

PTK: A PARALLEL TOOLKIT LIBRARY

by

Kirsten Ann Allison

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

March 2007

c© 2007
Kirsten Ann Allison

ALL RIGHTS RESERVED

The thesis presented by Kirsten Ann Allison entitled PTK: A Parallel Toolkit Library
is hereby approved.

Amit Jain, Advisor Date

John Griffin, Committee Member Date

Jyh-Haw Yeh, Committee Member Date

John R. Pelton, Graduate Dean Date

dedicated to my father

iv

ACKNOWLEDGEMENTS

This experience was possible because I have an incredible husband, Mark, and

boys, Connor and Teagan. They have sacrificed much in the last year and a half. My

parents have always told me that I can be anything I want to be. This has served

me well. My sister has been extremely encouraging and supportive. My friends have

helped me find brief moments of sanity, not to mention help with kids. It takes a

village to produce a thesis.

Many thanks go to Dr. Amit Jain for his teaching and patience. When I embarked

on this journey, I hadn’t written a line of code in eight years. I imagine some of my

questions were not particularly brilliant. He has a wonderful knack for knowing when

to help and when to send me away to figure it out on my own.

Thank you, also, to the Department of Computer Science for its support. When

Dr. Griffin called me in August 2006 to ask when I was planning on getting my

paperwork in to the department, my planned experiment of taking one class turned

into being a full time student with a teaching assistantship. Little did I know what I

was getting into. Dr. Teresa Cole has been an immense help to my success as a TA

and student.

Thank you to Conrad Kennington and Luke Hindman. The talks on the way to

get coffee often helped me clarify an idea, and provided fuel for the next round.

This material is based upon work supported by the National Science Foundation

under Grant No. 0321233. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

v

AUTOBIOGRAPHICAL SKETCH

Kirsten Allison took her first programming class in fourth grade. She has always

loved solving problems.

She received her degree in Computer Science from the University of Minnesota.

Upon graduation, she moved to Oregon to work for Tektronix. Her Tek years were

spent in a cubical writing code. On deciding that she’d like to get out of that cube

other than to go to meetings, she went to work for Integrated Measurement Systems

as an Applications Engineer. She spent much of her time in Asia, helping customize

systems to meet users’ needs. It was nice to get out of that cubicle, but airplanes

become very small when you’ve been on them for 20 hours, and it became time for

another change.

The next adventure was on to a much greater challenge. Kirsten chose to take

a break from “work” and be a full-time parent. This was in the wake of significant

research on brain development in the first three years of life, and the importance

of providing a “proper environment” for that development, and a cultural shift of

women heading home. The impact of these cultural changes is a thesis in itself.

A number of years at home made it clear that it was time to go back to work.

Going back to school seemed a logical step along that path. Her Boise State experience

has been a challenge and a joy. She believes it will serve her well in venturing back

out into “the real world.”

vi

ABSTRACT

The High Performance Computing(HPC) market has made a significant shift from

large, monolithic, specialized systems to networked clusters of workstations. This has

been precipitated by the continuing upward movement of the price/performance ratio

of commodity computing hardware. The fast growth of this market has presented a

challenge to the open source community. Software has not necessarily kept up with

the growth.

The Parallel Toolkit Library provides support for common design patterns used

throughout parallel programs. It includes both PVM and MPI versions. The examples

given help users understand how to use the library functions.

The data sharing patterns of gather, scatter, and all to all are fully supported.

They allow users the flexibility of having odd amounts of data that are not evenly

divisible by the number of processes. The two-dimensional versions allow the user to

share “ragged” arrays of data. These elements are not provided by PVM or MPI.

The file merging functionality automates a common cluster task.

The workpools remove a significant layer of detail from writing workpool code.

The user of the workpool needs to provide the library with functions for processing

tasks and results. The library takes care of sending and receiving tasks and results.

Most importantly it handles termination detection, which can be quite cumbersome

to design and write.

The testing and benchmarking results are consistent with expectations. The li-

brary does not add a significant amount of overhead. In some cases, it may be more ef-

ficient than code that users would write, because time may not be taken in non-library

vii

code to incorporate some efficiencies that are part of the toolkit library. The library

and example code is available at http://cs.boisestate.edu/~amit/research/ptk.

Libraries such as the toolkit are critical to making clusters easier to write programs

for. The toolkit removes a layer of detail for the programmer to need to understand.

This will make writing parallel programs easier and faster. The toolkit also provides

a tested set of features that will make users’ programs more robust.

viii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Prior Research . 3

1.3 General Thoughts on Library Development 4

1.3.1 Adequate Functionality Versus Ease of Use 4

1.3.2 Memory Allocation - Where Should It Happen? 4

1.4 Terminology . 4

1.4.1 Process Groups . 4

1.4.2 Blocking Versus Non-Blocking Sends and Receives 5

2 TOOLKIT IMPLEMENTATION . 6

2.1 Some General Differences Between PVM and MPI 6

2.1.1 Groups . 6

2.1.2 Message Ordering . 8

2.2 Common Toolkit Parameters and Elements 8

2.2.1 Verbose . 8

2.2.2 PVM Datatypes . 9

2.2.3 MPI Datatypes . 9

ix

2.3 ptk init . 10

2.3.1 PVM Usage . 11

2.3.2 MPI Usage . 11

2.4 ptk scatter1d . 12

2.4.1 Usage . 13

2.5 ptk scatter2d . 15

2.5.1 Usage . 16

2.6 ptk gather1d . 16

2.6.1 Usage . 17

2.7 ptk gather2d . 18

2.7.1 Usage . 19

2.8 ptk alltoall1d . 20

2.8.1 Usage . 21

2.9 ptk alltoall2d . 22

2.9.1 Usage . 24

2.10 ptk mcast . 24

2.10.1 PVM Usage . 24

2.10.2 MPI Usage . 25

2.11 ptk filemerge . 26

2.11.1 Usage . 27

2.12 ptk central workpool . 27

2.12.1 Usage . 28

2.12.2 Implementation Discussion . 31

2.13 ptk distributed workpool . 35

x

2.13.1 Usage . 37

2.13.2 Implementation Discussion . 40

2.14 ptk exit . 47

2.15 Miscellaneous Files Used By the Toolkit 47

2.15.1 ptk list . 47

2.15.2 ptk util . 47

2.15.3 ptk pvmgs . 47

3 USING THE TOOLKIT: SOME EXAMPLES 51

3.1 Gather and Scatter . 51

3.1.1 A Simple One-Dimensional Gather 51

3.1.2 A One-Dimensional Scatter Example 54

3.1.3 Bucketsort Using Two-Dimensional Scatter 54

3.2 All to All . 55

3.2.1 A Simple All to All . 55

3.2.2 Bucketsort Using All to All 55

3.3 Merging Files From Across a Cluster 56

3.4 The Workpools . 57

3.4.1 Choosing the Appropriate Workpool 57

3.4.2 Centralized Workpool . 59

3.4.3 Distributed Workpool . 65

4 TESTING AND BENCHMARKING 70

5 CONCLUSIONS . 77

xi

5.1 Library Support for Common Parallel Design Patterns 77

5.2 General Observations and Reflections on Decisions Made 78

5.3 Potential Further Work . 78

5.3.1 Centralized Workpool Queue 78

5.3.2 Multi-threading . 78

5.3.3 C++ . 79

REFERENCES . 80

APPENDIX A SHORTEST PATHS CODE 82

A.1 Shortest Paths Centralized - Simple 82

A.1.1 Processing tasks . 82

A.1.2 Processing results . 83

A.2 Shortest Paths Centralized - More Efficient 85

A.2.1 Processing tasks . 85

A.2.2 Processing results . 87

A.3 Shortest Paths Distributed - Simple 90

A.3.1 Processing tasks . 90

A.3.2 Processing results . 92

A.4 Shortest Paths Distributed - More Efficient 93

A.4.1 Processing tasks . 93

A.4.2 Processing results . 96

APPENDIX B TIMING DATA . 97

APPENDIX C INSTALLING THE PTK LIBRARY 100

xii

APPENDIX D BOISE STATE COMPUTER SCIENCE DEPARTMENT
CLUSTERS . 101

D.1 Onyx . 101

D.2 Beowulf . 101

xiii

LIST OF TABLES

4.1 Testing coverage of toolkit functions 70

B.1 Shortest paths central (simple) with a group size of 20. 97
B.2 Shortest paths central (more efficient) with a group size of 20. 98
B.3 Shortest paths distributed with a group size of 20 and granularity = 1 99
B.4 Shortest paths distributed more efficient with a group size of 20 . . . 99

xiv

LIST OF FIGURES

2.1 When PVM processes are receiving wildcard messages in two different
groups, we may receive a message we don’t want. 7

2.2 Scatter with a group size of four . 14
2.3 Gather with a group size of four . 18
2.4 All to all iterations where group size is four 22
2.5 Processing tasks and results using the centralized workpool 29
2.6 Using granularity in the centralized workpool. 35
2.7 Processing tasks and results using the distributed workpool 38
2.8 Array of tasksToProcess where each block is of size tasksize 39
2.9 Array of ptkNewTasks, where each block is of size tasksize + sizeof(int),

created by the processTask function 39
2.10 Taking advantage of message grouping - four messages used to send

eight tasks. 48
2.11 Not taking advantage of message grouping - eight messages used to

send eight tasks. 49
2.12 Dual-pass token ring termination algorithm 50

3.1 Structure of a task in shortestPathsCentral 62
3.2 Structure of a result in shortestPathsCentral and shortestPathsCen-

tralMoreEfficient . 63
3.3 Structure of a task in shortestPathsCentralMoreEfficient 67
3.4 Structure of a task in shortestPathsDistributed 67
3.5 Structure of ptkNewTasks in shortestPathsDistributed simple and more

efficient . 68
3.6 Structure of a result in shortestPathsDistributed 69

4.1 Shortest paths central (simple) versus shortest paths central (more
efficient) - with granularity = 1. 71

4.2 Shortest paths central more efficient with 9,000 vertices - using granu-
larity versus verticesPerTask. 72

4.3 Shortest paths central more efficient with vertices = 9000, varying
granularity, and varying verticesPerTask. 73

4.4 Shortest paths central versus shortest paths distributed. 74
4.5 Shortest paths distributed (simple) versus shortest paths distributed

(more efficient) - with granularity = 1. 75
4.6 Shortest paths distributed (more efficient) with 9,000 vertices - using

granularity. 76

xv

4.7 Shortest paths distributed - condensed messaging affects performance. 76

xvi

1

Chapter 1

INTRODUCTION

1.1 Problem Statement

The dominant supercomputing platform is moving from large monolithic machines

to networked clusters of workstations. Continuing improvement in the price/perfor-

mance ratio of commodity computing hardware drives this change. The software

written for these clusters uses standardized message passing libraries. The two li-

braries most commonly used are: PVM (Parallel Virtual Machine) [10] and MPI

(Message Passing Interface) [7]. The increased availability and cost effectiveness of

clusters has increased the need for effective parallel programming tools. PVM and

MPI are useful libraries, but they are missing several elements. There are several

common design patterns, or tasks, that one wishes to perform in parallel programs,

but these tasks must be implemented from scratch every time a parallel program is

written. These tasks are strong candidates for inclusion in the Parallel Toolkit.

Gropp, Lusk, and Skjellum [6] make an excellent argument for the need for parallel

libraries:

“Software libraries offer several advantages:

• they ensure consistency in program correctness,

• they help guarantee a high-quality implementation,

• they hide distracting details and complexities associated with state-
of-the-art implementations, and

2

• they minimize repetitive effort or haphazard results.”

Prior to beginning work on the toolkit, my parallel programming experience was

limited to my Parallel Computing course. In thinking about what should be included

in the toolkit, I relied heavily on Dr. Amit Jain to act as my “customer,” and provide

a list of requirements. The common design patterns that the toolkit needed to support

were:

• a centralized workpool that manages communication between a coordinating

node and worker nodes,

• a distributed workpool that manages communication between workers and han-

dles termination,

• all to all data sharing, where each node sends a subset of a collection of data to

each other node,

• a gather function, where a root node collects data from each node,

• a scatter function, where a root node sends a subset of a collection of data to

each other node,

• a multicast function, where a sending node sends a collection of data to each

other node, in its entirety,

• a filemerge function that collects files from all nodes in a group, and condenses

them into one file at a root node.

3

1.2 Prior Research

There is much to be found in the way of parallel libraries and applications. These

include copious math libraries, applications for doing computational chemistry and

biology, oceanic and atmospheric modeling, applications for building clusters, and

system administration tools. The applications tend to be very domain specific, but

not very useful for more general purpose computing. The Argonne National Lab’s

Mathematics and Computer Science Division maintains a list of their current software

projects at http://www-new.mcs.anl.gov/new/software.php, and a list of libraries

based on MPI at http://www-unix.mcs.anl.gov/mpi/libraries.html. There ap-

pears to be nothing there or on the web that is similar to the Parallel Toolkit.

A paper [11] was presented at the Midwest Instructional Computing Symposium in

2003 that documented the implementation of a “Hybrid Process Farm/Work Pool”.

The concept is similar to my workpool implementation. The code is not available

online. I have verified with the advisor of the paper that there is not an open source

version of this code available (see [8]). The code was implemented as part of a project

that has since been turned over to Sun Microsystems.

