a panacea

for all my BSACI testing needs!

For deployment testing, Boise State University provided a 7-node test cluster

called rookery, which consists of the following hardware:

• Master Node:

– One Intel R© Celeron R© processor running at 1.7GHz

– 1 GB system memory

– One 30 GB IDE disk

– Two Intel R© PRO/1000 1000Base-T (gigabit) ethernet controllers, one for

interfacing with the internal cluster network and the other for interfacing

with the outside world

• Compute Nodes:

– Three Intel R© Celeron R© systems, each with one processor running at

125

1.7GHz

∗ 512 MB system memory

∗ One 30 GB IDE disk

∗ One Intel R© PRO/1000 1000Base-T (gigabit) ethernet controller

– Three Intel R© Pentium-3 R© systems, each with one processor running at

1.2GHz

∗ 512 MB system memory

∗ One 60 GB IDE disk

∗ One Intel R© PRO/1000 1000Base-T (gigabit) ethernet controller

• Cluster Network:

– All gigabit ethernet over copper

– One Hewlett-Packard ProCurve R© 24-port managed gigabit ethernet switch

– Master node performs network address translation for outbound traffic

from compute nodes

This provided a realistic environment that included typical hardware for a lower-

end cluster installation. It also provided a testbed where other cluster users could try

their hand at the cluster, since it was on site in the Boise State Computer Science

department.

Appendix C

INSTALLATION README FILES

The following are the contents of various text files which are included as part of the

standard BSACI distribution. These files provide tips, guidelines, and requirements

for users to allow them to get the most out of their installation. For the more technical

users, these files also provide a glimpse into the inner workings of the installation

software.

C.1 README

Welcome to the Boise State Automated Cluster Installer!

This software is designed to make some steps of cluster installation and

initial setup easier, through automation of many cluster installation

procedures. The software is intended to be run on a single system running a

fresh install of Fedora Core 5 with all "roles" (e.g. Office & Productivity,

Software Development, Web Server, etc.) selected during the installation.

This single system will become the master node of a new cluster, and will

automatically build and push out compute node OS images to all compute nodes.

Following are some guidelines and general requirements which must be satisfied

in order for the cluster installer software to function properly. Unless

otherwise specified, each requirement is specific to the machine which

127

functions as the master node.

0. Mount the installation media (if a CD-ROM or DVD-ROM) using the iso9660

filesystem. The udf filesystem doesn’t work correctly with executable files,

such as shell scripts. (In some cases, Fedora won’t mount ISO9660 filesystems

with execute rights either. If that happens, just manually mount the media

using "mount <device> /media".) When the media is mounted, run the "RUNME.sh"

script to get the bootstrap process started.

1. The hardware for all nodes (the master node and all compute nodes) should

be similar for best results, although it is not absolutely required that they

be identical systems. The master node requires two physical network

interfaces (one for the "cluster" network, one for the "public" network),

while the compute nodes only require a single network interface.

2. To properly prepare the master node, install Fedora Core 5 as the operating

system, with the following selections:

- When prompted about what general groups of software packages to

install (e.g. "Office & Productivity", "Software Development",

"Web Server", etc.), select each of the groups by ticking the

appropriate check box. Do not select the option to "Customize" or

"Customize Now" the package selection.

- Install Fedora Core 5 without firewalling enabled. The cluster

installer will adjust your firewall rules.

- Install Fedora Core 5 with SELinux in "disabled" mode.

3. Be sure the master node has two physical network interfaces (one internal,

for the cluster network, and one external, for communicating with public

systems). Although the installer tries to detect interfaces with various

names, it will be best if these interfaces are labeled ’eth0’ and ’eth1’ by

the kernel. You will need to know which interface name corresponds with the

internal network, and which corresponds with the external network.

4. BOTH the internal and external network interfaces must be configured with

static IP addresses / subnet masks / network addresses (not DHCP!), and both

interfaces must be set active at boot time. It is recommended, but not

required, that the internal network be configured as an RFC1918 private

network.

