

MODIFICATIONS TO CLUSMON:

A BEOWULF CLUSTER MONITORING SYSTEM

by

Madhura Phansalkar

A project

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2009

c© 2009
Madhura Phansalkar

ALL RIGHTS RESERVED

This project presented by Madhura Phansalkar entitled Modifications to Clusmon: A

Beowulf cluster monitoring system is hereby approved:

Amit Jain Date
Advisor

Teresa Cole Date
Committee Member

Jyh-haw Yeh Date
Committee Member

John R. Pelton Date
Dean of the Graduate College

dedicated to my family

iv

ACKNOWLEDGMENTS

First and foremost I would like to express my deepest gratitude to my advisor, Dr.

Amit Jain for his support and guidance in the completion of this project. Dr. Jain

has been extremely helpful, very patient and encouraging during my entire graduate

study at the Boise State University. I have learnt much from Dr. Jain as my advisor

as well as a good friend, and for that I would always remain indebted to him.

I would also like to thank my committee members: Dr. Yeh and Dr. Cole for being

on my committee and for taking the time to read my project report. I would like to

acknowledge Dr. Uh, Dr. Sirisha Medidi, and Dr. Murali Medidi for their support

and encouragement during my entire graduate study.

Most importantly, I would like to express love towards my husband, Hrishi for his

support, help, and encouragement during the tough times of my school life. Without

his encouragement, I would not have finished graduate study. I would also like to

thank all my friends, colleagues for being who they are and keeping me sane. Finally,

I would like to express my love and gratitude to my parents, in-laws, grandparents,

my sister Anuja and all relatives for their unconditional love, affection and support,

without which this would not have been possible.

v

ABSTRACT

Clusmon is a Beowulf cluster monitoring tool that aids cluster

administrators in monitoring the cluster health remotely. Clusmon, with its unique

three-tier architecture is intended to be a design alternative. It supervises various

parameters on the cluster nodes such as CPU temperature, fan speed, CPU load,

memory usage, network traffic, etc and displays a web based dashboard of collected

data. It is fast and efficient in that it provides the updates within an interval of ten

to fifteen seconds.

In this project Clusmon was mainly studied for scalability and stability. We

demonstrated that Clusmon can supervise a cluster with up to 3000 physical machines

and provides all the updates within the update interval. Clusmon is highly robust and

has very low failure rate. Stability of Clusmon is assured by carefully handling a wide

variety of exceptions and failures. By analyzing the code and performing required

modifications, Clusmon was observed to be stable, scalable and maintainable. RPM

installers were created for Clusmon that automate the long installation process and

allow customized installation.

vi

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1

1.1 Clusmon . 1

1.2 Characteristics of Clusmon . 1

1.3 Prior work done on Clusmon . 2

2 BACKGROUND . 4

3 MODIFICATIONS TO CLUSMON AND SCALABILITY STUDY 9

3.1 Scalability study . 9

3.1.1 Experimental setup . 9

3.1.2 Code modifications required for simulation 10

3.1.3 Scalability issues . 10

3.2 Results and analysis . 11

3.2.1 Experiment 1 . 12

3.2.2 Experiment 2 . 14

3.2.3 Experiment 3 . 16

3.3 Concluding remarks about scalability study . 16

vii

3.4 Design reconsideration and modifications . 17

3.4.1 Order of backend daemons . 17

3.4.2 Maintainability and readability . 17

3.4.3 Stability . 17

3.5 Other modifications . 18

3.6 Testing and debugging . 18

4 CLUSMON INSTALLER . 20

4.1 Clusmon installation steps common to all three installers 20

4.2 Clusmon web daemon installer . 21

4.3 Clusmon node and head daemon installers . 21

4.4 Packaging with RPM . 21

5 CONCLUSIONS . 26

REFERENCES . 27

viii

LIST OF TABLES

3.1 Timings observed for number of nodes with increment of 500 12

3.2 Timings observed for number of nodes with increment of 10 14

3.3 Performance of Clusmon for 500 compute nodes 16

ix

LIST OF FIGURES

2.1 Clusmon front end . 5

2.2 Clusmon architecture . 6

3.1 Time to grow compute nodes with an increment of 500 13

3.2 Database update time for number of nodes with an increment of 500 . . 13

3.3 Database update time for number of nodes with an increment of 10 . . . 15

4.1 Clusmonhead.spec file tags . 24

4.2 Clusmonhead.spec file sections . 25

x

1

CHAPTER 1

INTRODUCTION

1.1 Clusmon

Clusmon is a Beowulf cluster monitoring system that assists cluster administrators in