There is a graduate student in Germany who has implemented a workpool skeleton

in Eden, which is a parallel version of Haskell [9]. Most work on parallel skeletons is

associated with functional programming languages. Although there are some charac-

teristics of functional programming languages that make them useful for paralleliza-

tion, they are not mainstream development tools. Most parallel programming is done

in C and C++, so these skeletons cannot be viewed as pertinent to the discussion of

the parallel toolkit.

4

1.3 General Thoughts on Library Development

1.3.1 Adequate Functionality Versus Ease of Use

There were many times in the process of defining what a function should do, when the

question came up of “What if we added <fill in favorite extra bell or whistle here>?”

This then prompted discussion of how many parameters would need to be added to

make it work. Sometimes functionality was abandoned because it would have made

the function so complicated to use that no one would wanted to use it. Although

this may mean that the toolkit doesn’t solve every problem, it solves most of them

without an insurmountable learning curve.

1.3.2 Memory Allocation - Where Should It Happen?

One of the issues that came up is where to allocate memory for various data structures,

mainly arrays where data is filled in by the toolkit. There is a balance between

wanting the toolkit to do as much for the user as possible, while being as transparent

as possible at the same time. It seemed inconsistent and awkward to have the toolkit

allocate memory, and then expect the user to free it when done using the data. I

made the decision that wherever possible, the user should allocate and free memory.

Wherever possible, the toolkit allocates and frees memory within its own functions.

1.4 Terminology

1.4.1 Process Groups

A process group can be thought of as a ring, with each process having neighbors to its

right and left. The process group contains N processes. If we number the processes

5

from 0 to N − 1, then the right neighbor of process i is the process i + 1, and the

neighbor to the left of process i is the process i− 1. The left neighbor of process 0 is

process N − 1, and the right neighbor of process N − 1 is process 0.

1.4.2 Blocking Versus Non-Blocking Sends and Receives

When making a call to a blocking send, the process does not continue until the

message sent has been received. Likewise, in a blocking receive, the process does not

continue until there is a message available. In a non-blocking send or receive, control

returns immediately to the calling function. How this happens is different in PVM

and MPI, because they handle buffering differently. For a more extensive discussion,

see Wilkinson and Allen [13].

6

Chapter 2

TOOLKIT IMPLEMENTATION

2.1 Some General Differences Between PVM and MPI

2.1.1 Groups

One of the main differences between PVM and MPI is how they handle group com-

munication. PVM uses a centralized group server to differentiate process groups.

When a user wants to create a group in PVM, the pvm joingroup function is called,

which invokes the PVM group server. The group is defined by its name, which is

a simple string. This string is passed to the group functions and the functions are

only performed on members of the group. This is a very simplistic approach. It

becomes problematic when processes are doing “wildcard” receives. In a wildcard

receive, any receiver is looking for any type of message from any sender, which is

exactly what the toolkit does in the workpools. In that case, it is possible for the

toolkit functions to receive messages from other libraries or programs, or vice versa

(see Figure 2.1). This is not a limitation of the toolkit, but of PVM. Dongarra, Geist,

et al [3], present a proposal for adding static groups and contexts to PVM, but it has

not been implemented.

MPI, on the other hand, has a more sophisticated way of dealing with groups.

MPI uses “communicators” and groups to manage communication. These were in-

cluded in the MPI specification explicitly to support library development. An MPI

7

P0 running
toolkit

P0 running
math library

P1 running
toolkit

P1 running
math library

Math group

Toolkit group

?

?

pvm_recv(−1, −1)

pvm_recv(−1, −1)

Figure 2.1.: When PVM processes are receiving wildcard messages in two different
groups, we may receive a message we don’t want.

communicator creates a kind of message space, or context, where only processes that

are part of that communicator receive messages from the other processes. A process

can belong to multiple communicators, but when a group message passing function

is called, the process will only receive the message that pertains to the communicator

for which the message was sent.

The key difference here is that process groups in PVM are user defined. The user

simply creates a string to use to label the group, and all group messages go through

a centralized group server. In MPI, the communicator is created by the system. This

8

allows point-to-point communication in MPI groups, without having to go through a

centralized group server. Needless to say, this eliminates a bottleneck in sending and

receiving group messages.

Another key difference between PVM and MPI groups is that PVM groups are

dynamic, that is, processes may join or leave a group at any time. This may lead

to race conditions if the programmer is not careful about how this is handled. MPI

groups are static. They are created and destroyed as whole groups.

2.1.2 Message Ordering

Message ordering is handled differently between PVM and MPI. PVM guarantees

message ordering. This means that if P0 sends Message A to P1, and then sends

Message B to P1, we can rely on Message A being received by P1 before Message B.

MPI does not give us this guarantee. In the collective data moving operations this is

not critical. It does becomes an issue in the workpools, where there are completely

asynchronous communication patterns.

2.2 Common Toolkit Parameters and Elements

2.2.1 Verbose

The verbose parameter specifies how much information the toolkit will provide about

its inner workings. Passing a verbose value of 0 will turn off output from the toolkit.

Note that the toolkit will still output error messages. Passing a verbose value of 1

will produce output from the toolkit. The output is particularly useful when trying

to debug a program that uses one of the workpools.

9

2.2.2 PVM Datatypes

The datatypes supported in the PVM version of the toolkit are defined as follows:

#define PTK_CHAR PVM_CHAR

#define PTK_SIGNED_CHAR PVM_SIGNED_CHAR

#define PTK_UNSIGNED_CHAR PVM_UNSIGNED_CHAR

#define PTK_BYTE PVM_BYTE

#define PTK_WCHAR PVM_WCHAR

#define PTK_SHORT PVM_SHORT

#define PTK_UNSIGNED_SHORT PVM_UNSIGNED_SHORT

#define PTK_INT PVM_INT

#define PTK_UNSIGNED PVM_UNSIGNED

#define PTK_LONG PVM_LONG

#define PTK_UNSIGNED_LONG PVM_UNSIGNED_LONG

#define PTK_FLOAT PVM_FLOAT

#define PTK_DOUBLE PVM_DOUBLE

#define PTK_LONG_DOUBLE PVM_LONG_DOUBLE

#define PTK_LONG_LONG_INT PVM_LONG_LONG_INT

#define PTK_UNSIGNED_LONG_LONG PVM_UNSIGNED_LONG_LONG

#define PTK_LONG_LONG PVM_LONG_LONG

#define PTK_PACKED PVM_PACKED

#define PTK_LB PVM_LB

#define PTK_UB PVM_UB

Note that although the code has been written as independently as possible of the

type of data, it has not been tested with all of the above datatypes.

2.2.3 MPI Datatypes

The datatypes supported in the MPI version of the toolkit are defined as follows:

#define PTK_CHAR MPI_CHAR

#define PTK_SIGNED_CHAR MPI_SIGNED_CHAR

#define PTK_UNSIGNED_CHAR MPI_UNSIGNED_CHAR

#define PTK_BYTE MPI_BYTE

10

#define PTK_WCHAR MPI_WCHAR

#define PTK_SHORT MPI_SHORT

#define PTK_UNSIGNED_SHORT MPI_UNSIGNED_SHORT

#define PTK_INT MPI_INT

#define PTK_UNSIGNED MPI_UNSIGNED

#define PTK_LONG MPI_LONG

#define PTK_UNSIGNED_LONG MPI_UNSIGNED_LONG

#define PTK_FLOAT MPI_FLOAT

#define PTK_DOUBLE MPI_DOUBLE

#define PTK_LONG_DOUBLE MPI_LONG_DOUBLE

#define PTK_LONG_LONG_INT MPI_LONG_LONG_INT

#define PTK_UNSIGNED_LONG_LONG MPI_UNSIGNED_LONG_LONG

#define PTK_LONG_LONG MPI_LONG_LONG

#define PTK_PACKED MPI_PACKED

#define PTK_LB MPI_LB

#define PTK_UB MPI_UB

Note that although the code has been written as independently as possible of the

type of data, it has not been tested with all of the above datatypes.

2.3 ptk init

int

ptk_init(int argc,

char **argv)

IN int argc The argc value equal to the value passed in to the

calling program.

IN char **argv The argv value equal to the value passed in to the

calling program.

11

2.3.1 PVM Usage

This is a basic function designed to provide the calling function with information

about the processing environment. The global variable gsize is assigned a value by

making a call to the pvm siblings function. This size is the number of processes that

were spawned together. The me global variable is assigned a value by making a call

to pvm joingroup and is the group instance number of the process. These instance

numbers range from 0 to gsize - 1, and are unique, i.e., no two processes can have

the same instance number. The instance numbers are also contiguous.

The global array of task ids, tids is also populated. These are the task ids as

defined by the PVM group server. They are acquired by ptk init using the function

pvm gettid. Note that the order of tids in this array may be different than the array

that one would get by filling in the tids array with a call to pvm sibling(). The

ptk init function calls pvm joingroup. This invokes the PVM group server, which

creates a new internal array of task IDs. This array is filled in differently than the

task ID array created when the PVM processes are spawned. Among other things, the

PVM group server ensures that the task ID array is contiguous. This is an important

distinction. Users of the library should make sure that they are using an array of task

ids filled in by ptk init to ensure consistency.

2.3.2 MPI Usage

This is a basic function designed to provide the calling function with information

about the processing environment. The global variable gsize is assigned a value by

making a call to the pvm siblings function. This size is the number of processes that

were spawned together. The me global variable is assigned a value by making a call

to pvm joingroup and is the group instance number of the process. These instance

12

numbers range from 0 to gsize - 1, and are unique, i.e., no two processes can have

the same instance number. The instance numbers are also contiguous.

The global array of task ids, tids is also populated. These are the task ids as

defined by the PVM group server. They are acquired by ptk init using the function

pvm gettid. Note that the order of tids in this array may be different than the array

that one would get by filling in the tids array with a call to pvm sibling(). The

ptk init function calls pvm joingroup. This invokes the PVM group server, which

creates a new internal array of task IDs. This array is filled in differently than the

task ID array created when the PVM processes are spawned. Among other things, the

PVM group server ensures that the task ID array is contiguous. This is an important

distinction. Users of the library should make sure that they are using an array of task

ids filled in by ptk init to ensure consistency.

2.4 ptk scatter1d

int

ptk_scatter1D(void *sendbuf,

int sendcount,

int lastcount,

void *recvbuf,

int datatype,

int root,

int verbose)

IN void *sendbuf A one-dimensional array of any type of data, filled

in by the calling function at PTK ROOT.

IN int sendcount The number of elements to send to processes 0

through gsize - 2.

13

IN int lastcount The number of elements to send to process gsize

- 1.

OUT void *recvbuf A one-dimensional array of data, available at all

the processes after the call to ptk scatter1d. The

number of elements in the array at each process

is sendcount, with the exception of the last pro-

cess (process with the instance or rank equal to

gsize - 1). The size of the array is sendcount (or

lastcount) * datasize.

IN int datatype The type of data. Possibilities include the full

range as specified in Section 2.2.2.

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

2.4.1 Usage

The pattern of communication in the scatter function is one where the root node has

data to distribute to all the other nodes in the group. It is the inverse of gather.

The data is divided up as indicated by the sendcount and lastcount parameters.

Scatter is different than a broadcast or multicast because only a part of the data at

the sender is distributed to the receiving nodes. The ptk scatter function performs

the scatter on a one-dimensional array.

There is a pvm scatter function available. It has a significant limitation in that it

requires the size of the send buffer to be evenly divisible by the number of processes.

14

Data at the root node

...

? ? ? ?

P0 P1 P2 P3

0 send
count
- 1

send
count

(send

count
∗ 2)

- 1

send
count
∗ 2

(send

count
∗ 3)

- 1

send
count
∗ 3

(send

count
∗ 3)

+ last

count
- 1

Figure 2.2. Scatter with a group size of four

While this limitation must make its implementation much simpler, in reality there are

situations where there is an odd amount of data. The ptk scatter function supports

having an array with a size not evenly divisible by the group size.

In the first version of this function, I implemented it so that the user passed in the

array to scatter, and the size of the array. The toolkit then sent a chunk of data to

each process that was the size of the array divided (as evenly as possible) by the group

size, with the leftover going to the last process. I then ran into a situation in one

of the examples where I wanted to be able to divide the data up into “chunks.” For

example, if I have 3 processes, and an array with 100 elements, I wanted 30 elements

to go to the first two processes, and 40 to go to the last process.

Adding this functionality necessitated the use of an extra parameter. That means

there is more the user needs to understand, but I believe the trade off is justified

because the functionality is needed.

15

2.5 ptk scatter2d

int

ptk_scatter2d(void **sendbuf,

int *sendcounts,

void *recvbuf,

int *recvcount,

int datatype,

int root,

int verbose)

IN void **sendbuf A two-dimensional array of any type of data, filled

in by the calling function at PTK ROOT.

IN int

*sendcounts

Each entry in the sendcounts array is equivalent

to the number of elements to send to the corre-

sponding process. For example, if sendcounts[3]

is equal to 32, then 32 elements of type datatype

will be sent to process 3.

OUT void *recvbuf A one-dimensional array of data, available at all

the processes after the call to ptk scatter2d. The

number of elements in the array at each process

is sendcounts[myginst]. The size of each row is

defined in sendcounts.

OUT int *recvcount A reference to an integer. This value is filled in

and is equivalent to the number of elements put

in the recvbuf array.

IN int datatype The type of data. Possibilities include the full

range as specified in Section 2.2.2.

16

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

2.5.1 Usage

In this version of scatter, the root sends a varying amount of data to each process.

The communication pattern is the same as that described for a 1-dimensional scatter.