5. The hostname for the master node MUST be a proper, fully-qualified domain

name (do not use DHCP to name your master node). E.g. a "short" name, or the

default "localhost.localdomain" will not work. This is especially important

128

for PBS. So, make sure the hostname is a FQDN when the installer prompts you,

and do not tell the installer to automatically select a machine name. You

want to manually specify the name.

6. The master node should be configured with working DNS servers, in such a

manner that the master node can resolve public host names correctly. It is

also a good idea to configure the master node with working network time

protocol (NTP) servers, since an accurate time reference is important for

correlating security logs and for synchronizing some types of computations.

7. Don’t forget to create user accounts on the master for all users who will

be using PBS. Due to security reasons, root cannot use PBS! These accounts

(in fact, *all* accounts created on the master node prior to running the

installer) will be copied to each compute node in the cluster.

Other notes about the installation (probably not exhaustive):

- This setup can be run in either of two modes:

- The default is a web-based GUI, with a small shell script called

’RUNME.sh’ on the root of the installation media. This script

bootstraps the web server and content, then instructs you to visit

a URL hosted by the master node to complete the installation. When

finished, the installer will attempt to remove all the web-based

code, and will shut down the web server. The GUI requires a

relatively modern browser with good Javascript support. It has been

tested with Gecko-engine browsers (e.g. Firefox 1.5, 2.0). For more

details, see the README.GUI file located on the root of the

installation media.

- An alternate install is completely based on shell scripts found in

the /scripts/ directory of the installation media. For more details,

see the README.CLI file located on the root of the installation media.

- The installation media includes a copy of some core RPMs from Fedora Core 5,

plus updates and extra packages, current as of March 2007. These files are

extracted to /tftpboot/dist/ during the installation process, and will remain

there for future use. Updates can be applied to these directories, as long

as the YACI ’rpmlist’ file and the contents of /tftpboot/rpms/ are updated to

reflect new packages. See the YACI documentation, including the source of

the YACI ’update_rpmdir’ and ’update_rpmlist’ scripts for further details.

129

- The installation has been tested to run on a clean, freshly-installed Fedora

Core 5 system with all general software groups selected (but no custom

changes made). Trying to install using a subset of the Fedora Core 5

packages, or trying to install on a "dirty" system could result in

unpredictable behavior. Similarly, installing to a Fedora Core 5 system

which has had update packages applied may not function correctly. Any

errors of this sort will typically be indicated during the installation

process.

- Portable Batch Scheduling (PBS) is installed, with a "wide open" generic

configuration. This should work out of the box for a dedicated cluster.

If a shared cluster is being created, then the PBS configuration will need

to be altered to set up limits.

- Parallel Virtual Machine (PVM) and XPVM are installed for parallel

computation. These include specific customizations by Boise State faculty.

Additionally, MPICH2 and OpenMPI provide MPI capabilities. These also have

been slightly customized to tie in with PBS for allocating compute nodes.

- Several libraries which are helpful for parallel development are included.

HDF5, SZIP, Global Arrays, and Env-Switcher are some of these tools. Most

of these tools are installed under /opt, and the ’switcher’ utility will

allow the user to change environment variables to make use of them. Read

the system message of the day for more information.

- Two parallel/distributed filesystems are included: PVFS2 and GFarm. PVFS2

is a high-throughput parallel filesystem designed for use in reliable cluster

networks, while GFarm strives to be more of a distributed, fault-tolerant

system. Both filesystems store their portions of the global data space in

hidden directories under /tmp, so be aware of deleting any directories under

/tmp with ’pvfs’ or ’gfarm’ in the name. Read the documentation for each

filesystem to get fully acquainted with their use and features.

- ClusMon is included as a cluster-monitoring tool. This includes a dedicated

MySQL server, dedicated Apache server (listening on port 81/tcp), a dedicated

Java runtime environment, and some daemon processes. On the master node, the

dedicated environment (under /usr/local/clusmon and /opt/bsaci) means that

future system changes/upgrades to Apache, MySQL, or Java will not affect the

operation of this monitoring software.

