

BOISE STATE AUTOMATED CLUSTER INSTALLER

UPGRADE

by

John D. Prestwich

A project

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2009

c© 2009
John D. Prestwich

ALL RIGHTS RESERVED

This project presented by John D. Prestwich entitled BOISE STATE AUTOMATED

CLUSTER INSTALLER UPGRADE is hereby approved:

Amit Jain Date
Advisor

Teresa Cole Date
Committee Member

Michael Stark Date
Committee Member

John R. Pelton Date
Dean of the Graduate College

dedicated to my wife Cathy, who kept believing even when I doubted.

iv

ACKNOWLEDGMENTS

The author wishes to express gratitude to his family for sacrificing in many ways

so that he could focus on his studies. To his committee members Dr. Teresa Cole

and Dr. Michael Stark for their willingness to be on his committee and for being

very flexible with scheduling. To Dr. Sin Ming Loo for allowing him to explore. And

ultimately to Dr. Amit Jain for this project and for being very patient.

v

ABSTRACT

A high performance computing (HPC) cluster is a group of individual compute

nodes linked together, via hardware and software, for the purpose of acting in unison

to solve large scale computing problems. Although a relatively young technology,

HPC clusters have proven to be highly useful in many applications. Because HPC

cluster construction and maintenance span many technologies, they can be rather

difficult to create, making it inconvenient for the novice wishing to have small cluster

for exploration. Even the most seasoned administrator will find it a daunting task

to create a cluster from scratch because of all the labor that is involved deploying

it across a network. The Boise State Automated Cluster Installer (BSACI) was

created to address these issues. Devised by Dr. Amit Jain and Paul Kreiner it is

simple enough that a student with a reasonable understanding of computers and

programming can expect to have a working cluster within a couple of hours. For the

more experienced user BSACI is a ready made and tested HPC suite with a full set of

support libraries. This suite deploys automatically across clusters of both small and

large scale with little effort. Like all software, BSACI needs to be updated periodically

to keep it abreast of the latest technology. This report considers the task of updating

the installer by providing an overview of the various components of BSACI and how

they interact. A specific approach to upgrading the installation tool is also given,

illustrated with examples from the Fedora Core 5 to Fedora 7 upgrade.

vi

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

1 Introduction . 1

1.1 History . 1

1.2 The need for BSACI . 2

1.3 The Need to Stay Current . 4

1.4 Project Deliverables . 6

2 The Boise State Cluster . 8

2.1 General Description . 8

2.2 Master Node . 11

2.3 Slave Nodes . 13

3 Boise State Automated Cluster Installer . 14

3.1 YACI . 14

3.1.1 The YACI Package . 14

3.1.2 Using YACI to do an Install . 17

3.2 BSACI . 20

3.2.1 Setting up an Installion . 21

vii

3.2.2 Web-Based Application . 23

4 Putting It All (Back) Together . 25

4.1 Beginning an Upgrade to a New Operating System 25

4.1.1 Agile Test Platform . 25

4.1.2 Managing Source Material . 28

4.2 Package Upgrading . 30

4.2.1 Slave Node . 32

4.2.2 Master Node . 37

4.3 Testing . 47

5 Conclusions . 50

REFERENCES . 52

A RPM Sorting Scripts . 55

A.1 extractPackName.bash . 55

A.2 findNewRev.bash . 56

B Master Node RPM Install Script . 58

viii

LIST OF FIGURES

2.1 Example topology similar to Boise States Beowulf cluster. 9

3.1 BSACI/YACI Relationship . 15

ix

LIST OF ABBREVIATIONS

BEOSH – Beowulf Cluster Shell

BSACI – Boise State Automated Cluster Installer

CLI – Command-Line Interface

COTS – Commodity Off The Shelf

GUI – Graphical User Interface

GFarm – Grid Data Farm

HDF(5) – Hierarchical Data Format Library (Version 5)

HPC – High Performance Computing

LAM – Local Area Multicomputer (An older implementation of the MPI standard)

MPI – Message Passing Interface

MPICH2 – Is an open sourced implementation of the MPI standard.