The array to be sent is a two-dimensional array. The number of rows in the array

must be equal to the number of processes in the group. Another array is passed in,

called sendcounts. This array specifies how many elements there are in each row of

the sendbuf.

Another one-dimensional array, the recvbuf is also passed in. The toolkit al-

locates memory for this array as data is received. There is no way for the calling

function to allocate this memory, because it does not necessarily know how big the

array will be. This array is populated by the data in the corresponding row of the

two-dimensional send buffer. For example, P3 will have a recvbuf full of the data in

row sendbuf[3] at the root.

The calling function must specify the datatype of the send and receive buffers.

This information is used to select the appropriate pvm pack and unpack functions,

and to determine the size of the data.

2.6 ptk gather1d

int

ptk_gather1D(void *sendbuf,

17

int sendcount,

int lastcount,

void *recvbuf,

int datatype,

int root,

int verbose)

IN void *sendbuf A one-dimensional array of any type of data, filled

in by each process in the current group.

IN int sendcount The number of elements each process will send to

the root (with the exception of the “last” process).

IN int lastcount The number of elements process gsize - 1 will

send to the root.

OUT void *recvbuf A one-dimensional array of data, available at

PTK ROOT after the function completes.

IN int datatype The type of data. Possibilities include the full

range as specified in Section 2.2.2.

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

2.6.1 Usage

The pattern of communication in the gather function is the inverse of the scatter

pattern. In this case, all of the nodes have data to send to a root node. In the

one-dimensional version, each of the nodes sends an array of size sendcount, with

the exception of the last process, which sends an array of size lastcount.

18

Data at the root node

...

? ? ? ?

P0 P1 P2 P3

0 recv
count
- 1

recv
count

(recv

count
∗ 2)

- 1

recv
count
∗ 2

(recv

count
∗ 3)

- 1

recv
count
∗ 3

(recv

count
∗ 3)

+ last

count
- 1

Figure 2.3. Gather with a group size of four

2.7 ptk gather2d

int

ptk_gather2d(void *sendbuf,

int sendcount,

void **recvbuf,

int *recvcounts,

int datatype,

int root,

int verbose)

IN void *sendbuf A one-dimensional array of any type of data, filled

in by each process in the current group.

IN int sendcount The number of elements the process will send to

the root (with the exception of the “last” process).

19

OUT void **recvbuf A two-dimensional array of data, available at

PTK ROOT after the function completes. The

data from each process is put into a correspond-

ing row in the recvbuf array. Note that the

root needs to malloc the rows, i.e., recvbuf =

(datatype **)malloc(sizeof(datatype *) *

gsize).

OUT int

*recvcounts

An integer array of length group size. The

calling function at PTK ROOT must malloc, i.e.,

recvcounts = (int *)malloc(sizeof(int) *

gsize). The root will fill in the array with the

number of elements recv’d from each member,

where a row index corresponds to a process.

IN int datatype The type of data. Possibilities include the full

range as specified in Section 2.2.2.

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

2.7.1 Usage

In this version of gather, each process sends a varying amount of data to the root

node. The communication pattern is the same as that described for a 1-dimensional

gather. The array to be sent is a one-dimensional array. That array is then put into

a two-dimensional array at the root node, with the row position corresponding to the

position of the process in the group. The number of rows in the array must be equal

20

to the number of processes in the group. The size of the array to be sent is specified

in the sendcount parameter.

A two dimensional array is also passed in at PTK ROOT. The pointers to each

row in this array must be malloc’d at the root by the calling function. The toolkit

then allocates memory for each row as it is received. There is no way for the calling

function to allocate memory for each row, because it does not necessarily know how

big each row will be. The toolkit then fills in the recvcounts array, which specifies

how many elements are created in each row of the recvbuf array.

The calling function must specify the datatype of the send and receive buffers.

This information is used to select the appropriate pvm pack and unpack function,

and to determine the size of the data.

2.8 ptk alltoall1d

int

ptk_alltoall1d(void *sendbuf,

int sendcount,

int lastcount,

void *recvbuf,

int datatype,

int verbose)

IN void *sendbuf A one-dimensional array of any type of data, filled

in by each process in the current group.

IN int count The number of elements each process will send to

every other process.

21

OUT void *recvbuf A one-dimensional array of data, available at each

node after the function completes. This array con-

tains each set of data collected from every process.

The data is ordered according to process, i.e., the

set of data in the third “chunk” corresponds to

the data collected from process 3.

IN int datatype The type of data. Possibilities include the full

range as specified in Section 2.2.2.

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

2.8.1 Usage

In an all to all communication pattern, each group member sends and receives a

message from each other group member. In this version of all to all, the assumption is

that each process sends and receives the same quantity of data. The group members

must allocate memory for their send and receive buffers. The calling function is

responsible for doing this memory allocation. The send buffer is a 1-dimensional

array of homogenous data.

In the main loop of the code, each process walks through a for loop, with the

number of iterations equal to the group size. At each iteration, each process sends

to the process i processes away from it, to the right, and receives from the process i

processes away from it, to the left. The send buffer is divided into sections, with the

number of sections being N , where N is equal to the group size, and the size being

count ∗ N . Figure 2.4 shows the communication pattern at each iteration.

22

P0 P1 P2 P3

Second iteration of all to all

P0 P1 P2 P3

Third iteration of all to all

P0 P1 P2 P3

First iteration of all to all

Figure 2.4. All to all iterations where group size is four

2.9 ptk alltoall2d

int

ptk_alltoall2d(void **sendbuf,

int *sendcounts,

void **recvbuf,

int *recvcounts,

int datatype,

char *gname,

int verbose)

IN void **sendbuf A two-dimensional array of any type of data, filled

in by each process in the current group.

23

IN int

*sendcounts

An array containing counts for how many ele-

ments will be sent to each process. The index

of each count corresponds to a process, i.e., the

number of elements sent to process 4 is indicated

by the value at sendcounts[4].

OUT void **recvbuf A two-dimensional array of data, available at each

process after the function completes. The data

from each process is put into a corresponding

row in the recvbuf array. Note that the each

process needs to malloc the rows, i.e., recvbuf =

(datatype **)malloc(sizeof(datatype *) *

gsize).

OUT int

*recvcounts

An integer array of length group size, each

process must malloc, i.e., recvcounts = (int

*)malloc(sizeof(int) * gsize). Each process

fills in the array with the of elements recv’d from

each member, where a row index corresponds to

a process.

IN int datatype The type of data. Possibilities include the full

range as specified in Section 2.2.2.

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

24

2.9.1 Usage

In this version of all to all, each process sends a varying amount of data to each

other process. The communication pattern is the same as that described for a 1-

dimensional all to all. The array that is passed in to be sent is a two-dimensional

array. The number of rows in the array must be equal to the number of processes in

the group. Another array is passed in, called sendcounts. This array specifies how

many elements there are in each row of the sendbuf.

Another two-dimensional array is also passed in, for the process to receive data.

The pointers to each row in this array must be malloc’d by the calling function. The

toolkit then allocates memory for each row as it is received. There is no way for

the calling function to allocate memory for each row, because it does not necessarily

know how big each row will be. The toolkit then fills in the recvcounts array, which

specifies how many elements are created in each row of the recvbuf array.

The calling function must specify the datatype of the send and receive buffers.

This information is used to select the appropriate pvm pack and unpack function,

and to determine the size of the data.

2.10 ptk mcast

2.10.1 PVM Usage

This is a basic function designed to provide the calling function with information

about the processing environment. The global variable gsize is assigned a value by

making a call to the pvm siblings function. This size is the number of processes that

were spawned together. The me global variable is assigned a value by making a call

to pvm joingroup and is the group instance number of the process. These instance

25

numbers range from 0 to gsize - 1, and are unique, i.e., no two processes can have

the same instance number. The instance numbers are also contiguous.

The global array of task ids, tids is also populated. These are the task ids as

defined by the PVM group server. They are acquired by ptk init using the function

pvm gettid. Note that the order of tids in this array may be different than the array

that one would get by filling in the tids array with a call to pvm sibling(). The

ptk init function calls pvm joingroup. This invokes the PVM group server, which

creates a new internal array of task IDs. This array is filled in differently than the

task ID array created when the PVM processes are spawned. Among other things, the

PVM group server ensures that the task ID array is contiguous. This is an important

distinction. Users of the library should make sure that they are using an array of task

ids filled in by ptk init to ensure consistency.

2.10.2 MPI Usage

This is a basic function designed to provide the calling function with information

about the processing environment. The global variable gsize is assigned a value by

making a call to the pvm siblings function. This size is the number of processes that

were spawned together. The me global variable is assigned a value by making a call

to pvm joingroup and is the group instance number of the process. These instance

numbers range from 0 to gsize - 1, and are unique, i.e., no two processes can have

the same instance number. The instance numbers are also contiguous.

The global array of task ids, tids is also populated. These are the task ids as

defined by the PVM group server. They are acquired by ptk init using the function

pvm gettid. Note that the order of tids in this array may be different than the array

that one would get by filling in the tids array with a call to pvm sibling(). The

26

ptk init function calls pvm joingroup. This invokes the PVM group server, which

creates a new internal array of task IDs. This array is filled in differently than the

task ID array created when the PVM processes are spawned. Among other things, the

PVM group server ensures that the task ID array is contiguous. This is an important

distinction. Users of the library should make sure that they are using an array of task

ids filled in by ptk init to ensure consistency.

2.11 ptk filemerge

int

ptk_filemerge(char *filename,

int bufsize,

int root,

int verbose)

IN char *filename The name of the file to collect data from and the

name of the file written to at the root.

IN int bufsize How many bytes to use for a buffer for reading,

sending, and receiving.

IN char *gname The name of the group. This should be the same

name passed to ptk init in any given program.

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

27

2.11.1 Usage

The ptk filemerge function is designed to collect and merge files from across a

cluster. The assumption is that there is one file at each node that will be sent to

the PTK ROOT node. There is then just one file at the root. The files are ordered

according to process order, i.e., the file from process 3 is the third “chunk” in the

file at the root. The filename at the root indicates where to put the file, and at the

nodes indicates the name of the file to collect. If the file does not exist at the root, it

is created. If it exists, it is appended to.

2.12 ptk central workpool

int

ptk_central_workpool(int (*processTask)(),

int (*processResults)(),

void *startingObjects,

int tasksize,

void (*freeObj),

int arraylen,

int granularity,

int root,

int verbose)

IN int (*processTask)() Pointer to a function that processes tasks.

This function is called by the workpool at

the worker nodes. See below for more de-

tail on what this function must support.

28

IN int

(*processResults)()

Pointer to a function that processes results.

This function is called by the coordinator

at the root nodes. See below for more de-

tail on what this function must support.

IN void

*startingObjects

An array of objects created by the calling

function at the root node.

IN int tasksize The size of the objects, in bytes. These are

the tasks that are processed by the pro-

cessTask function.

IN int (*freeObj()) Pointer to a function that frees and object.

IN int arraylen The length of the startingObjects ar-

ray. This is an array created by

the root/coordinator node before calling

ptk central workpool.

IN int granularity The granularity parameter specifies how

many objects/tasks are passed to worker

at a time.

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

2.12.1 Usage

A centralized workpool is used when a parallel program has a number of tasks to

perform, and the tasks can be processed by any given processing node. A centralized

workpool also provides some level of load balancing. In a centralized workpool there

29

are two kinds of nodes. There is one node that coordinates the storage and distribu-

tion of tasks, referred to here as the coordinator. The coordinator also maintains a

set of results. The rest of the nodes actually process tasks. They are referred to here

as workers.

WORKER

COORDINATOR

result returned
by filling in the
result parameter

new tasks returned
by filling in the
newTasks parameter

Toolkit sends
results to the
coordinator to
process

processTask()

processResults()

 for the
 worker to process

Toolkit sends task

Figure 2.5. Processing tasks and results using the centralized workpool

The main pieces of data that are passed around when using the workpool are

tasks, also referred to as objects, and results. The only thing the workpool needs to

know about the tasks is how many bytes they are in size. The processTask function,

written by the library user, has the intelligence to know what to do with the group

of bytes. Tasks may be grouped together by using the granularity parameter. When

using the granularity parameter, tasks are sent together in “chunks.” This cuts down

30

on the number of messages, by passing a “chunk” of tasks together, in one message,

from the coordinator to the worker. When using the granularity parameter, the

processTask function still only needs to be able to handle one task. The task is

processed one at a time by the workpool, and results and/or new tasks dealt with

accordingly.

Note that in the following discussion of the result and task processing functions,

it of course does not matter how the user refers to each of the function’s parameters.

The user may want to use the convention presented here to help maintain clarity

about what is going on in the code.

The processTask() function

int processTask(task, ptkResult, returnSize)

void *task;

void **ptkResult;

int *returnSize;

This function must be able to process the task. If the function does not produce

any results, it may set ptkResult to null and returnSize to 0. If ptkResult is

null, but returnSize is greater than 0, nothing will be done with ptkResult by the

toolkit.

These are the same tasks that are packed by the processResults() function

into the ptkNewTasks parameter. The structure of these tasks can be anything the

calling function wants it to be. Although the user function, processResults(), may

pack many tasks into the ptkNewTasks array, only one at a time will be sent to

processTask.

The parameter ptkResult points to a result. This is sent to the coordinator by

31

the workpool. Again, the workpool does not need to know anything about what

ptkResult contains. The processResult function will get this exact set of bytes

passed in as its result parameter. The processResult function then processes the

data appropriately.