- Note that ClusMon uses lm_sensors to monitor hardware temperature and

fan speed sensors on all nodes, including the master. Because no

standard naming convention for sensors exists, you may have to edit

130

the /usr/local/clusmon/clusmon.node.config file on each system to

ensure that the proper sensor names are being read for CPU thermal

and fan speed measurements.

- The MySQL instance is isolated using a dedicated port (3307/tcp)

which will not conflict with other MySQL instances on the default

port. It has a randomly-generated password, which is stored under

/opt/bsaci/mysql/etc for reference.

- The Apache instance is isolated using a dedicated port (81/tcp)

which will not conflict with standard web-hosting ports (80,443).

The firewall will be configured to allow access to this Apache

instance for remote monitoring purposes.

- IPtables is set up in a NAT configuration, using connection tracking. The

only inbound traffic which is allowed from the public network is SSH and WWW

(tcp/22 and tcp/81) to the master node. All network traffic originating

from the private network or the master node is unrestricted, and all compute

nodes access the network by using the master node as their default gateway.

- The master node exports /home/, /opt, /tftpboot, and /usr/local/ over NFS,

and all compute nodes mount these filesystems locally as /home/, /opt, and

/user/local/. (/tftpboot doesn’t get mounted, except during initial node

installation). This offers greater flexibility for users when writing

software and running it on the cluster, since these three directories are

the same on all systems within the cluster.

- YACI is configured to install node images using an NFS share of /tftpboot/.

It is *not* configured to multicast the image. This could be a future

improvement to the installer software. This is not a critical limitation

when installing smaller clusters, which is what this tool is primarily

intended to do.

_PK 2007/03/16

131

C.2 README.GUI

The BSU Automated Cluster Installer operates in two phases:

- A "bootstrap" phase, which is a shell script that performs basic

preparation

- An installer that actually proceeds with the full installation,

making system changes, etc.

The "RUNME.sh" script on the installation media is the bootstrap script that

gets things started, in preparation for the GUI installer. After this bootstrap

script has successfully run, it will direct the user to a URL where the

installation can be finished with the help of a web-based GUI.

The web-based GUI tries to perform a significant amount of auto-probing, to

save some work for the user, and primarily acts as a way for the user to view

and confirm the settings which already exist. The primary purpose of the web

interface is to create an easy method for a user to generate a configuration

file that is properly formatted for use with the automated configuration and

installation scripts.

Once this script has been created, the web interface will guide the user through

the process of detecting nodes, building YACI images, configuring and starting

the necessary services, and finally deploying the images to compute nodes. All

the technical details of the above process are hidden under the covers of the

web GUI.

The web GUI requires use of a browser with good Javascript support, because it

uses Javascript extensively. The recommended browser is Mozilla Firefox 1.5 or

2.0, although any browser based on a recent Gecko rendering engine should work

well. Other browsers have not been tested, and particularly Microsoft Internet

Explorer is known to be broken. A screen resolution of 1024x768 or higher is

recommended.

To start the web GUI, simply ensure that Fedora Core has been installed with all

general software "roles" or groups selected, then mount the installation media

and execute the "RUNME.sh" script. The script will install necessary Apache

files, several YACI and PBS RPMs, then copy all Fedora Core binary RPMs to the

system’s hard drive, under /tftpboot/dist/. It will then start the web server,

132

and print out a message informing the user that the rest of the process may be

completed by pointing a web browser at one of the server’s configured network

interfaces.

Ideally, and as recommended in the README, this software should be installed on

a blank, fresh install of Fedora Core with all general software packages

installed, but no customizations installed.

C.3 README.CLI

The BSU Automated Cluster Installer operates in two phases:

- A "bootstrap" phase, which is a shell script that performs basic

preparation

- An installer that actually proceeds with the full installation,

making system changes, etc.