NFS – Network File System

NIC – Network Interface Card

OS – Operating System

PDSH – Parallel Distributed Shell

PRAND – Parallel Random Number Generator

PTK – Parallel Tool Kit

x

PVFS2 – Parallel Virtual File System, version 2

PVM – Parallel Virtual Machine message passing library

PXE – Preboot eXecution Environment

PBS – Portable Batch System

RPM – Red Hat Package Manager

SVN – Subversion Version Control System

TFTP – Trivial File Transport Protocol

YACI – Yet Another Cluster Installer

xi

1

CHAPTER 1

INTRODUCTION

1.1 History

The Boise State Automated Cluster Installer [1] (BSACI) was devised to ease the

work of installing the necessary software on both master and slave nodes of a high

performance computing (HPC) cluster. Its main objectives were, first, to make an

installer that approached the ease and convenience offered by other modern software

installation tools, i.e., graphical user interface (GUI), easy to select configuration

options, help menus, etc. A second objective was to have it based entirely on open

source packages. Other cluster installation tools were available at the time of concep-

tion of BSACI and several were considered for this project. Many were proprietary

solutions, which excluded them from the choice. Others like OSCAR [2] tended

to not be as automated as hoped for, in that they required many “pre-installation”

steps. Ultimately, the original designer, Paul Kreiner, found a lightweight installation

tool called YACI (Yet Another Cluster Installer). YACI was not by any means a

simple tool to understand, making it seem an unlikely choice at first. What it did

provide, however, was flexibility and extensibility. All setup and configuration for an

installation was realized via text files, thus making it easy to perform the setup and

configuration automatically. With most of the work being done by scripts (BASH

with some Perl), it was possible to see exactly how the installation was accomplished.

2

It also provided the ability to modify the installation process. More scripts were

added that installed YACI and copied the packages required for the cluster to the

master node. With the additional enhancement of a Web-based GUI, BSACI was

born.

1.2 The need for BSACI

The claim of BSACI is that its eases the burden of creating a cluster for both

the inexperienced and experienced user alike. For the novice (i.e., the student or

other would be experimenter) BSACI provides a versatile set of preconfigured HPC

packages, which allows them to have a working cluster without having to know how

to configure each of the many packages needed to build a complete system. For the

expert BSACI is a time saving tool, which allows the installation of a large number

of nodes with little effort. It also provides a template from which the expert user can

start and build his own custom solution.

One of the distinguishing features of BSACI is it ease of use. In many ways it is

as easy to install the Boise State Cluster package as it is to do a standard operating

system (OS) install. This “out of the box” feature saves the beginner weeks, if not

months, of time by not having to learn how to create a cluster from scratch. It

also provides a proven configuration that is known to work well so that the student

or would be experimenter can concentrate on application development and not on

system maintenance.

For the professional cluster administrator BSACI saves time by automating the

process of distributing the operating system to the many nodes in a cluster. Anyone

who has ever installed any type of operating system on just a single machine knows

3

that this can be time consuming. A cluster, on the other hand, is by no means a typical

installation, generally requiring extra setup beyond that of the typical installation.

This custom configuration will be required, not only on the master node, but on the

slave nodes as well, meaning that each node in the system will require individual set

up. The Boise State beowulf cluster, which has over 64 nodes, is probably a fairly

typical example of the type of research cluster this package was created for and also

provides a clear example of why automation is desirable.

BSACI does away with the burden of having to manually configure each node

by allowing all of the slave nodes to be installed over the network. The concept

of installing an OS on multiple computers simultaneously via a local area network

is not a new one, in fact it is common enough that it is covered in the Fedora 7

Installation Guide [3]. Still, it is a cumbersome process and not necessarily automatic

in and of itself. To aid this process BSACI provides a custom slave node image

which is preloaded with all of the packages necessary for a cluster to function while

eliminating many of the unnecessary ones that come with a typical installation. It

also automatically configures the slave nodes at install time, eliminating the need

to do this by hand, and also eliminating many of the human induced errors that

accompany this process.

Because BSACI is open source it is possible to see how it works and also gives

the user the ability to modify it. This provides a great deal of flexibility to anyone

who is desirous to customize their installation. Not only is it possible to select which

packages to install, but also add new packages that may not already be included.

Since the source code for the installer is accessible it is possible to customize the

install process as well.

4

Clearly, BSACI can serve as a time saving aid for both the novice and the pro.

Being open source it is very approachable from both a cost and learning perspective.

Yet despite its inexpensive price tag it is built upon industrially proven applications

and provides a serious tool for the professional researcher as well.