The processResult() function

int processResult(results, ptkNewTasks, numNewTasks)

void *results;

void **ptkNewTasks;

int *numNewTasks;

This function must be able to handle the results array. If it does not produce any

new tasks, it may set ptkNewTasks to null and numNewTasks to 0. If ptkNewTasks is

null, but numNewTasks is greater than 0, nothing will be done.

The parameter results is created by the processTask function and sent to the

coordinator through the workpool. It corresponds to the ptkResult parameter in the

processTask function.

The parameter ptkNewTasks points to an array of new tasks. The size should be

numNewTasks * objsize (as passed to the ptk central workpool). These tasks are

then stored by the coordinator and handed out as requested by the workers.

2.12.2 Implementation Discussion

The Coordinator

The coordinator’s reponsibility is to maintain a pool of tasks, distribute them to the

workers, process results, and terminate the function when all the tasks have been

completed. Tasks are stored in a linked list. The coordinator is given an initial set of

32

tasks to begin with, called the startingObjects. It begins by creating the list and

inserting the startingObjects into this list.

The coordinator then enters a loop, waiting for messages from the workers. The

received message may be a request for a task, or a result. If the request is for a

task, and the task list is not empty, the coordinator sends the worker a task. The

coordinator does not need to know anything about the task, other than how big it is.

If the request is a result, the coordinator calls the processResults function.

The pseudocode is as follows for the coordinator:

if (myginst == root) {

/* load list */

Q = createList;

for (i=0; i < number of startingObjects; i++) {

add task to Q;

}

/* manage work */

while (finished < (gsize - 1)) {

/* receive any message from any node */

/* figure out who sent the message and what kind it is */

/* if I got the result tag, process results */

if (type of tag == RESULTTAG) {

whatToDo = processResults;

if (whatToDo == ADD_TASKS) {

for (i=0; i < number of new tasks returned; i++) {

add task to Q;

}

}

else if (whatToDo == ERROR) {

deal with error;

}

}

33

else if ((type == REQUESTTAG) && !isEmpty(Q)) {

pack and send tasks;

}

/* (type == REQUESTTAG) && (isEmpty(Q) */

else {

finished++;

}

} /* end while-loop */

multicast the DONETAG;

/* Collect information about number of messages sent */

for (i = 0; i < gsize - 1; i++) {

receive information from all nodes about # of messages sent;

}

}

The Workers

The workers also enter a loop. They send a request for a task to the coordinator

and then receive the task. The processTask function is called. The processTask

function returns a result and sends it to the coordinator. The loop is terminated

when the worker receives a “done” signal from the coordinator.

The pseudocode for the workers is as follows:

/* else I am a worker */

else {

while (type != DONETAG) {

send request;

receive message;

if (type of message == TASKTAG) {

for (i=0; i < number of tasks sent; i++) {

/* compute */

34

whatToDo = processTask(...);

if ((whatToDo == ADD_RESULT) && (sizeReturned > 0)) {

send result to root;

}

}

}

/* if DONETAG, we are out of here */

else if (type == DONETAG) {

terminate loop;

}

} /* end while */

send root info about how many messages I sent;

}

Granularity

There is often a fine balance in a parallel program between processing tasks as quickly

as possible, and keeping message passing to a minimum. It is important for nodes

to communicate new information, most likely in the form of some kind of result, as

soon as it is available. It is also possible to create so many messages to be sent that

a parallel version of a program actually runs more slowly than a sequential version.

The optimal balance between these two is dependent on the application.

The workpool provides the user with a way of sending multiple objects, or tasks,

at a time. This is specified by the calling function in the granularity parameter.

When the coordinator receives a task request from a worker, it sends out the number

of tasks specified by granularity in one message. The workers then process the

tasks one at a time, and send results after processing each task. In this way, some

message passing is eliminated, but the coordinator gets result information as soon as

it is available.

35

COORDINATOR
group "granularity" number of
 tasks together to send

result sent immediately after
 each task is
 processed

WORKER

for i = 0 to granularity

 processTask()
 send result

Figure 2.6. Using granularity in the centralized workpool.

The Queue

The centralized workpool stores the tasks in a first-in, first-out queue. This is not

always ideal. There may be tasks that, if performed early in the computation, may

yield more significant results. Creating a mechanism for the user of the workpool

to indicate some priority level would mean adding a parameter to the processTask

function. This would add to the complexity of adding tasks to the queue, slowing

this process down. Solving this problem is left for future investigation.

2.13 ptk distributed workpool

int

ptk_distributed_workpool(int (*processTask),

int (*processResults),

void *startingObjects,

int tasksize,

int arraylen,

int resultsize,

36

int granularity,

int root,

int verbose)

IN int (*processTask()) Pointer to a function that processes tasks.

This function is called by the workpool at

the worker nodes. See below for more de-

tail on what this function must support.

IN int

(*processResults())

Pointer to a function that processes results.

This function is called by the coordinator

at the root nodes. See below for more de-

tail on what this function must support.

IN void

*startingObjects

An array of objects created by the calling

function at the root node.

IN int tasksize The size of the tasks, in bytes. These are

the tasks that are processed by the pro-

cessTask function.

IN int arraylen The length of the startingObjects ar-

ray. This is an array created by

the root/coordinator node before calling

ptk central workpool.

IN int resultsize The size of the results, in bytes. These

are the results that are processed by the

processResult function.

37

IN int granularity The granularity parameter specifies how

many objects/tasks are passed to worker

at a time.

IN int root Refer to Section 2.2.

IN int verbose Refer to Section 2.2.

2.13.1 Usage

A distributed work pool is used when tasks can be divided up between processes. It

is also helpful where one can’t use a centralized workpool because the data needed to

process tasks cannot be stored on one processing node because of memory limitations.

The tasks must be divided in a way that each worker knows where to send new tasks

that might be created when it is processing a task. In the distributed version of

the workpool, all of the nodes are workers. There is one root node that coordinates

termination.

As in the centralized workpool, the main pieces of data that are passed between

nodes are tasks and results. The only thing the workpool needs to know about the

tasks is how many bytes they are in size. The processTask function, written by the

library user, has the intelligence to know what to do with the group of bytes. The

distributed version of the workpool also supports the granularity parameter.

Note that in the following discussion of the result and task processing functions,

it of course does not matter how the user refers to each of the function’s parameters.

The user may want to use the convention presented here to help maintain clarity

about what is going on in the code.

38

processTask()

return new tasks and
results to the toolkit

processResult()

get new result information

PROCESS Y

processTask()

return new tasks and
results to the toolkit

processResult()

get new result information

PROCESS X

The toolkit sends new tasks
and resultsresult resulttask

task

Figure 2.7. Processing tasks and results using the distributed workpool

The processTask() function

int processTask(void *tasksToProcess, int numTasksToProcess,

void **ptkNewTasks, int *numTasks,

void **ptkResults, int *numResults)

void *tasksToProcess;

void **ptkNewTasks, **ptkResults;

int tasksToProcess, *numTasks, *numResults;

This function must be able to process the tasksToProcess. If the function does

not produce any new tasks, it may set ptkNewTasks to null and numTasks to 0.

Likewise, if there are no new results generated, ptkResults may be set to null and

numResults to 0. If numTasks is greater than 0, but ptkNewTasks is null, nothing

will be done. Also, if numResults is greater than 0, but ptkResults is null, nothing

39

will be done.

task 0 task 1 task numTasksToProcess − 1...

Figure 2.8. Array of tasksToProcess where each block is of size tasksize

The parameter tasksToProcess is an array. The array has a size of tasks tasksize

* numTasksToProcess. The numTasksToProcess will generally be equivalent to the

setting of granularity, except in the case where there are fewer tasks to send. These

tasks are the same objects that are packed in the processResults() function into

the ptkNewTasks parameter. The first “element” of these tasks must contain the

rank, or process ID, of where to send the new task. This value should be an integer.

Using a value of -1 here will cause the task to be sent to all of the nodes. The rest of

the structure of these tasks is defined by the user.

x task numNewTasks − 1...task 0 task 1y z

x, y, and z tell the toolkit where to send the corresponding task

Figure 2.9.: Array of ptkNewTasks, where each block is of size tasksize +

sizeof(int), created by the processTask function

The parameter ptkResults points to a set of results. The first “element” of these

tasks must contain the rank, or process ID, of where to send the results. This value

40

should be an integer. Using a value of -1 here will cause the results to be sent to

all of the nodes. Again, the workpool does not need to know anything about what

ptkResult contains. The main requirement is that the processResult function will

get this exact set of bytes passed in as its result parameter, with the “who to send

to” integer stripped off the front of the data. The processResult function may then

do whatever it would like with the data.

When filling the newTasks array, it is best to group the tasks that need to be sent

to different processes. The toolkit will group tasks into a single message for any given

process if they are in consecutive order. Tasks will be sent to the appropriate process

regardless of the order, however, it is generally more efficient to send fewer messages.

Figures 2.10 and 2.11 illustrate how this works.

The processResult() function

int processResult(results)

void *results;

This function must be able to handle the results array. Generally speaking,

in a distributed workpool, all of the nodes maintain a current best set of results.

As new results are generated, they are sent out to the other nodes. The results

array is created by the processTask function and sent to the other nodes through

the workpool. It corresponds to the ptkResults parameter in the processTask

function.

2.13.2 Implementation Discussion

The communication pattern in the distributed workpool is completely asynchronous,

and the size of the messages passed varies with every send and receive. Each node

41

in the workpool cycles through a loop. It performs a blocking receive, waiting for a

task to arrive from another node. It then processes the task and sends out any new

tasks that result.

The pseudocode for the distributed workpool is as follows:

while (type != DONETAG) {

/* receive any message type from any node */

/* Figure out what I got, where it came from, and how big it is */

if (type == RESULTTAG) {

/* call the user function that processes the results */

}

else if (type == TASKTAG) {

nothingNew = TRUE;

/* check the granularity value, and do some math to figure out

* how many tasks to group together

*/

while there are tasks left to process {

/* compute */

error = (int)(*processTask)(...);

if (number of results > 0) {

send results to other nodes;

if (number of new tasks > 0) {

nothingNew = FALSE;

send new tasks to other nodes;

}

/* If nothing generated, and I’m the root, I’m done,

* change color to white */

if ((nothingNew == TRUE) &&

(me == root) && (sentTokens == 0)) {

token = WHITE;

send the token;

42

}

}

else if (type == TOKENTAG) {

copy the token out of the receive buffer;

if (me == root) {

if (token == WHITE) {

/* If the root gets a white token, we are done */

multicast the DONETAG;

}

else {

/* The root always sends a white token */

token = WHITE;

send the token;

}

}

else {

if (color == BLACK) {

token = BLACK;

}

send the token;

color = WHITE;

}

}

/* if DONETAG, we are out of here */

else if (type == DONETAG) {

leave the loop;

}

else if (type == DIETAG) {

goto done;

}

} /* end while */

Task Objects

The tasks that are passed between worker processes contain an integer followed by

any number of bytes. The integer at the beginning of the task object is required by

the workpool. This integer indicates to the workpool the id of the process that the

task should be sent to. The calling function indicates the size of the object in the

43

tasksize parameter. This tasksize should include the size of the integer that is at

the beginning of the task object.

Grouping Messages

When a process sends new tasks or results to the other processes, it groups the

messages for each process together. For example, if P1 has five new tasks for P2, it

will send one message containing all five new tasks if these five tasks are sequential in

the ptkNewTasks array. This significantly cuts down on message passing. P2 will then

process the first task, broadcast results, process the second task, broadcast results,

etc.

Load Balancing

The distributed workpool does not load balance. It simply sends new tasks where it is

told to send them. The workpool could monitor the load at each node by tracking idle

time. If a process were idle for some designated time, it could send out a message that

it needed work. The user of the toolkit could then handle the situation appropriately.

How to load balance when tasks are distributed between nodes is very dependent on

the application. At most the toolkit could signal that processes are idle. Adding load

balancing to the distributed workpool was deemed beyond the scope of this project

and is left for future experimentation.

Termination Detection

The distributed workpool uses a dual-pass token ring algorithm originally developed

by Dijkstra, Feijen, and van Gasteren [2], as illustrated in Figure 2.12. This algorithm

is used instead of a single-pass token ring because processes may be reactivated after

44

receiving and passing a token. Each process keeps track of its “color.” The color is

either white or black. The processes pass tokens to their neighbors to the right. The

algorithm is described as follows:

1. All processes initialize their color to white.

2. When P0 runs out of tasks, i.e., there are no tasks in the receive buffer, it sends

a white token to P1.

3. Whenever a process sends a task to a neighbor to its left, it colors itself black.

As a process terminates, it receives the token from its neighbor to its left. If the

received token is white and the process’ color is white, it passes on the white

token. If the received token is white and the process’ color is black, it turns the

token black and passes it on. It the token is black, it will be passed on as is,

regardless of the color of the process. After a process passes on the token, it

changes its color to white.

4. When P0 receives a white token, that means that all of the processes have termi-

nated and none of them have been reactivated, thus terminating the workpool.

The Big Problem, or How Unordered Messages Caused Great Headache

I wrote the first version of the toolkit in PVM, and then ported the functions to

MPI. PVM and MPI have slightly different versions of send. In PVM, to perform a

blocking receive of a message, one first calls pvm recv, and then follows it with a call

to pvm unpack to get the data into a buffer. To do the same thing in MPI, one first

calls MPI Probe which blocks until a message is received. Then MPI Recv is called to

get the data. In doing the port, I simply changed the pvm recv calls to MPI Probe

calls, and the pvm unpacks to MPI Recvs. In the process of porting the distributed

45

workpool to MPI I ran into a problem caused by an issue referred to earlier. As

discussed in Section 2.1, PVM guarantees message ordering, while MPI does not.