monitoring the overall behavior of a cluster. Clusmon supervises nodes on a cluster

and gathers cluster data. This data is represented as a dashboard of graphs and

dials. Clusmon supports monitoring various features of the cluster such as CPU

temperature, system temperature, uptime, fan speed, memory usage, network traffic,

CPU load, etc. It is designed to move data analysis to another location, on a machine

that is not part of the cluster.

There are other cluster monitors that are available, but Clusmon has a unique

design that uses a middle end database with a front-end web interface.

1.2 Characteristics of Clusmon

The main characteristics of Clusmon are:

• Easy to install and use

• Allows remote monitoring through web interface

• Fast, efficient, robust, scalable

2

• Flags hardware failures, sends a warning email to the administrator if cluster

temperature exceeds threshold

• Monitors various features such as system temperature, CPU temperature, up-

time, fan speed, memory usage, network traffic, CPU load, jobs running and

batch processes

• Performs data collection on cluster, and moves data analysis to another location

• Stores data for historical reference

• Easy to configure

1.3 Prior work done on Clusmon

Previous work has been performed on Clusmon that created a complete cluster

monitoring system [1]. In 2004, J. Mazerelli, an undergraduate student, wrote PHP

front-end and designed a graphical interface for Clusmon. He also wrote the first

back-end version in C. C. Kennington, a graduate student at Boise State University

rewrote the back-end in Java as part of his Master’s thesis in 2006 [1].

Clusmon was under observation for its stability for a long period of time. As

Clusmon is a monitoring system, it is required to be robust and run without any

failures. During the observations, Clusmon crashed due to some exceptions in the

backend Java daemons. Moreover, Clusmon was never studied from the scalability

perspective. Thus problems arising due to scalability were unknown. All such

observed and discovered issues required revisiting the back-end daemon design and

code.

3

The task of modifying the back-end and resolving the observed and any newly

discovered problems in Clusmon to make it stable and scalable was the main goal of

this project.

4

CHAPTER 2

BACKGROUND

Earlier work on Clusmon created a fairly complete and functional cluster monitoring

system [1]. The study was targeted for designing the Clusmon to follow three-tier

architecture.

• The back end consists of daemons that collect data. It was developed in Java.

• The middle layer is a database which stores the gathered data.

• The front end is a web interface developed in PHP, which represents the data

in the database in a graphical format that is easy to interpret and monitor.

Backend daemons consist of Head and Node daemons. These daemons are back-

ground processes that perform data collection and analysis. The head daemon runs

on master node. It collects information on individual node of the cluster by querying

the node daemon running on each of the compute node. All the data gathered are

passed on to web daemon which is the middle layer of Clusmon. It updates the

database periodically with the received data. Front-end PHP web interface refers

to the database to display dashboard of the cluster data. Following figures show

Clusmon front end (Figure 2.1) and its architecture (Figure 2.2) [1].

5

Figure 2.1: Clusmon front end

6

Figure 2.2: Clusmon architecture

7

There are several other existing solutions, both open-source and commercial. Some

of the more popular ones are listed below [1].

Ganglia [2], by the University of California, Berkeley, is one of the most popular

and widely used open source cluster monitor. Similar to Clusmon, it uses a multicast

for discovering and registering new nodes. Thus both maintain a dynamic list of

nodes to monitor. However, one major difference is that Clusmon uses binary data

structures for transferring the cluster data, while Ganglia uses XML.

openSSI-webview [3] by Kilian Cavalotti is another open source cluster monitor

which provides quick view of overall cluster state including hardware and status

information on nodes. It also allows migrating user processes all across the cluster.

It uses PHP scripts to display data in graphical format and shell code for gathering

data on nodes.

Clusterprobe [4] is an open-source cluster monitor by Z. Liang, Y. Sun, C.Wang, It

is developed in Java and uses RMI (remote method invocation) for communication.