The "RUNME.sh" script on the installation media is the bootstrap script that

gets things started, in preparation for the GUI installer. After this

bootstrap script has successfully run, it will direct the user to a URL where

the installation can be finished with the help of a web-based GUI.

For users who wish to use the CLI based installer, a bit more manual

intervention is required. However, this can allow for even further automation

of the cluster installation, for users who wish to take advantage of this

capability. The "RUNME.sh" file is still used, and web GUI content still gets

copied to the server, but the user can alternatively trigger CLI-based actions

after the script has completed most of its tasks.

The file "scripts/NEWORDER" (which is a bit out of date, but still generally

applicable) describes the general order of how the install process proceeds.

When using the CLI, the intermediate steps which would normally be handled by

the web application are eliminated. Instead, the user is expected to hand-edit

a properly-formatted and error-free configuration file, which is then used by

the final steps of the install process.

133

The steps to perform a GUI install are as follows:

1. Mount the installation media, and run the "RUNME.sh" bootstrap script. Files

will be copied to your hard drive, and paths set up.

2. IMPORTANT! When the "RUNME.sh" script asks you to "PRESS ENTER TO EXIT THIS

SCRIPT", type in the letters "CLI" and press enter. This continue executing a

hidden portion of the "RUNME.sh" script.

3. "RUNME.sh" will now tell you to edit the configuration file (located under

/tmp), and tell you to PRESS ENTER TO PROCEED WITH PHASE 2. DO NOT press

enter at this time.

4. In another terminal, open the configuration file "RUNME.sh" told you about,

and edit it:

- Whitespace is important in this file. The first word of a line is the

configuration variable name.

- The second word on a line is the value of the variable.

- If a variable can contain multiple values, then each value is a word,

a single space separating each value, and all values on a single line.

- Lines beginning with a ’#’ are ignored as comments

- Variable names must be all one word (no whitespace or quotes)

- Variable values must be all one word (no whitespace or quotes)

4a. Make sure the DISTRO variable has a value of Fedora-Core-5.

4b. Edit all other variables at the top of the configuration file to reflect

your settings and configuration.

4c. Save changes to the configuration file, then switch back to the terminal

where "RUNME.sh" is still running.

5. Press enter, and the installation script will proceed with the second phase

of the installation, making changes to the system.

6. During this process, you will need to boot all nodes in order, when the

script is "Getting MAC Addresses". When all addresses have been recorded,

use "killall tcpdump" from another terminal to end the harvesting script.

7. Later, after the node tarball has been made, you will be prompted to

PXE-boot all nodes. This will actually push the operating system image out

to the compute nodes.

8. Finally, the script will end, and you will be reminded to reboot the master

node.

This process relies upon having a properly formatted configuration file provided

to the script after the initial bootstrapping phase has completed. With a

little tweaking, this can be made a fully-automated (or nearly so) process, from

start to finish.

134

Please note that the CLI installation process hasn’t received much attention

since the GUI was developed. There may be some bugs that have sneaked in to

screw up the above process.

C.4 README.example-code

In the srcs/ directory, there is a tarball of simple demonstration applications

which can be compiled using the PVM, MPICH2 and OpenMPI toolchains.

These demonstration applications can be used as a simple primer for those who

are unfamiliar with the toolchains, and also as a sanity check to ensure the

cluster is operating correctly.

To use these demonstration applications, simply (as a non-root user) unpack the

srcs/example-code.tar.gz tarball, switch into one of the three directories

mpich2-examples

openmpi-examples

pvm-examples

depending upon the environment you wish to test, and execute "make".

If you receive an error about the environment tools not being loaded, for

instance when issuing "make" in the openmpi-examples directory, you must use

the ’switcher’ tool to change your environment. In this case:

switcher mpi = openmpi-1.1.1

switcher_reload

make

should do the trick.

Also note that PVM will put all compiled binaries in ~/pvm3/bin/LINUXI386, so

if you’re not sure where those binaries went, that’s the place to look!

Finally, each program subdirectory includes a README file which contains a

brief series of instructions for how to compile and execute the included test

application using the selected toolchain. These can provide basic syntax

examples for how to run the demonstration applications in a parallel

environment.