1.3 The Need to Stay Current

As with most modern software, the core packages that make up a “Boise State

Cluster” are dependent upon an underlying operating system and libraries. In fact,

several of these packages, such as mpich2, need to be compiled specifically for the OS

they are intended to be used with. In addition to installing packages that are specifally

intended for use on a cluster, the Boise State Cluster Installer (BSACI) also has the

task of distributing and installing an OS image on each slave node. Initial development

was undertaken with Fedora Core 3 as the operating system packaged with BSACI,

but by the time initial development was complete it had migrated to Fedora Core 5,

demonstrating even in its genesis that updates would always be looming. Fedora has

an aggressive release schedule, producing a new release about every 6 months with

support for a given release provided only through the next two releases, or about

13 months [4]. Trying to keep pace would be a daunting task. Of course, it is not

necessary to provide a new version of BSACI compatible with every new release of

Fedora that is produced. Also, other Linux based options have emerged, such as

CentOS, which have longer life cycles1 (new releases every 2 years [5]). Although

these last two options lengthen the period between updates, it does not eliminate the

need for them.

1Future releases of BSACI will be based off of CentOS for the very reasons mentioned above.

5

One metric of whether a project is successful or not is its ability to stand the test

of time. For a project to do this it must remain viable for the long term, or in other

words, it must have long term maintainability. Software maintenance is probably

considered one of the least glamorous aspects of software engineering, but the care

given to this task can, in many ways, determine the overall success of a project.

According to Practices of Software Maintenance [6], an article where maintainers

of large software systems from several industrial sites were interviewed, there were

certain truths that emerged about the maintenance of these systems. Among these

were, first, that maintainers are (must be) experts in the systems they maintain;

second, the source code is generally considered the primary source of information;

and third, other documentation is useful but not generally considered as reliable as

the source code itself. Future maintainers of BSACI will find that these truths ring

true for this project as well.

Having stated the above, it quickly becomes evident that this document will

unavoidably fall into the area of the third truth, meaning that it will be useful

as an entry point to this project, but that true expertise will probably only come

from delving into the source code itself. Still, it is hoped that as an entry point it

can save the next generation of would-be BSACI experts some time on their journey

to becoming such. Becoming an expert in BSACI means that a maintainer must

have a good working knowledge of the various components that make up a HPC

system. This involves not only packages like mpich2 and PVFS2, which make up

the end product, but also the packages needed to support them. This means a

working knowledge is needed that stretches from system libraries to networking and

the underlying operating system, including the kernel itself. To help in this area,

6

some of the more salient features of a cluster and its related components, and how

they relate to BSACI, will be covered in more detail in Chapter 2.

In addition to having a good working understanding of the HPC system itself, a

competent maintainer must also have an in-depth understanding of the tools used to

do the actual installation. At the center of the installer is YACI. To fully understand

BSACI it is essential to understand YACI and its various components. Once YACI

is understood then the additional components added by BSACI become much more

comprehensible and the larger picture of what BSACI actually provides becomes

apparent. To help with this, the YACI installer and its related components will be

covered in more detail in Chapter 3.

With an understanding of the Boise State Cluster package and the tools used

to install it, one is ready to undertake the task of updating BSACI. As with most

projects of any size, this can be a process filled with unseen obstacles. Chapter 4

strives to provide a road map of this process and also relates the lessons learned from

the Fedora 5 to Fedora 7 update. The three previously mentioned chapters are meant

to serve as a “quick start guide” to BSACI and are to be used in conjunction with

the original cluster installer documentation [1].

1.4 Project Deliverables

Ultimately, what all the previous prose leads to, is that BSACI needs an upgrade.

This project is concerned in particular with moving BSACI from Fedora Core 5 to

Fedora 7. The finished product is a CD or DVD image of BSACI designed to install

the suite of Boise State cluster packages on a freshly-installed Fedora 7 master node.

7

This software image will be provided in ISO9660 format, will be targeted for x86

(32-bit) architectures, and will include the following:

• updated automated cluster installation and configuration scripts,

• updated graphical interface,

• updated cluster specific packages tailored to the Fedora 7 operating system.

8

CHAPTER 2

THE BOISE STATE CLUSTER

2.1 General Description

The ultimate goal of the BSACI project is to have a properly configured and fully

functioning cluster when it completes an installation. In order to know if that goal

is met, it is useful to have a definition of what a properly functioning cluster is. The

most common definition of a cluster is a group of linked computers, working together

closely so that in many respects they form a single computer [28]. This definition

holds true for the Boise State Cluster package, which focuses on high performance

parallel computing and high volume (high bandwidth) data storage and retrieval.