It differs with Clusmon in that it does not collect temperature data. It works by

dividing the cluster into subsections, and running a monitoring proxy per subsection.

ClusterWorX [5], by Linux Networx, is a commercial, all-purpose cluster manage-

ment tool that collects data at an extremely fast rate. While it is a very robust

solution, it is also very expensive. It has the restriction that it does not allow remote

monitoring. Unlike Clusmon, an administrator would need to be physically present

at the cluster to observe the cluster behavior.

8

Supermon [6] is an open source cluster monitor developed by the Advanced Com-

puting Laboratory. It only returns changed data thus allowing high sample-rate

monitoring. Unlike Clusmon, Supermon uses s-expressions which resemble lists in

LISP.

Each solution uses its own approach to gather and store data. However, all monitors

compute the data structures locally meaning that they perform the majority of data

analysis on the cluster itself. Clusmon stands out with its feature of collecting the

data on the cluster, and analyzing it at another location which is not part of the

cluster. Clusmon satisfies the intention of being a design alternative.

9

CHAPTER 3

MODIFICATIONS TO CLUSMON AND SCALABILITY

STUDY

The purpose of revisiting and modifying the code was to make the daemons more

scalable, stable, readable, and maintainable. Additionally, the aim was to resolve

observed and discoverd bugs. The study was initiated with scalability experiments.

3.1 Scalability study

The goal of this study was to scale Clusmon by growing the number of compute

nodes, observe the time required to grow the nodes and update the database with the

information collected on nodes and to observe Clusmon behavior as it is scaled.

3.1.1 Experimental setup

It was decided to scale the number of nodes up to 3000. It was hard to get a cluster

with 3000 physical machines connected to the master node. The Boise State Beowulf

cluster with 60 physical machines was available as the test environment. A cluster of

3000 machines was simulated by running multiple copies of node daemon on each of

the 60 physical machines of the Boise State Beowulf cluster.

10

3.1.2 Code modifications required for simulation

For the simulation, we required to run multiple copies of node daemon on a

machine acting as multiple physical machines. Node daemon was initially designed

to run on a dedicated port which was recognized by head daemon when it attempted

to discover the compute node. The port number was read from the configuration

file (clusmon.node.config). The node was identified by IP address while receiving

multi-cast packets from that node. This design allowed only single copy of node

daemon to run on a machine.

Node daemon code was modified to accept the port number as a command line

argument and bind itself with that port in rmiregistry. An unique identifier was

generated for each daemon with a combination of IP address and port number.

Thus multiple copies of node daemons, sending multi-cast packets through the same

IP address could be treated as different nodes. Head daemon code was modified

accordingly to discover node daemons with their corresponding port numbers and IP

addresses.

3.1.3 Scalability issues

Several problems were observed within minutes when Clusmon was scaled beyond

1000 nodes. The first thing we noticed was concurrent modifications to the shared

data structure in the code. Since Clusmon makes heavy use of multithreading concept,

synchronization is the main bottleneck. In another occurrence, Clusmon head daemon

died due to “Too many open files” exception. This clearly indicated that the problem

occurred while creating sockets. The file-max limit set up by the operating system

11

(usually 1024) was found to be insufficient for our simulation. Increasing the limit

allowed creating required extra socket connections.

The Clusmon web-daemon suffered from a crash due to “Too many open

connections” when a large number of threads created a connection to the database.

The problem was fixed by closing open connections when database modifications were

finished.

This study discovered many new problems and their solutions, thus leading to a

more stable Clusmon. Several issues related to synchronization were taken care of by

handling race conditions using semaphores.

3.2 Results and analysis

After applying the fixes to the problems Clusmon was observed to scale up to 3000

nodes without any issues. Additionally, stress testing was performed on Clusmon

which indicated that Clusmon was able to keep up with 5000 simulated compute

nodes. Number of nodes was increased in fixed interval such as 10 nodes, 500

nodes, etc. Total time to grow and the time for database update were captured

by instrumenting the code.

The following results were obtained for various experiments performed on Boise

State Beowulf cluster. The results indicate average time in milliseconds using 60

physical machines, scaling Clusmon up to 3000 nodes.