135

Have fun!

C.5 scripts/NEWORDER

*NOTE: as of 3/16/2007, this file is pretty out of date. However, it

describes a lot of basics about the order of how things run, so

although it’s not perfect, it’s a good document. Some of the

file names & paths have changed, but the scripts can be reviewed

to find those changes. This still provides lots of good info.

This is the "newer" order (in a nutshell), that allows a split,

so we can detect nodes AND build the node tarball,

simultaneously.

1) MASTER-SCRIPT-1 runs, copying files and setting stuff up.

2) MASTER-SCRIPT-2 runs. It fires off some "config" scripts (the

ones that don’t need get_macs.sh) after all other info about the

cluster has been collected. At the end, it starts building the

cluster node image, as a background job, logging to a file in /tmp.

3) MASTER-SCRIPT-3 runs. It starts by collecting MAC addresses, and

reminds the user to "killall tcpdump" to stop it. (Perhaps a little

script trickery to actually END tcpdump upon a keypress?)

After the tcpdump process ends, it continues running the remaining

"config" and "do" scripts (that do depend on MAC_INFO). It then joins

the background process which is building the node image, tailing the

log file until the process is complete (how do we know?) When done,

it adds the files it created to the node tarball (how -- tar -r, or

by adding them to post_install?), and continues with the YACI part of

the deployment.

[NOTE: tar -r still must read the whole tar file. As a result, it

probably will be faster to just include something in the

post_install script to copy the files over, especially since

do_modify_post_install can’t run anyway until after get_macs.sh

has completed. Where to put the files? /tftpboot/local/ ?

136

It has other uses. What about /usr/local/ssh-exchange/ ? Maybe

rename it to something more generic, for example

/usr/local/bsu-cluster-installer--file-exchange/, and put the

files in a .tar.gz. Then a quick tweak to post_install, and the

files can be extracted.]

Modifying the above to work with the web scenario is going to be a bit

difficult. One nice thing is that it will allow us to ask the user if

they want to rebuild the entire node tarball. If they’re just changing

the list of detected nodes, and nothing else, then they can still use the

same node tarball, which will save them a lot of time. And it still

reconfigures the necessary network files on the master & compute nodes, too!

Can we track if any parameters which would require a rebuild of the tarball

have changed, and force a rebuild based on that? Probably pointless, as the

user could have changed the rpmlist and needs the node to be rebuilt. Better

to just ask the user, and default to "yes".

We could have the UI present a single page to the user, with a checkbox for

a) change base name and re-detect MACs and (b) rebuilding the node tarball.

Maybe a brief explanation of each option. When the user clicks "next", the

selected actions start (either rebuilding the MAC list, rebuilding the tarball,

neither, or both). Default is both (?).

If both will happen, then a new popup opens, with the "MAC detection" dialog.

In the background, the main window opens with the shell script of the node

tarball rebuild. If just MAC detection, then the popup opens, and the background

window waits until the MAC window is closed. Otherwise, we wait until the

background script is done, then the next page button is allowed. If no action

is selected, then the entire page is skipped.

If a user clicks "back", then all instances of tcpdump and the other script

are killed by the webserver. I think this is already being done for tcpdump

instances. Or maybe it happens as the page loads. Either way will work I guess.

137

C.6 scripts/NEWORDER.notes

*NOTE: as of 3/16/2007, this file is pretty out of date. It still describes

some dependencies for the "parallel" installation process, but there

are a few more dependencies (not listed below) which exist, and some

of the filenames/paths have changed. See the quickie-* scripts to

get an up-to-date listing of all the dependencies.

The "quickie-*.1.sh" scripts run *before* we know how many nodes there

are (so the changes they make have no dependencies). The

"quickie-*.2.sh" scripts run *after* the MAC detection has happened,

so we know exactly how many nodes there are (e.g. the things touched

by these scripts _do_ have dependencies).