After making these changes to the distributed workpool, my MPI version wouldn’t

run with the example code. I determined that the problem was that I ran into a

situation where two processes were doing blocking sends to each other, causing a

deadlock. This was a symptom of the difference in the way that PVM and MPI

handle message ordering.

The question then was how to get around this. One option was to do a non-

blocking send and then a wait, which blocks until the message was received. This,

of course, produced the exact same problem. After experimenting with a number of

different options, I came up with what I believe to be a rather novel solution.

I changed the sends to non-blocking sends (MPI Isend). The only problem with

this is that you can’t touch the send buffer until it has been received. Since I needed

to free the memory I’d used for the buffer I somehow needed to keep track of it. The

non-blocking send provides, as a function parameter, a “handle” to the send buffer.

This handle is represented by the MPI Request datatype. There is an MPI function

that allows you to get status information about a certain MPI Request.

To solve my problem, I created a data structure that contains a pointer to the

buffer sent and the MPI Request associated with the send. I store these structures

in a linked list after each send. When a process is idle, i.e., there are no messages

waiting for it, it runs through the list and calls MPI Test to check the status. If

the message has been received, it frees the memory and removes the structure from

the list. In the first incarnation of this solution, I ran through the whole list every

time. This caused the code to take forever to run. I discovered that only the first

few tests in the list were encountering received messages. I changed it so that once a

46

non-received message is found, the loop terminates. The code is as follows:

int cleanup() {

int count = 0;

int countCleaned = 0;

int flag = 1;

MPI_Status status;

NodePtr currentNode;

struct dataSet *set;

if (Q == NULL) return 0;

currentNode = Q->head;

while ((currentNode != NULL) && flag) {

set = (struct dataSet *)currentNode;

MPI_Test(&(set->request), &flag, &status);

if (flag) {

free(set->buffer);

removeNode(Q, currentNode);

countCleaned++;

}

currentNode = currentNode->next;

totalTimesTested++;

count++;

}

return 0;

}

Although this may look like a very small piece of code, this problem was the most

significant in the development of the MPI version of the toolkit.

47

2.14 ptk exit

2.15 Miscellaneous Files Used By the Toolkit

2.15.1 ptk list

This file implements a doubly-linked list. It is used to maintain the queue of tasks in

the centralized workpool, and the list of message handles and buffer pointers in the

distributed workpool. It is not necessary for the user of the library to understand or

use this code.

2.15.2 ptk util

This code provides three functions: report cpu time(), report sys tim(), and

getMilliSeconds(). They are used in some of the example code, and may be used

by library users if they are needed.

2.15.3 ptk pvmgs

The functions used from this file include gs get datasize(int datatype), which

returns the size of datatype. The other function in this file is gs pack unpack(int

datatype, int (**packfunc)(), int (**unpackfunc)()). It is used to find the

appropriate PVM pack and unpack functions for the specified datatype. This code

was borrowed from the PVM source code.

48

send to 0

task 0

send to 0

task 2

send to 1

task 3

send to 1

task 4

send to 2

task 5

send to 3

task 6

send to 0

task 1

Message of taskSize * 2
sent to Process 1

Message of taskSize * 1
sent to Process 2

Message of taskSize * 2
sent to Process 3

Message of taskSize * 3
sent to Process 0

send to 3

task 7

Figure 2.10.: Taking advantage of message grouping - four messages used to send
eight tasks.

49

send to 0

task 0

send to 2

task 2

send to 3

task 3

send to 0

task 4

send to 1

task 5

send to 2

task 6

send to 1

task 1

Message sent to Process 0

Message sent to Process 2

Message sent to Process 1

Message sent to Process 0

Message sent to Process 1

Message sent to Process 2

Message sent to Process 3

Message sent to Process 3

task 7

send to 3

Figure 2.11.: Not taking advantage of message grouping - eight messages used to send
eight tasks.

50

Pj PiP0 Pn−1

Task

white token white token
Pi turns white token black

Figure 2.12. Dual-pass token ring termination algorithm

51

Chapter 3

USING THE TOOLKIT: SOME EXAMPLES

This chapter contains documentation for a number of different example programs.

The code is provided as part of the toolkit package. The code can be downloaded

from:

http://cs.boisestate.edu/~amit/research/ptk.

In that directory there are two subdirectories, one is pvm, the other is mpi.

3.1 Gather and Scatter

3.1.1 A Simple One-Dimensional Gather

This example may be found in $PTK HOME/examples/gather1d.c. In this very simple

example a series of N numbers is gathered from the nodes by the root. Each node

generates a sequence of numbers from process id number * sendcount to (process id

number * sendcount) + sendcount - 1, where sendcount is equivalent to N / group

size. These numbers fill the sendbuf array. It is obvious that the memory for the

sendbuf needs to be malloc’d by each node. Note that the memory for recvbuf is

also malloc’d, by the root, even though the toolkit will fill it in for us.

The program then calls ptk gather1d to gather the data. After the function

returns, the root should then have in its recvubf numbers in the range of 0 to N .

Note that since we malloc’d the memory for the send and receive buffers we free it

52

before exiting the program. The program begins by calling ptk init and ends by

calling ptk exit. The code is as follows:

#include <ptk.h>

int DEBUG_LEVEL = 0;

void print_usage(char *program)

{

fprintf(stderr, "Usage %s <n (must be > 1)>\n", program);

}

int main(int argc, char **argv)

{

int i,n, numProc;

int *tids, myginst;

char *gname = "test_gather1d";

int sendcount, lastcount;

int mycount, mystart, err;

int *sendbuf, *recvbuf;

int lownum, highnum, correct;

if (argc != 2) {

print_usage(argv[0]);

exit(1);

}

n = atoi(argv[1]);

ptk_init(gname, &numProc, &myginst, &tids, 0 /* not verbose */);

sendcount = n / numProc;

lastcount = (n / numProc) + (n % numProc);

/* we are going to send n / numProc elements to the root */

if (me == (gsize - 1)) {

mycount = lastcount;

} else {

mycount = sendcount;

}

mystart = (me * sendcount);

53

/* allocate memory for our sending data */

sendbuf = (int *)malloc(sizeof(int) * mycount);

if (me == PTK_ROOT) {

recvbuf = (int *)malloc(sizeof(int) * n);

}

/* fill up the array */

for (i = 0; i < mycount; i++) {

sendbuf[i] = i + mystart;

}

/* send the data to the root */

err = ptk_gather1d(sendbuf, sendcount, lastcount,

recvbuf, PVM_INT, gname, 0);

if (me = PTK_ROOT) {

correct = 1;

/* make sure that I got the correct numbers */

if (err < 0) {

fprintf(stderr, "err at p%d from ptk_gather = %d",

myginst, err);

} else {

for (i = 0; i < n; i++) {

if (recvbuf[i] != i) {

fprintf(stderr, "recvbuf[%d] = %d\n",

i, recvbuf[i]);

correct = 0;

}

}

}

}

free(sendbuf);

free(recvbuf);

ptk_exit(gname, numProc);

if (correct != 1) {

fprintf(stderr, "Error all to all at p%d when n = %d!!\n",

myginst, n);

exit(-1);

} else {

54

exit(0);

}

}

3.1.2 A One-Dimensional Scatter Example

This example may be found in $PTK HOME/examples/shortestPathsDistributed.c.

The one-dimensional scatter, ptk scatter1d is used in the distributed workpool

shortest paths examples. It is used to distribute the edge data to all of the nodes. In

this example, a one-dimensional array is filled with data, a portion of which is needed

by each node. For more information on the distributed shortest paths example see

Section 3.4.3.

3.1.3 Bucketsort Using Two-Dimensional Scatter

This example may be found in $PTK HOME/examples/bucketSortWithScatter.c.

This example shows how to use a two-dimensional scatter function. In this version of

bucket sort, a quantity of N numbers is sorted. In this example, the root node begins

by generating N random numbers. As the numbers are generated, they are added to

the appropriate row of a two-dimensional array, where the row index corresponds to

a process node that will get the data.

After the numbers are generated, ptk scatter2d is called to distribute the data.

After the scatter is called, memory is free’d at the root. A bucket sorting function is

then called to sort the received data at each of the nodes. After the sort, each node

verifies that its data is sorted. The root node also verifies that data is sorted across

rows, i.e., the largest number at Pi is less than the smallest number at Pi − 1. For

more information on the bucket sort algorithm, see Cormen, Leiserson, et al [1].

55

3.2 All to All

3.2.1 A Simple All to All

This example may be found in $PTK HOME/examples/allToall.c. This is another

simple example. In this case a one-dimensional array of data is distributed across a

group of processes. Two arrays are defined, sendbuf and recvbuf. It is obvious that

the memory for the sendbuf needs to be malloc’d by the sending node. Note that the

memory for recvbuf is also malloc’d, even though the toolkit will fill it in for us.

The sendbuf is then filled with numbers, where the data at each index in the

array is equal to the index, i.e., i[3] = 3. The program then calls ptk alltoall1d to

distribute the data. Each processing node should then have in its recvubf numbers

in the range of (process id number * sendcount) to ((process id number * sendcount)

+ sendcount - 1).

Note that since we malloc’d the memory for the send and receive buffers we free

it before exiting the program. The program begins by calling ptk init and ends by

calling ptk exit.

3.2.2 Bucketsort Using All to All

This example may be found in $PTK HOME/examples/bucketSortWithAlltoAll2d.c.

This is a more interesting example of how to use an all to all function. In this version

of bucket sort, a quantity of N numbers is sorted. Each process node begins by

generating N/groupsize random numbers, using a parallel random number generator,

prand. The prand library is available at:

http://cs.boisestate.edu/~amit/research/prand.

Each node is responsible for sorting numbers in a certain range. The range is

56

equivalent to (RANDMAX/groupsize)∗processID) to (RANDMAX/groupsize)∗

processID+1)−1. As the numbers are generated, they are added to the appropriate

row of a two-dimensional array, where the row index corresponds to a process node

that will get the data.

After the numbers are generated, ptk alltoall2d is called to distribute the data.

After the all to all is called, memory is free’d. A bucket sorting function is then called

to sort the received data. After the sort, each node verifies that its data is sorted.

The root node also verifies that data is sorted across rows, i.e., the largest number

at Pi is less than the smallest number at Pi − 1. For more information on the bucket

sort algorithm, see Cormen, Leiserson, et al [1].

3.3 Merging Files From Across a Cluster

This example may be found in $PTK HOME/examples/filemerge.c. This program

merges N files from across a cluster, where the number of processes is equal to N .

The first argument is the name of the file to collect from the non-root nodes. The

second argument is the name of the file to collect the data into at the root. The third

is the size of the buffer to use, and the fourth is the process ID of the root node.

Each node calculates the size of its file and sends that size information to the

root. The ptk filemerge function is then called. When the function returns, the

root checks the size of the newly collected file. It verifies that the size of the new file

is the same as the calculated total of all the size information received.

57

3.4 The Workpools

3.4.1 Choosing the Appropriate Workpool

It is important to understand the major differences between the centralized and dis-

tributed workpools when deciding which to use. A workpool should be used when a

problem lends itself to a divide and conquer technique. The example shown with the

toolkit is the problem of finding shortest paths in a graph, using Moore’s algorithm.

It is helpful for the reader to understand the algorithm in the following discussion. A

simple explanation of Moore’s algorithm is put forth in Wilkinson and Allen [13]:

Starting with the source vertex, the basic algorithm implemented when
vertex i is being considered is as follows: Find the distance to vertex
j through vertex i and compare with the current minimum distance to
vertex j. Change the minimum distance if the distance through vertex i is
shorter. In mathematical notation, if di is the current minimum distance
from the source vertex to vertex i, and wi,j is the weight of the edge from
vertex i to vertex j, we have

dj = min(dj , di + wi,j)

If a new better distance is found for any given vertex, insert that vertex
into a queue. Keep investigating vertices in the queue until the queue is
empty.

The major data structures used in the algorithm are a two-dimensional array of

edges, a one-dimensional array of current best distances, and a one-dimensional array

of the paths to those current best distances. The size of the edge array is the square

of the number of vertices in the graph. The other two arrays are equivalent in length

to the number of vertices.

58

Memory Usage

One of the big issues that arises in using a workpool is memory. Generally speaking,

when using a centralized workpool, all of the nodes need to have all of the information

required to process a task. This is because all of the nodes need to be able to process

any task. In our shortest paths example, the edge array is stored in its entirety by

each node. The distance and path array is passed as part of the task when handed

out by the coordinator. So in our example, each node needs to be able to store

vertices2 + 2vertices.

Needless to say, this quickly becomes a large amount of memory. If a graph

contains 10,000 vertices, each node will have approximately 1.5GB of data, assuming

the vertices are integers that each require 4 bytes of space. If memory at the nodes

becomes a limiting factor, then it makes sense to use the distributed version of the

workpool.

In a distributed workpool, each node is responsible for a certain subset of tasks.

In our shortest paths example, each node is responsible for a number of vertices

equivalent to vertices/groupsize. This means that each node now only needs to

store a fraction of the edge data. Each node maintains it owns set of the current

best distance and path arrays. This means that each node now only needs to store

(vertices2/groupsize) + vertices ∗ 2.