12

3.2.1 Experiment 1

The first set of experiments was performed using an increment of 500 nodes. Following

table shows the performance of Clusmon.

Table 3.1: Timings observed for number of nodes with increment of 500
Number of nodes Time to grow (ms) Time for updating database (ms)

100 12395 1068
500 1816 2158
1000 3309 3859
1500 42850 10340
3000 301636 23900

Figure 3.1 shows the plot of the “Time to grow” specified in Table 3.1. Figure

3.2 plots the data point for “Time for updating database” in Table 3.1. It is observed

that initial time to grow certain number of nodes varied depending on the order

of events followed by head daemon. The time taken to discover the nodes and

extract information on individual node fluctuated as multiple threads were involved

in the process. Moreover, the thread timings varied depending on number of nodes

discovered at a particular instance. Thus the data points in Figure 3.1 are observed

to be nearly exponential. However, growing the nodes is an infrequent operation.

It is observed from Figure 3.2 that the time taken for database update is nearly

linear. Clusmon uses an update interval of ten or fifteen seconds. It is observed that

updates were captured within this interval for 1500 compute nodes.

13

Figure 3.1: Time to grow compute nodes with an increment of 500

Figure 3.2: Database update time for number of nodes with an increment of 500

14

3.2.2 Experiment 2

Another experiment was performed to verify the linearity observed in experiment 1.

Number of nodes was grown with an increment of 10. Table 3.2 illustrates the results

for this experiment. Figure 3.3 plots the data points for database update specified

in Table 3.2.

Table 3.2: Timings observed for number of nodes with increment of 10
Number of nodes Time to grow (ms) Time for updating database (ms)

10 4605 690
20 1072 812
30 1091 823
40 1074 837

Similar results were obtained from this experiment showing that initial timings to

discover and grow nodes may vary. However, time taken for database update is linear.

These results support the linear behavior of web daemon to update the database.

Based on the data in Table 3.2, time taken to update the database was extrapolated

for 3000 compute nodes. The extrapolated value was observed to be 14237.5 ms. Thus

it can be estimated that updates would be available within fifteen seconds for 3000

compute nodes.

15

Figure 3.3: Database update time for number of nodes with an increment of 10

16

3.2.3 Experiment 3

In this experiment, Clusmon was scaled up to 100 and 500 nodes. Instead of incre-

menting the number of nodes in intervals, all compute nodes were started at the same

time. The goal was to observe the Clusmon behavior when all nodes are added at

once. Table 3.3 states the timings observed in this experiment.

Table 3.3: Performance of Clusmon for 500 compute nodes
Number of nodes Time to grow (ms) Time for updating database (ms)

100 12395 1068
500 65522 2808

Clusmon takes 12.3 seconds for initial discovery and growth of 100 nodes and 65.5

seconds for 500 nodes. This indicates a nearly linear time as 65.5 is nearly five times

12.3.

3.3 Concluding remarks about scalability study

Clusmon was able to keep up with simulated 3000 compute nodes, which indicates

that it can support a cluster with 3000 physical machines. The trend in the time

taken to grow nodes varies with the order and length of events followed by head

daemon. However the time taken to update the database is observed to be linear in

terms of number of nodes. Clusmon captures all the updates in 23.9 seconds with the

simulated cluster. The extrapolated value (14.2 ms) shows that Clusmon may report

the updates within ten to fifteen seconds on a real cluster with 3000 machines.

17

3.4 Design reconsideration and modifications

3.4.1 Order of backend daemons

Clusmon placed restriction on the start up order of backend daemons. The design

of these daemons forced the web daemon to start before head daemon was started.

Head daemon would continuously wait for the web daemon to start, which forces the

strict order. After observing such conditions, the design of Clusmon web daemon and

head daemon was reviewed. These daemons were redesigned such that they could

work independent of each other. This made Clusmon more flexible and faster at start

up as head demon can start discovering the nodes even if web demon has not started

yet.

3.4.2 Maintainability and readability

The code was made more readable by making it modular. Removing redundancy in

the code, refactoring the code and reducing the size of critical sections contributed

towards readable code. Additionally, modularity contributed to clusmon’s maintain-

ability.

3.4.3 Stability

Stability was assured by verifying that all possible exceptions are handled. Backend

daemons were observed to crash due to certain exception handlers not being set up.