Starting with these applications it is possible to work backward and delineate the

other components, both software and hardware, needed to realize a system that meets

these needs.

Inherent in any definition is that the various nodes of the cluster must be able to

communicate with each other. Network topology is a branch of study in itself, so no

attempt will be made in this report to discuss the various strengths and weaknesses

of different network layouts. It is instructive, however, to mention some of the typical

aspects that are associated with a cluster of the sort we are targeting. Figure 2.1

shows a cluster arrangement similar to those used in the Boise State Beowulf [25]

and student labs. This setup is flexible in that it can scale reasonably well from a

9

few slave nodes to a hundred or more. The master node is the “control center” and

typically the only node with a monitor, keyboard, and mouse. It also, in most cases,

provides the only network connection to the outside world for the entire cluster.

Figure 2.1: Example topology similar to Boise States Beowulf cluster.

User input to the slave nodes, during normal operation, is only provided via the

network connection from the master node. Slave nodes do not have direct access to

the outside world but are required to access it through the master node. Generally,

slave nodes need only communicate between the various nodes of the cluster, so not

10

having direct access to an external connection is not much of a limitation. Also, since

slave nodes generally only need external access for updates, and these updates will

be applied in the same manner to each slave node, the bandwidth limitation of all

slave nodes going through one node can be mitigated by doing a single download to

the master node and then distributing the updates from there to the slaves.

The cluster designer is looking to maximize the bandwidth of the cluster, while

keeping its overall cost to a minimum. The choice of what type of network switch(es)

used can have dramatic effect in these areas. Switch technology is changing rapidly

so any discussion of optimum setup quickly becomes obsolete, and is again beyond

the scope of this report.

Much focus has been placed on using commodity off the shelf (COTS) components

for the compute nodes [26, 27, 7]. At the time of this report, the popular choice is

a dual core x86 processor with gigabit ethernet network interface card (NIC), due

to the low price and relatively high performance. However, with the price of x86-64

workstations and 10 gigabit networking equipment decreasing, this is likely to change

soon. The master will likely be equipped with two or more NICs: one will be used

for external network access as mentioned above; the other(s) will be connected to the

cluster through the switch(es). Often it is desired to have more than one NIC going

from the master to the cluster to improve bandwidth and to prevent the master node

from becoming a bottleneck.

Since software was the major focus of this project, the remaining sections of this

chapter will be devoted to quantifying what is needed to make a functioning cluster.

11

2.2 Master Node

As noted above, the master node is the control center for the entire cluster and thus

its software requirements are different from the other nodes in the system. While

slave nodes are scaled down to a minimum set of packages, the master node receives

a “fuller” set of the OS and other support packages. In many ways, the initial

master node installation will resemble that of a typical workstation, i.e., X-server

with desktop, standard command line utilities (bash, sed, awk, etc.), programming

packages (gcc, g++, Perl, TCL, etc.), data analysis tools, etc. With Fedora 7 this

base installation can be realized by using the standard installation DVD and selecting

at a minimum, Office and Productivity and Software Development from the general

package selection.

The additional packages, which provide the HPC functionality mentioned above,

can be broken into the following subcategories.

• Message Passing Interface Libraries (MPI).

– MPICH2 [8]

– Open MPI [9]

– Local Area Multicomputer (LAM) [10]

– Parallel Virtual Machine (PVM) [11]

• Support libraries for MPI programming.

– Parallel Toolkit Library (PTK) [12]

– Global Arrays (GA) [13]

– Hierarchical Data Format (HDF5) [14]

– SZIP [15]

– PRAND (Parallel Random Number Generator) [16]

• Support and management tools.

12

– Oscar Modules [17]

– Portable Batch System (PBS) [18]

– The Cluster Monitor (ClusMon) [19]

• Parallel and distributed remote shell clients.

– Parallel Distributed Shell (PDSH) [20]

– Distributed Cluster Shell (BEOSH) [21, 22]

• Parallel and/or distributed file systems.

– Parallel Virtual Filesystem (PVFS2) [23]

– GFarm (Grid Data Farm) [24]

As mentioned in Chapter 1, the closer to the source code, generally the more

accurate the information. With this in mind, it is recommended to go to the individual

projects that support these packages for the most up-to-date information, since most

of them are supported by very active open source projects and are generally well

documented. Another good source of information is the research notes and package

descriptions in the original thesis on BSACI [1].