Consider our previous example of a graph containing 10,000 vertices. If we use 20

processes to search the graph, each node now only needs 76MB of memory to store

the necessary information. This is a significant improvement over our earlier 1.5GB.

59

3.4.2 Centralized Workpool

A Simple Sum of Squares

This example may be found in $PTK HOME/examples/sumOfSquares.c. This simple

example shows how to write the processTask and processResults functions. In

this example, the root node creates an array, A, of long ints of length arraylen.

The array is filled with data, where A[i] = i. The centralized workpool is then called.

Each of the numbers will be handed out as tasks.

In this example the function sqr serves as the processTask function. In this

function, the void *task pointer is assigned to a long int* pointer. The value of the

number is squared and stored in a local variable. That number is then memcpy’d into

the void **ptkResult, and the *returnSize value is set to 1. The processResult

function, which you will recall is performed at the root node, maintains a running

total of the sum of the squares thus far. The code is as follows:

#include <ptk.h>

long long int sum;

/*

* The function that is passed to ptk_central_workpool must take

* three parameters. The first is the data that the workpool passes

* to our function for processing. The second is where we will put

* the result that the workpool will return to the coordinator. The

* third is the size of ptkResult, in bytes.

*/

int sqr(void *dataToProcess, void **ptkResult, int *returnSize)

{

long int *intData = (long int *)dataToProcess;

long int number = *intData * *intData;

memcpy(*ptkResult, &number, sizeof(long int));

*returnSize = sizeof(long int);

return 0;

60

}

int processResult(void *results, void **ptkNewTasks, int *numNewTasks)

{

long int *intResults = (long int *)results;

sum += *intResults;

*ptkNewTasks = NULL;

*numNewTasks = 0;

return 0;

}

void freeObj(void *obj)

{

/* if we had malloc’ed memory for our object,

* we would free stuff here */

}

int main(int argc, char **argv)

{

int i, numProc, myginst, *tids;

char *gname = "test_work";

long int *A;

int arraylen = atoi(argv[1]);

int tasksize = sizeof(long int);

ptk_init(gname, &numProc, &myginst, &tids, 0 /* not verbose */);

sum = 0;

if (myginst == 0) {

A = (long int *)malloc(tasksize * arraylen);

for (i=0; i<arraylen; i++) {

A[i] = i;

}

}

/*

* Parameters:

* void *(*myfunc)() - sqr - function to be performed by workers

* void **myobjs - A - array of objects to process

* int tasksize - size of the objects

* void (*freeObj)() - function that frees anything malloc’d

* when the objects were created

61

* int arraylen - length of the array myobjs, A in our case

* void **results - this is where the results are returned, this

* is an array of result objects

* int resultsize - size of the result objects

* int msgtag - TEST_WORK - the tag used when sending messages

* char *gname - name of the group

* int root - 0 in this case

* int verbose - 0 for nothing, 1 for everything - will output

* information about what is happening

*/

ptk_central_workpool(sqr,

NULL,

(void **)&A,

tasksize,

freeObj,

arraylen,

1, /* granularity */

gname,

0, /* root */

0); /* not verbose */

if (myginst == 0) {

free(A);

printf("numProc = %2d, n = %6d, sum of squares is %lld.\n",

numProc, arraylen, sum);

}

ptk_exit(gname, numProc);

exit(0);

}

Shortest Paths Central - The Simple Version

This example may be found in $PTK HOME/examples/shortestPathsCentral.c. The

shortest paths example provides a look at a more substantial piece of code. In this

example the function processVertex serves as the processTask function. The code

for the processVertex function can be found in Section A.1.1. The task here is

composed of a vertex, represented as an int, followed by an array of ints, which

represent the current best set of distances from the source. The function begins

62

by memcpy’ing these values into a local vertex value, and a distances array. The

distances array is a global array, so that memory for it can be malloc’d and free’d

just once.

...

integer representing vertex

current best distances[0]

current best distances[vertices]

current best distances[1]

current best distances[2]

Figure 3.1. Structure of a task in shortestPathsCentral

The function then walks through the distances array, checking to see if there are

any new distances that are better than the current. If it finds a better distance, it

packs the new information. The first value it packs is the array index, which represents

the path through which the new distance comes. The second value is the vertex, and

the third is the new distance. These can be thought of as sets of results. These

results are packed into an array that is, again, global, so that we are not incurrring

the overhead of frequent memory allocation and deallocation. The function returns

values appropriate to whether or not it found any new results.

63

The processResults function now needs to deal with those new results that were

just packed in the processVertex function. Keep in mind that processing the results

happens at the coordinator node. We start by casting and reassigning void *results

to an integer pointer, which means we can take advantage of some convenient pointer

operators. Refer to Section A.1.2 to see the implementation.

"i" − vertex we found a new distance for

vertex − where the new path is from

new distance for "i" from vertex

"i" − vertex we found a new distance for

vertex − where the new path is from

new distance for "i" from vertex

"i" − vertex we found a new distance for

vertex − where the new path is from

new distance for "i" from vertex

size − number of result sets

...

set 0

set 1

set "size" − 1

Figure 3.2.: Structure of a result in shortestPathsCentral and shortestPathsCentral-
MoreEfficient

The number of results in the results array is the first element in that array,

represented as an integer. This value is extracted and assigned to a value named

size. This function iterates through the results array size times. At each iteration,

the vertex, the vertex the new distance is through (the fromVertex), and the new

distance. If the new distance is better than the distance we have stored for this vertex,

the new information is stored. If new information is stored, a flag is set to indicate

64

that there is new data for that vertex.

We then cycle through the array of flags, and create new tasks for any vertices

that we have new information for. Walking through this array, instead of packing

the new task immediately after discovering it, adds some small amount of overhead.

The advantage of doing it this way means that we are packing the best distances we

have for all of the results processed. In the long run this means fewer new tasks are

ultimately created.

Shortest Paths Central - A More Efficient Version

Refer to $PTK HOME/examples/shortestPathsCentralMoreEfficient.c to see the

full example. The above example is useful in understanding the workpool, but the

tasks are not computationally intensive, or in other words are very fine-grained. This

results in processes spending more time passing messages than performing actual

computations. The following example tries to solve this problem by grouping vertices

to examine into larger tasks, so that with each task we are performing more compu-

tation. In this example the function processVertex (see Section A.2.1) serves as the

processTask function. The task is structured as seen in Figure 3.3.

The task is composed of an array of integers, which represents the current best

set of distances, an integer equivalent to the number of vertices to check, followed

by this number of vertices. The function begins by memcpy’ing the distances into the

global distances array. It then fills in the verticesToCheck value with the integer

following the distances array. The distances array is again a global array.

The function then iterates from 0 to verticesToCheck. It copies the vertex to

investigate into the vertex value. It then walks through the distances array to see if

the new distance improves any other paths, as was done in the basic shortest paths

65

centralized version.

The processResult function is very similar to the basic shortest paths central

version. The code for processResult may be found in Section A.2.2. The exception

is in how it repacks the task. Since the tasks are grouped, we need to do that here.

The value verticesPerTask is passed in at the command line of the main program.

It specifies how many vertices are to be packed into any given task. The only tricky

part of packing the tasks is accounting for any number of vertices left if the number

of vertices we need to pack up is not evenly divided by verticesPerTask. These

calculations are made, and the tasks are packed.

3.4.3 Distributed Workpool

Shortest Paths Distributed - The Simple Version

This example may be found in $PTK HOME/examples/shortestPathsDistributed.c.

This version of shortest paths is distributed. Each of the processes has a certain

“slice” of vertices that it is responsible for processing. This slice is equivalent to

vertices/number of processes in group. The processVertex function(Section A.3)

is similar to that in the centralized shortest paths in process, however the task is

structured very differently. Because each process keeps its own current set of best

results, the entire distance array does not need to be sent as part of the task. The

structure of the task is shown in Figure 3.4.

This function begins by “unpacking” the vertex, path, and distance information

from the task. It iterates through its current best distances array to see if the new

vertex information creates any new tasks. As it finds new tasks it packs them up.

The newTasks array is global, again to avoid frequent allocation and deallocation of

memory. Each new task contains information about the process to send the new task

66

to, the vertex, the path, and the new distance, as pictured in Figure 3.5.

After the new tasks are packed up the new results need to be broadcast to all of

the other nodes. The first element of ptkResults is where to send the information.

We use a -1 here to signal the toolkit to broadcast the data to all of the nodes. The

next set of numbers is the distance array, followed by the paths array. In this

example, numResults is always 1.

Processing the results, which happens at each node, is very simple. The func-

tion simply iterates through the new distances received, compares them to its own

current best data, and replaces any values that are better than the current. The

processResult function code may be seen in Section A.3.2.

Shortest Paths Distributed - A More Efficient Version

Refer $PTK HOME/examples/shortestPathsDistributedMoreEfficient.c for the full

implementation of this example. The shortest paths distributed more efficient ver-

sion takes advantage of the workpool’s granularity functionality. In this version, we

assume that tasksToProcess will be greater than one. We do what was done in the

more efficient version of the centralized shortest paths example. Instead of examining

just one vertex, we iterate through a loop and examine vertices, setting a flag when

we find a new and better distance. We then iterate through our array of flags, and

pack any new information into ptkNewTasks. The structure of ptkNewTasks is the

same as in the simple version. The code for the processVertex function may be

found in Section A.4.1.

The processing of the result in the shortest paths distributed more efficient exam-

ple is identical to the simple version.

67

...

current best distances[0]

current best distances[1]

current best distances[2]

number of vertices to check

vertex a

vertex b

vertex c

vertex z

current best distances[vertices−1]

Figure 3.3. Structure of a task in shortestPathsCentralMoreEfficient

vertex

integer representing path to vertex

distance to vertex through path

Figure 3.4. Structure of a task in shortestPathsDistributed

68

set 0

"i" − vertex we found a new distance for

vertex − where the new path is from

new distance for "i" from vertex

where to send the new information

set 1

"i" − vertex we found a new distance for

vertex − where the new path is from

new distance for "i" from vertex

where to send the new information

set numNewTasks − 1

"i" − vertex we found a new distance for

vertex − where the new path is from

new distance for "i" from vertex

where to send the new information

...

Figure 3.5.: Structure of ptkNewTasks in shortestPathsDistributed simple and more
efficient

69

−1 (causes the toolkit to broadcast results)

current best path[0]

current best path[1]

current best path[2]

...

current best path[vertices−1]

current best distances[0]

current best distances[1]

current best distances[2]

...

current best distances[vertices−1]

Figure 3.6. Structure of a result in shortestPathsDistributed

70

Chapter 4

TESTING AND BENCHMARKING

Testing was performed on two department clusters, onyxaddto also and beowulf.

For more information on the configuration of these clusters, refer to Appendix D.

Table 4.1 shows the testing coverage.

TABLE 4.1 Testing coverage of toolkit functions
Toolkit function Example/test program
ptk alltoall1d allToAll1d
ptk alltoall2d bucketSortWithAlltoAll2d
ptk central workpool shortestPathsCentral

shortestPathsCentralMoreEfficient
sumOfSquares

ptk distributed workpool shortestPathsDistributed
shortestPathsDistributedMoreEfficient

ptk exit all
ptk filemerge filemerge
ptk gather1d gather1d
ptk gather2d gather2d
ptk init all
ptk mcast shortestPathsCentral

shortestPathsCentralWithGranularity
ptk scatter1d shortestPathsDistributed
ptk scatter2d bucketSortWithScatter2d

The testing of the toolkit functions was done by running the examples over a range

of values. The data collection and distribution functions have built in error checking,

i.e., they either return a success or failure value. If the examples return a success

value, then the toolkit functions are deemed correct. In the workpool examples the

data produced are compared to the known good values from the sequential code.

71

The following timing table data was collected from the beowulf cluster using code

compiled and run with LAM-MPI. The tests were run on 10 nodes. Since each node

has 2 CPUs, this effectively means 20 processes were used. As Tables B.1 and B.2

show, the time it takes to find the shortest paths in a graph is proportional to the

number of vertices in the graph. As shown in Figure 4.1, the more efficient version

of the centralized shortest paths code does not add significant overhead. This is as

expected, but important to verify.

0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
in

se
co

n
d
s

Vertices

simple
more efficient

Figure 4.1.: Shortest paths central (simple) versus shortest paths central (more effi-
cient) - with granularity = 1.

As discussed in Section 2.12.2, using the granularity parameter will cause the

workpool to group messages together. For example, if granularity is set to 10,

then 10 tasks will be grouped together and sent in one message. The tasks are still

processed one at a time, and results sent back to the coordinator immediately after

each individual task is processed. We can see from the data in Tables B.1 and B.2

that using the granularity function improves performance slightly.

72

What is notable is the difference in using verticesPerTask versus granularity.

The more efficient version of the shortest paths code implements this functionality.

What happens there is that the user’s processTask function processes verticesPerTask

at a time, and doesn’t send out new results until all of the vertices in the task have

been investigated. Not only does this cut down on messaging, but it may eliminate

the need to investigate a number of different vertices. This code is on the user side,

not on the library side, but it demonstrates the flexibility the toolkit gives the user

to structure the user side code in the most efficient manner possible. The resulting

timing difference between the two methods is shown in Figure 4.2.

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450 500

T
im

e
in

se
co

n
d
s

Granularity and Vertices Per Task

varying granularity with verticesPerTask = 1
varying verticesPerTask with granularity = 1

Figure 4.2.: Shortest paths central more efficient with 9,000 vertices - using granu-
larity versus verticesPerTask.

Figure 4.3 demonstrates the interplay between granularity and verticesPerTask.