Clusmon encountered a severe crash due to concurrent modifications to a data struc-

ture by multiple threads in multiple classes. Head daemon and listener class shared

a linked list that is used hold compute node objects. Simultaneous modifications to

18

this list caused Clusmon to fail regularly. Separating the data structure locally in

each class and ensuring synchronization was the solution.

Another problem was related to open database connections within web daemon.

Allowing too many open connections without closing them was the cause of failure.

Fixing these fundamental issues moved Clusmon towards stability.

3.5 Other modifications

The code was analyzed for variety of exceptions. They typically include null pointer

handling, concurrent modifications to data structures, etc. By making the exception

handling more robust, code was made more stable. Furthermore, the code was

refactored to make it more readable. Hard coded parameters were removed from

the code by making them configurable. For example, the port number used by the

web daemon for communicating with the head daemon was made configurable by

reading it from the configuration file used by the web daemon. Minimizing the size

of critical sections improved the efficiency of the code. Thread synchronizations and

critical section handling was made more robust. The stability was assured by testing

the code for variety of test cases.

3.6 Testing and debugging

Testing Clusmon was a challenging task. Running Clusmon on multiple nodes and

reproducing the failures in critical conditions was the challenge.

Clusmon scalability was tested using shell scripts that would scale the number

of nodes up to 3000 by running multiple copies of nodes daemons on 60 physical

19

machines. The code was instrumented to capture the timings for various events that

occur while scaling the nodes and updating the database with the current information

on nodes.

Clusmon was tested on three clusters which include Boise State Beowulf cluster,

Boise State Onyx cluster and Rookery cluster. The biggest challenge was to reproduce

the bugs caused by thread timings. Problems such as concurrent modifications were

observed rarely. The code was instrumented so that it regularly produced such

failures. This assisted in verifying the solutions to the problems. Handling race

conditions and synchronization were the most significant solutions as Clusmon makes

heavy use of multithreading.

20

CHAPTER 4

CLUSMON INSTALLER

Various steps need to be followed to set up Clusmon. Clusmon installer automates

the complete set up process. Each of the Clusmon daemons is installed by a separate

RPM package. This allows customized installation of individual daemons.

Clusmon code uses self contained Java, MySQL, and Apache installation. This

eliminates need to change the existing versions if any and also avoids meddling with

the existing system setup. The installer takes care of these custom installations.

4.1 Clusmon installation steps common to all three installers

• Create ’Clusmon’ user: The installer creates Clusmon user and sets Clusmon

home to /usr/local/Clusmon.

• Copy required files: Corresponding files for Clusmon daemons are copied to

/usr/local/Clusmon.

• Configure Clusmon config files: Parameters such as IP address, Host name are

derived dynamically on individual machines and are placed in the Clusmon

configuration files.

• Start the daemons: corresponding daemons are started as services.

21

4.2 Clusmon web daemon installer

The web daemon is usually installed on a separate machine that is not part of the

cluster. However it can also be installed on the master node that runs the head

daemon. The steps followed by web daemon installer are as follows.

• The custom installation for MySQL and Apache are placed under /opt/bsaci

directory. This directory is created if it does not exist.

• Any existing listeners on ports 81 and 3307 are shut down.

• Apache web server is started on port 81.

• “clusmon data” database is created with required permissions assigned to Clus-

mon user.

• Clusmon web configuration file is updated for database credentials.

• MySQL daemon is started on port 3307.

• Clusmon web daemon is started as service.

4.3 Clusmon node and head daemon installers

These installers follow the basic steps specified as common steps. They update

corresponding configuration files and start up daemons as services.

4.4 Packaging with RPM

RPM (Redhat Package Manager) is the most popular software package manager for

Linux distributions. It allows building packages in two varieties: binary package,

22

encapsulating the software to be installed, and source package, containing source code

to produce binary package. The packages contains an archive of files and meta-data

such as helper scripts, file attributes that are used to install and erase the package.

The following steps are required to build a RPM package.

1. The most important step is to create an input file, called spec file. This file tells

RPM how to build and package the software. The spec file has several tags and

sections. Figure 4.1 shows the tags in clusmonhead.spec file. The sections

are illustrated in Figure 4.2.