Need FILENAME__MACINFO for:

- determining what the master node’s name should be (# of ’0’s to append)

(basename.sh)

- Building the dhcpd.conf file on the server.

(config-dhcpd.conf.server.sh)

- Generating /etc/hosts for all systems.

(config-hosts.all.sh)

- Generating the PBS "nodes" file on the server.

(config-nodes.server.sh)

- Building the pvmd script (references basename.sh) on the server.

(config-pvmd.server.sh)

- Building .rhosts file on all systems.

(config-.rhosts_and_mom_priv_config.all.sh)

- "do_modify_post_install" references basename.sh.

(do_modify_post_install.sh)

- MASTER-SCRIPT-2 (and MASTER-SCRIPT-2-1.sh) use it to count how many nodes to

wait for before declaring the install a success.

138

(MASTER-SCRIPT-2.sh, MASTER-SCRIPT-2-1.sh)

Appendix D

DEVELOPMENT README FILES

These are files which are part of the development tree, contained in the project’s

Subversion source code repository. They provide detail to developers who are looking

to update or improve upon the existing BSACI code base.

D.1 README.placeholder files

Some of the larger files in this repository have been removed, in the interest

of saving disk/revision space. They have been replaced with placeholder files

that describe the purpose of the original file, how to get the original file,

etc. ’find -iname *.placeholder’ should locate these files for you.

\end{singlespace}

D.2 development-tools/README

This directory contains source packages and build scripts necessary to compile

various packages required by the Boise State Cluster Installer. Once the

packages are built, a "make install" on a clean machine will install them

to the appropriate directories, where they can then be collected into a

tarball.

Assiduous users will either "make install" to a fake root directory, and use

that directory to build the tarball, or examine the directories contained in

140

current tarballs, and use that information to select which directories to

add to the new tarball after performing a "make install".

The "built-packages" directory is where tarball packages which have been built,

installed, then collected into tarballs are stored. This directory is filled

with placeholder files, since the original files may be obtained by unpacking

the ’tftpboot-distro-overlay.tar’ file from the BSACI installation media,

then copying all files from the ’dist/others/master’ directory to the ’master’

subdirectory. All files from the ’dist/others’ directory may be copied to the

’all_nodes’ subdirectory.

The "build-scripts" and "sources" directories contain the compilation scripts

and source tarballs, respectively. Untar a source tarball, copy the associated

build script into the directory where the source was unpacked, and run it.

Don’t forget to "make install" after the compile finishes. Also note that

there are some dependencies on the order in which these packages are compiled.

E.g. the "hdf5" code depends upon an MPI library (MPICH2 or OpenMPI) being

already compiled and installed, or it will not build. Etc.

The "other-scripts" directory includes several scripts which didn’t really

fit anywhere else. They are generally replacement code for scripts which

are already on the system, forcing the various tools (MIPCH2, LAM, OpenMPI)

to try to use the PBS batch scheduling system.

Appendix E

PROJECT MANAGEMENT

E.1 Source control

Development code (scripts, build tools, embedded source code, etc.) was moved into a
Subversion version control database on March 17, 2007. This database tracks changes
and provides history for all revisions to the cluster installer code base since that date.

E.2 Where to get the code

The development code is stored in a Subversion code repository. The primary code
repository is located at http://www.thedeacon.org/repos/bsaci. If this repository
is down, a second repository is located at Boise State University, https://onyx.boisestate.edu/r
Please contact amit@cs.boisestate.edu for access.

To check out current development code from either of these Subversion reposito-
ries, use the svn co <url> command, where <url> is the address of the repository,
as given above. Note that you may receive an “Access Denied” error message—if this
happens, you lack proper authentication to retrieve data from the Subversion repos-
itory. Try a different repository, or contact the repository administrator to request
access.

The production code (full distribution image, including RPM packages – around
465 MB) may be found on various sites, including http://thedeacon.org/ and
http://onyx.boisestate.edu/. Again, for exact locations on the Boise State onyx

server, please contact amit@cs.boisestate.edu.