If a program is to be run repeatedly, the user may want to experiment with different

size tasks and granularity, to achieve an optimal balance between time spent message

passing and computing.

73

76

78

80

82

84

86

0 50 100 150 200 250 300 350 400 450 500

T
im

e
in

se
co

n
d
s

Vertices Per Task

granularity = 10
granularity = 100
granularity = 200
granularity = 500

Figure 4.3.: Shortest paths central more efficient with vertices = 9000, varying gran-
ularity, and varying verticesPerTask.

Figure 4.4 shows the performance of the centralized workpool versus the dis-

tributed. Although the centralized version performs better for smaller numbers of

vertices, as the number of vertices increases, the times converge. There is a point

where the centralized workpool doesn’t work because there isn’t enough memory to

store all of the edge data on one node. The distributed workpool is then the only

option.

As with the centralized version of the workpool, there is not a performance differ-

ence between the simple and more efficient versions in the distributed shortest paths

implementations. This is illustrated by Figure 4.5.

Figure 4.6 makes it quite clear that the few extra lines of code to implement using

the distributed granularity functionality are well worth it. It is also interesting to note

that there is a point where increased granularity does not yield further improvements

in performance. As discussed in Section 3.4.3, when granularity is used, the toolkit

74

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000 12000

T
im

e
in

se
co

n
d
s

Vertices

shortest paths central
shortest paths distributed

Figure 4.4. Shortest paths central versus shortest paths distributed.

will pass a granularity number of tasks to the processTask function. The user

code can then process all of the tasks, returning any number of results.

In our shortest paths example, we see a performance improvement by doing this

because we are eliminating tasks. An example is helpful to understand how this might

happen. Assume there is a sequence of events where vertex 3 is investigated, and we

find a better distance to vertex 7 through vertex 3. We then investigate vertex 4, and

find an even better distance to vertex 7. Without using granularity, we would send

out vertex 7 twice. If vertices 3 and 4 were investigated as part of one task because of

granularity, then we would replace the better distance from vertex 4 and skip sending

out vertex 7 with the distance through vertex 3.

Message grouping was discussed in Section 3.4.3. When a task is processed, it

may produce new tasks. These new tasks are put into an array. If the user code

structures that array so that new tasks are grouped by where they need to go, the

75

0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000 6000 7000

T
im

e
in

se
co

n
d
s

Vertices

Simple
More Efficient

Figure 4.5.: Shortest paths distributed (simple) versus shortest paths distributed
(more efficient) - with granularity = 1.

toolkit will group these tasks together. This has a significant performance impact, as

shown in Figure 4.7.

Given that Moore’s algorithm for finding shortest paths in a graph is more effective

in a parallel context, we do not give numbers for the speedup between a sequential

version and a parallel version. A sequential version of Djikstra’s algorithm will be

faster than a parallel version of Moore’s algorithm. There will reach a point, however,

where a sequential version will not be able to perform a search if the number of vertices

becomes too large. In that case the sequential version will run out of memory needed

to store all of the edge data. This illustrates the ability of parallel programs running

on clusters to solve problems that are unsolvable by sequential programs.

76

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450 500

T
im

e
in

se
co

n
d
s

Granularity

shortest paths distributed with granularity

Figure 4.6.: Shortest paths distributed (more efficient) with 9,000 vertices - using
granularity.

0

100

200

300

400

500

600

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

T
im

e
in

se
co

n
d
s

Vertices

condensed
not condensed

Figure 4.7. Shortest paths distributed - condensed messaging affects performance.

77

Chapter 5

CONCLUSIONS

5.1 Library Support for Common Parallel Design Patterns

The Parallel Toolkit Library provides support for common design patterns used

throughout parallel programs. It includes both PVM and MPI versions. The ex-

amples given help users understand how to use the library functions.

The data sharing patterns of gather, scatter, and all to all are fully supported.

They allow users the flexibility of having odd amounts of data that are not evenly

divisible by the number of processes. The two-dimensional versions allow the user to

share “ragged” arrays of data. These elements are not provided by PVM or MPI.

The file merging functionality automates a common cluster task.

The workpools remove a significant layer of detail from writing workpool code.

The user of the workpool needs to provide the library with functions for processing

tasks and results. The library takes care of sending and receiving tasks and results.

Most importantly it handles termination detection, which can be quite cumbersome

to design and write.

The testing and benchmarking results are consistent with expectations. The li-

brary does not add a significant amount of overhead. In some cases, it may be more

efficient than code that users would write, because time may not be taken in non-

library code to incorporate some efficiencies that are part of the toolkit library.

78

5.2 General Observations and Reflections on Decisions Made

In a perfect parallel world, different program parameters would be evenly divisible

by other parameters. If this were the case, code would be much simpler to write.

If I would have imposed certain limitations on users of the library, and on my own

examples, the code would have taken much less time to write. However, it is my belief

that in the real world, numbers don’t always work out the way we might like them

to, thus the decision to add flexibility at the expense of complexity.

5.3 Potential Further Work

5.3.1 Centralized Workpool Queue

Creating a mechanism in the centralized workpool for pushing more urgent tasks to

the front of the queue might increase performance in certain applications. There is a

potential, however, as mentioned in Section 2.12.2, to slow down the workpool. This

would require an extra parameter somewhere, most likely the processTask function,

where new tasks that are created have a priority associated with them.

5.3.2 Multi-threading

Experimenting with multi-threading, particularly in the centralized workpool, would

be worth doing. There may be a bottleneck in the root being able to hand out tasks

quickly enough. Creating separate threads for communication and computation might

solve this problem. The decision was made to avoid any threading to make the code

as universal and portable as possible. Adding multi-threading may require a branch

in the “development tree.”

79

5.3.3 C++

It would be very interesting to try to create a C++ version of the library. The

workpools would lend themselves very nicely to object orientation. Instead of the

tasks being a collection of bytes, they could be objects.

80

REFERENCES

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. Second Edition, MIT Press, Cambridge, Massachus-
sets, 2001.

[2] Edsger W. Dijkstra, W.H.J Feijen, A.J.M van Gasteren. “Derivation of a Termi-
nation Detection Algorithm for a Distributed Computation.” Information Pro-
cessing Letters, vol. 16(5), pp. 217-219.

[3] J.J. Dongarra, G.A. Geist, R.J. Mancheck, and P.M. Papadopou-
los. “Adding context and static groups into PVM.” July 1995.
http://www.epm.ornl.gov/pvm/context.ps.

[4] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
Vaidy Sunderam. PVM: Parallel Virtual Machine, A Users’ Guide and Tutorial
for Networked Parallel Computing. The MIT Press, Cambridge, Massachusetts,
1994.

[5] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, Marc Snir. MPI - The Complete Reference, Volume
2, The MPI Extensions. The MIT Press, Cambridge, Massachusetts, 1998.

[6] William Gropp, Ewing Lusk, Anthony Skjellum. Using MPI: Portable Paral-
lel Programming with the Message-Passing Interface. Second Edition, The MIT
Press, Cambridge, Massachusetts, 1999.

[7] Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/.

[8] Jeff McGough. Personal communication. March 2007.

[9] Steffen Priebe. “Dynamic Task Generation and Transformation within a Nestable
Workpool Skeleton.” European Conference on Parallel Computing (Euro-Par)
2006, Dresden, Germany, LNCS 4128, Springer-Verlag, 2006.

[10] PVM: Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/pvm home.html.

[11] N. Sachs, J. McGough. “Hybrid Process Farm/Work Pool Implementation in a
Distributed Environment using MPI.” Conference Proceedings, Midwest Instruc-
tional Computing Symposium. Duluth, Minnesota, April 2003.

81

[12] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra.
MPI - The Complete Reference, Volume 1, The MPI Core. Second Edition, The
MIT Press, Cambridge, Massachusetts, 1998.

[13] Barry Wilkinson, Michael Allen. Parallel Programming: Techniques and Appli-
cations Using Networked Workstations and Parallel Computers. Second Edition,
Pearson Prentice Hall, Upper Saddle River, New Jersey, 2005.

82

Appendix A

SHORTEST PATHS CODE

A.1 Shortest Paths Centralized - Simple

A.1.1 Processing tasks

int processVertex(void *task, void **ptkResult, int *returnSize)

{

long long int myDistance, newDistance, currentEdge;

int i;

int count = 0;

int vertex;

int *packPointer;

/* task contains an integer that is the vertex, the subsequent

* integers are the distance array

*/

memcpy(&vertex, task, sizeof(int));

memcpy(distances, (task + sizeof(int)),

(sizeof(int) * vertices));

if (vertex >= vertices) {

fprintf(stderr, "P%d: vertex = %d is too big!!\n",

me, vertex);

return -1;

}

/* results is a global pointer, the memory is allocated

* at the beginning of the main program so that we aren’t

* malloc’ing and free’ing memory all over the place.

* results will contain a series of sets (after we pack it).

* Each set contains 3 ints:

* the vertex the new distance is for (which is i),

* the fromVertex (which is vertex), and the new distance

* There will be at most "vertices" of these sets.

83

*/

packPointer = results;

/* save the first int of the result (packPointer)

* for the count

*/

packPointer++;

myDistance = distances[vertex];

for (i = 1; i < vertices; i++) {

currentEdge = edges[(vertex * vertices) + i];

if (currentEdge != RAND_MAX) {

newDistance = myDistance + currentEdge;

if (newDistance < distances[i]) {

memcpy(packPointer, &i, sizeof(int));

packPointer++;

memcpy(packPointer, &vertex, sizeof(int));

packPointer++;

memcpy(packPointer, &newDistance, sizeof(int));

packPointer++;

count++;

}

}

}

memcpy(results, &count, sizeof(int));

*ptkResult = results;

if (count > 0) {

*returnSize = (sizeof(int) * ((count * 3) + 1));

return ADD_RESULT;

}

else {

*returnSize = 0;

return DO_NOTHING;

}

}

A.1.2 Processing results

/* Coordinator function. Accepts a result, checks to see if the new

* distance is better than what we have so far.

84

*/

int processResult(void *results, void **ptkNewTasks, int *numNewTasks)

{

int *intResults;

int size;

int i;

int vertex;

int fromVertex;

int newDistance;

int *savePtr;

/* Results is an array of groups. Each group is a new

* ‘‘fromVertex’’ to put in the paths array,

* the vertex it is for, and the new distance to put in the

* distances array. Then we need to add the new vertices to

* the newTasks array. Using an int array to step through

* "results" makes some things easier.

*/

intResults = (int *)results;

memcpy(&size, intResults, sizeof(int));

intResults++;

*numNewTasks = 0;

for (i=0; i < size; i++) {

/* Extract the data */

memcpy(&vertex, intResults, sizeof(int));

intResults++;

memcpy(&fromVertex, intResults, sizeof(int));

intResults++;

memcpy(&newDistance, intResults, sizeof(int));

intResults++;

/* Is the newDistance better than what we have?? */

if (distances[vertex] > newDistance) {

paths[vertex] = fromVertex;

distances[vertex] = newDistance;

newInfo[vertex] = TRUE;

(*numNewTasks)++;

}

}

savePtr = newTasks;

85

/* Now we have to pack up the new tasks so

* that the coordinator can hand them out.

*/

for (i=0; i < vertices; i++) {

if (newInfo[i] == TRUE) {

memcpy(newTasks, &i, sizeof(int));

newTasks++;

memcpy(newTasks, distances, sizeof(int) * vertices);

newTasks += vertices;

}

newInfo[i] = FALSE;

}

*ptkNewTasks = savePtr;

newTasks = savePtr;

if (*numNewTasks > 0) {

return ADD_TASKS;

}

else {

return DO_NOTHING;

}

}

A.2 Shortest Paths Centralized - More Efficient

A.2.1 Processing tasks

/*

* Worker function. Accepts multiple vertices and tries to discover

* a shorter path to one of the other vertices

*/

int processVertex(void *dataToProcess, void **ptkResult,

int *returnSize)

{

long long int myDistance, newDistance, currentEdge;

int i, j;

int count = 0;

int vertex;

86

int verticesToCheck;

int *packPointer;

/* dataToProcess contains a distance array, then the

* number of vertices to investigate, then the

* vertices themselves.

*/

memcpy(distances, dataToProcess, (sizeof(int) * vertices));

memcpy(&verticesToCheck,

dataToProcess + (sizeof(int) * vertices),

sizeof(int));

for (i = 0; i < verticesToCheck; i++) {

memcpy(&vertex, dataToProcess +

(sizeof(int) * (vertices + 1 + i)),

sizeof(int));

myDistance = distances[vertex];

for (j = 1; j < vertices; j++) {

currentEdge = edges[(vertex * vertices) + j];

if (currentEdge != RAND_MAX) {

newDistance = myDistance + currentEdge;

if (newDistance < distances[j]) {

paths[j] = vertex;

distances[j] = newDistance;

if (newInfo[j] != TRUE) {

newInfo[j] = TRUE;

count++;

}

}

}

}

}

if (count > 0) {

/* result is a series of sets.

* Each set contains 3 ints:

* a fromVertex, the vertex, and the new distance

*/

*returnSize = (sizeof(int) * ((count * 3) + 1));

87

packPointer = result;

memcpy(packPointer, &count, sizeof(int));

packPointer++;

for (i=0; i < vertices; i++) {

if (newInfo[i] == TRUE) {

memcpy(packPointer, &paths[i], sizeof(int));

packPointer++;

memcpy(packPointer, &i, sizeof(int));

packPointer++;

memcpy(packPointer, &distances[i], sizeof(int));

packPointer++;

newInfo[i] = FALSE;

}

}

*ptkResult = result;

return ADD_RESULT;

}

else {

*returnSize = 0;

return DO_NOTHING;

}

}

A.2.2 Processing results

/* Coordinator function. Accepts a result, checks to see if the new

* distance is better than what we have so far.