• RPM creates a temporary directory to build the package. “BuildRoot” tag

can be used to define this directory. Name, Version, Release tags illustrate

the version information about the package.

• “prep” section is used to unpack the source code into a temporary directory

and apply any patches.

• “pre” section performs any actions that should be taken before initiating

the installation process.

• “build” section is used for compiling the code.

• RPM runs the “install” section to install the code into directories on

the build machine. It then reads the list of files from the “files” section,

gathers them up, and creates binary and source RPM files.

• “clean” section is used to remove the temporary build directory.

• “post” section describes the post installation action. In case of the Clus-

mon head daemon, setup-head-daemon.sh and config-head.sh are the

helper scripts that are run after the installation.

23

• “preun” and “postun” sections execute the scripts used for removing/erasing

the package.

• Any existing version of the Clusmon head daemon is uninstalled using the

script uninstall-head.sh before initiating new installation.

2. The next step is to create the archive of all required files including the source

code, make files, helper scripts, etc. The “source” tag in the spec file indicates

the name of this archive.

3. The files generated are now placed in the appropriate directories. The spec file is

copied to /usr/src/redhat/SPECS while the archive is copied to

/usr/src/redhat/SOURCES directory.

4. RPM packages are generated using the command “rpm -ba clusmonhead.spec”.

The source RPM package is generated and placed in /usr/src/redhat/SRPMS

while the binary package is usually placed in /usr/src/redhat/RPMS/ directory.

24

Name: clusmonhead

Version: 1.0

Release: 1

Summary: A utility to install Clusmon head daemon as service.

Group: Application/Systems

License: None

Packager: Madhura Phansalkar

Vendor: Boise State university

URL: mailto:amit@cs.boisestate.edu

Source: clusmonhead-1.0.tar.gz

BuildRoot: %{_builddir}/%{name}-1.0

%description

This untars the source tar ball to install head daemon package.

Figure 4.1: Clusmonhead.spec file tags

25

%prep

%post

/setup-head-daemon.sh

/config-head.sh

/bin/rm -f /Clusmon-head.tar.bz2

/bin/rm -f /setup-head-daemon.sh

/bin/rm -f /config-head.sh

/bin/rm -f /uninstall-head.sh

/bin/rm -f /clusmonhead.spec

%pre

%build

%install

/bin/cp Clusmon-head.tar.bz2 /

/bin/cp setup-head-daemon.sh /

/bin/cp config-head.sh /

/bin/cp uninstall-head.sh /

%preun

/bin/cp uninstall-head.sh /

%postun

/uninstall-head.sh

/bin/rm -f /uninstall-head.sh

%files

/clusmonhead.spec

/Clusmon-head.tar.bz2

/setup-head-daemon.sh

/config-head.sh

/uninstall-head.sh

Figure 4.2: Clusmonhead.spec file sections

26

CHAPTER 5

CONCLUSIONS

Clusmon code was analyzed for scalability. Various experiments were performed to

observe Clusmon behavior with the number of compute nodes increasing in interval.

The experiments identified various problems caused due to scalability. These issues

were resolved by modifying backend daemons. It was observed that Clusmon can

support a cluster with up to 3000 physical machines. It gathers updates within an

interval of ten to fifteen seconds.

The analysis and review of backend design assisted in deciding the direction of

modifications. This study discovered known and unknown problems that caused

Clusmon to crash under heavy loads. These problems were resolved by changing the

design and using Java’s strong exception handling mechanism. This project created

a modular, readable, maintainable and robust backend for Clusmon. Clusmon RPM

installers were created that automate the long installation process.

27

REFERENCES

[1] Conrad Kennington. Clusmon: A Beowulf cluster monitor, M.S. Thesis, Com-
puter science department, Boise State university, fall 2006

[2] Ganglia. http://ganglia.sourceforge.net

[3] openSSI-Webview. http://openssi-webview.sourceforge.net

[4] Clusterprobe. http://www.srg.cs.hku.hk/srg/html/cprobe/readme of

clusterprobe.htm

[5] ClusterWorx. http://www.linuxnetworx.com/clusterworx

[6] Supermon. http://supermon.sourceforge.net