*/

int processResult(void *results, void **ptkNewTasks, int *numNewTasks)

{

int *intResults;

int size;

int i;

int vertex;

int fromVertex;

int newDistance;

int *savePtr;

/* Results is an array of groups. Each group is a new

* ‘‘fromVertex’’ to put in the paths array,

88

* the vertex it is for, and the new distance to put in the

* distances array. Then we need to add the new vertices to

* the newTasks array. Using an int array to step through

* "results" makes some things easier.

*/

intResults = (int *)results;

memcpy(&size, intResults, sizeof(int));

intResults++;

*numNewTasks = 0;

for (i=0; i < size; i++) {

/* Extract the data */

memcpy(&vertex, intResults, sizeof(int));

intResults++;

memcpy(&fromVertex, intResults, sizeof(int));

intResults++;

memcpy(&newDistance, intResults, sizeof(int));

intResults++;

/* Is the newDistance better than what we have?? */

if (distances[vertex] > newDistance) {

paths[vertex] = fromVertex;

distances[vertex] = newDistance;

newInfo[vertex] = TRUE;

(*numNewTasks)++;

}

}

savePtr = newTasks;

/* Now we have to pack up the new tasks so

* that the coordinator can hand them out.

*/

if (count > 0) {

tail = count % verticesPerTask;

if (tail == 0) {

*numNewTasks = count / verticesPerTask;

}

else {

*numNewTasks = (count / verticesPerTask) + 1;

}

89

/* Each new task is the distance array, a count of how many

* vertices we are packing up, followed by up to N vertices,

* where N is indicated by the value of "verticesPerTask".

*/

newArray = newTasks;

for (i = 0; i < *numNewTasks; i++) {

/* First we copy in the current distances array, then the

* number of vertices we are packing

*/

memcpy(newArray, distances, (sizeof(int) * vertices));

newArray+= vertices;

/* If we’re on the last task, and count is not evenly

* divided by verticesPerTask, then we only pack a total

* of "tail" vertices

*/

if ((i == (*numNewTasks - 1)) && (tail != 0)) {

memcpy(newArray, &tail, sizeof(int));

newArray++;

j = 0;

count = 0;

while (count < tail) {

vertex = (i * verticesPerTask) + j;

if (newInfo[vertex] == TRUE) {

memcpy(newArray, &vertex, sizeof(int));

newArray++;

newInfo[vertex] = FALSE;

count++;

}

j++;

}

}

else {

memcpy(newArray, &verticesPerTask, sizeof(int));

newArray++;

j = 0;

count = 0;

while (count < verticesPerTask) {

vertex = (i * verticesPerTask) + j;

if (newInfo[vertex] == TRUE) {

90

memcpy(newArray, &vertex, sizeof(int));

newArray++;

newInfo[vertex] = FALSE;

count++;

}

j++;

}

}

}

*ptkNewTasks = newTasks;

return ADD_TASKS;

}

else {

*numNewTasks = 0;

return DO_NOTHING;

}

}

A.3 Shortest Paths Distributed - Simple

A.3.1 Processing tasks

/*

* Worker function. Accepts a vertex number and tries to discover

* a shorter path to one of the other vertices

*/

void *processVertex(void *task, int tasksToProcess,

void **ptkNewTasks, int *numNewTasks,

void **ptkResults, int *numResults)

{

long long int myDistance, newDistance, currentEdge;

int i;

int count = 0;

int sendTo;

int vertex;

int fromVertex;

int distance;

int *intPointer;

int minusOne = -1;

/* Make dataToProcess a little easier to use */

91

int *data = (int *)task;

/* task contains a vertex, a fromVertex, and a distance

* This version of the code assumes a granularity of 1,

* so we ignore the tasksToProcess number.

*/

vertex = data[0];

fromVertex = data[1];

distance = data[2];

/* ptkNewTasks is a series of 4 ints for a maximum of

* n vertices - each is where to send the new task,

* the fromVertex, the vertex the new distance is for,

* and the new distance.

*/

intPointer = newTasks;

myDistance = distances[vertex];

for (i = 1; i < vertices; i++) {

currentEdge =

myedges[((vertex - myFirstVertex) * vertices) + i];

if (currentEdge != RAND_MAX) {

newDistance = myDistance + currentEdge;

if (newDistance < distances[i]) {

/* The math gets a little hairy here in

* order to account for the case where vertices

* are not evenly divided by group size

*/

sendTo = i * gsize / (vertices - (vertices % gsize));

if (sendTo == gsize) {

sendTo = gsize - 1;

}

distances[i] = newDistance;

paths[i] = vertex;

memcpy(intPointer, &sendTo, sizeof(int));

intPointer++;

memcpy(intPointer, &i, sizeof(int));

intPointer++;

memcpy(intPointer, &vertex, sizeof(int));

92

intPointer++;

memcpy(intPointer, &newDistance, sizeof(int));

intPointer++;

count++;

}

}

}

if (count > 0) {

*numTasks = count;

/* The first value in the results array is where to send

* the info. The size in this case is the length of the

* distance array (vertices) plus the length of the paths

* array (vertices) plus where to send the result, which

* is -1, meaning send to everyone.

*/

memcpy(results, &minusOne, sizeof(int));

memcpy(results + 1, distances, sizeof(int) * vertices);

memcpy(results + vertices + 1, paths, sizeof(int) * vertices);

*numResults = 1;

*ptkNewTasks = newTasks;

*ptkResults = results;

}

else {

*numTasks = 0;

*numResults = 0;

}

return (void *)1;

}

A.3.2 Processing results

void *processResult(void *result)

{

int i;

int *data;

/* The toolkit has stripped off the first int in results,

* where we put the sendTo in processVertex. This means

* that the first "vertices" elements are the distances,

* and the second "vertices" elements are

93

* the paths.

*/

data = (int *)result;

for (i = 0; i < vertices; i++) {

if (data[i] < distances[i]) {

memcpy(&(distances[i]), result + (i * sizeof(int)),

sizeof(int));

memcpy(&(paths[i]), result + ((i + vertices) * sizeof(int)),

sizeof(int));

}

}

return (void *)1;

}

A.4 Shortest Paths Distributed - More Efficient

A.4.1 Processing tasks

/*

* Worker function. Accepts multiple vertices (the quantity of

* which is defined by the "granularity" variable) and tries

* to discover a shorter path to one of the other vertices

*/

void *processVertex(void *dataToProcess, int tasksToProcess,

void **ptkNewTasks, int *numNewTasks,

void **ptkResults, int *numResults)

{

long long int myDistance, newDistance, currentEdge;

int i, j;

int count = 0;

int sendTo;

int vertex;

int fromVertex;

int distance;

int *intPointer;

int *data;

int minusOne = -1;

/* This make the code a bit more readable */

data = (int *)dataToProcess;

94

for (i = 0; i < tasksToProcess; i++) {

/* The workpool sends tasks with the sendTo stripped off

* the front, so this looks just like what we pack when

* we create new objects, but with the sendTo stripped

* off the front

*/

vertex = data[(i * 3)];

fromVertex = data[(i * 3) + 1];

distance = data[(i * 3) + 2];

myDistance = distances[vertex];

for (j = 1; j < vertices; j++) {

currentEdge =

myedges[((vertex - myFirstVertex) * vertices) + j];

if (currentEdge != RAND_MAX) {

newDistance = myDistance + currentEdge;

if (newDistance < distances[j]) {

distances[j] = newDistance;

paths[j] = vertex;

if (newInfo[j] != TRUE) {

newInfo[j] = TRUE;

count++;

}

}

}

}

}

if (count > 0) {

*numNewTasks = count;

/* newTasks is a series of 4 ints for a maximum of

* n vertices - each is where to send the new task,

* the fromVertex, the vertex the new distance is for,

* and the new distance

*/

intPointer = newTasks;

for (j = 0; j < vertices; j++) {

if (newInfo[j] == TRUE) {

95

/* The math gets a little hairy here in order to

* account for the case where vertices are not

* evenly divided by group size. Note that the

* placement of the parentheses is important.

*/

sendTo = j * gsize / (vertices - (vertices % gsize));

if (sendTo == gsize) {

sendTo = gsize - 1;

}

memcpy(intPointer, &sendTo, sizeof(int));

intPointer++;

memcpy(intPointer, &j, sizeof(int));

intPointer++;

memcpy(intPointer, &paths[j], sizeof(int));

intPointer++;

memcpy(intPointer, &distances[j], sizeof(int));

intPointer++;

}

newInfo[j] = FALSE;

}

/* The first value in the results array is where to send

* the info. The size in this case is the length of the

* distance array (vertices) plus the length of the paths

* array (vertices) plus where to send the result,

* which is -1, meaning send to everyone.

*/

memcpy(results, &minusOne, sizeof(int));

memcpy(results + 1, distances, sizeof(int) * vertices);

memcpy(results + vertices + 1, paths, sizeof(int) * vertices);

*numResults = 1;

*ptkNewTasks = newTasks;

*ptkResults = results;

}

else {

*numNewTasks = 0;

*numResults = 0;

}

return (void *)1;

}

96

A.4.2 Processing results

This function is the same as in Shortest Paths Distributed, the simple version.

97

Appendix B

TIMING DATA

TABLE B.1 Shortest paths central (simple) with a group size of 20.
Vertices Granularity PVM(s) LAM-MP(s) MPICH2(s)
1000 1 13 2 2
2000 1 32 6 8
3000 1 59 14 16
4000 1 85 23 26
5000 1 128 37 43
6000 1 306 211 197
7000 1 469 519 385
8000 1 1125 1016 769
9000 1 2435 2393 1835

98

TABLE B.2 Shortest paths central (more efficient) with a group size of 20.
Vertices Granularity Vertices Per Task PVM(s) LAM-MP(s) MPICH2(s)
1000 1 1 12 1 2
2000 1 1 32 6 6
3000 1 1 58 12 13
4000 1 1 85 21 23
5000 1 1 129 34 41
6000 1 1 252 206 217
7000 1 1 455 402 457
8000 1 1 927 945 984
9000 1 1 1883 2448 2435
9000 10 1 1510 1830 2198
9000 20 1 1465 1765 2128
9000 50 1 1555 1692 2022
9000 100 1 1592 1640 2029
9000 200 1 1551 1626 2007
9000 300 1 1555 1975 1981
9000 400 1 1638 1981 2042
9000 500 1 1740 2002 2082
9000 1 10 338 87 90
9000 1 20 302 84 85
9000 1 50 300 81 81
9000 1 100 320 83 80
9000 1 200 279 80 78
9000 1 300 310 77 77
9000 1 400 320 76 77
9000 1 500 564 76 76
9000 10 10 381 86 89
9000 10 100 314 79 80
9000 10 200 306 78 78
9000 10 500 286 76 76
9000 100 10 362 86 88
9000 100 100 303 79 79
9000 100 200 314 81 78
9000 100 500 302 76 76
9000 200 10 346 86 88
9000 200 100 305 79 79
9000 200 200 314 78 78
9000 200 500 288 76 76
9000 500 10 385 86 87
9000 500 100 278 79 79
9000 500 200 303 78 78
9000 500 500 295 76 76

99

TABLE B.3: Shortest paths distributed with a group size of 20 and granularity = 1
Vertices PVM(s) LAM-MPI(s)
1000 5 13
2000 18 124
3000 582 341
4000 1180 656
5000 3267 1055
6000 5920 1595
7000 7325 2156
8000 8520 2524
9000 10764 2908

TABLE B.4 Shortest paths distributed more efficient with a group size of 20
Vertices Granularity PVM(s) LAM-MPI(s)
1000 1 5 12
2000 1 16 107
3000 1 316 363
4000 1 1182 647
5000 1 3316 994
6000 1 6187 1636
7000 1 2097
7000 10 5355 309
7000 20 3625 180
7000 50 2187 64
7000 100 92 24
7000 200 91 11
7000 300 80 10
7000 400 78 10
7000 500 69 10

100

Appendix C

INSTALLING THE PTK LIBRARY

This section under construction while code gets packaged.
The library can be downloaded at:
You will need PVM version 3.4 and MPI version 1.2.
You will also need prand to run some of the examples.

101

Appendix D

BOISE STATE COMPUTER SCIENCE DEPARTMENT
CLUSTERS

D.1 Onyx

Onyx is the cluster used by students taking Computer Science courses. It’s vitals
include,

• a head node with dual 3.2GHz Intel Xeon processors with 4GB RAM,

• nodes 01-27: 2.8GHz Intel Pentium 4 w/HT processors with 1GB RAM,

• nodes 28-32: 3.2GHz Intel Pentium 4 w/HT processors with 1GB RAM,

• private gigabit ethernet,

• runs Fedora Core 5, kernel 2.6.16,

• compiles code with gcc version 4.1.1.

D.2 Beowulf

Beowulf, aka “The Big Cluster,”

• has a head node with dual 2.4GHz Intel Xeon processors with 4GB RAM,

• 60 dual-processor nodes with dual 2.4GHz Intel Xeon processors with 1GB
RAM,

• private gigabit ethernet,

• runs Fedora Core 3, kernel 2.6.12,

• compiles code with gcc version 3.4.4.