For convenience in executing various parallel and distributed applications, the

following three NFS (Network File System) mount points are made available on the

master node: /usr/local, /opt, and /home. Allowing the slave nodes to mount

these three points simplifies the execution of these applications across the cluster

by providing one source for all applications and libraries. Having only one source

of applications and libraries also aids in maintenance of the system, in that only the

master node needs to be updated if newer revisions or patches are to be installed. For

this scheme to work, however, the cluster must be made up of relatively homogeneous

compute nodes. By “homogeneous” it is meant that the compute nodes all have

similar type processors and are using the the same OS (flavor and revision).

13

With this in mind, the model followed by MPI type applications on the Boise

State cluster has all applications developed and executed from a user directory under

the /home directory. All libraries, scripts, and binaries needed to execute these

applications are (or should be) located in either the /usr/local or /opt directory.

2.3 Slave Nodes

The slave nodes have a minimal install of the same operating system as the master

node. Since these nodes will not have normal input and output devices connected to

them while in normal operation, many of the GUI packages of the typical installation

such as Desktop, etc., have been removed. Only basic X server functionality is

preserved for remote graphical debugging. The requirement of the node image is to

provide the necessary utilities, libraries, and networking support to allow for efficient

cooperation with the master node. While this minimal install involves roughly half

the number of packages that are needed (for the master node) it is still a substantial

amount of software, totaling over 600 RPM packages with over 86,000 files. Since

this minimal install set is unique to the Boise State cluster it is incumbent upon the

maintainer of BSACI to recreate this set each time it is desired to move to a new OS.

If the move is just from one revision to another of the same OS, many of the packages

will continue to carry the same name from one revision to the next, and thus are

relatively easy to update. However, even when the move is just from one revision to

the next there will most likely be some repackaging needed.

14

CHAPTER 3

BOISE STATE AUTOMATED CLUSTER INSTALLER

3.1 YACI

At the heart of BSACI is YACI (Yet Another Cluster Installer). YACI is a lightweight

system management tool that allows the user to quickly install large-scale (and

small-scale) Linux clusters. Included in the tool set are an initrd for booting the

nodes, pxelinux to actually perform the boot, and a collection of scripts to automate

the installation process [29]. To put it another way, YACI provides tools to create

installation images1 and the means to transfer and install them to the various nodes.

Though YACI is a very capable tool, it is rather lightly documented and somewhat

cumbersome to configure, which is part of the reason BSACI was developed [1]. As is

illustrated in Figure 3.1, BSACI adds additional components, which eliminates much

of the guess work of configuring YACI.

3.1.1 The YACI Package

Since YACI is so central to BSACI it is necessary to understand its nuances to

fully grasp the intricacies of BSACI. A good way of doing this is to examine how

YACI would be used in a “standalone fashion.” The YACI project comes bundled

1The term image is used loosly here. The file created by YACI is not a complete sector-by-sector
copy of the file system intended for the slave nodes but rather a tarball of this file system.

15

Figure 3.1: BSACI/YACI Relationship

in a RPM [30] (Red Hat Package Manager) package with three different versions

(standard, ramdisk, and src). More about what these different versions provide is

discussed below. When YACI is first unpackaged, most of the files are installed in

the /tftpboot directory since it uses TFTP (Trivial File Transport Protocol) to

distribute the image to each node. What documentation there is, is copied to the

/usr/share/doc/yaci-<version> folder. The following is a listing of the /tftpboot

folder just after the install of the standard RPM (as of the 12-7 version).

$ ls tftpboot -l

total 5944

drwxr-xr-x 2 root root 4096 2008-12-30 23:26 elilo

drwxr-xr-x 2 root root 4096 2008-12-30 23:26 etc

drwxr-xr-x 2 root root 4096 2008-08-02 14:08 images

drwxr-xr-x 2 root root 4096 2008-12-30 23:26 local

drwxr-xr-x 2 root root 4096 2008-08-02 14:08 log

-r-xr-xr-x 1 root root 11822 2008-08-02 14:08 pxelinux.0

16

drwxr-xr-x 2 root root 4096 2008-12-30 23:26 pxelinux.cfg

drwxr-xr-x 4 root root 4096 2008-12-30 23:26 ramdisk

drwxr-xr-x 2 root root 4096 2008-08-02 14:08 rpms

drwxr-xr-x 3 root root 4096 2008-12-30 23:26 scripts

drwxr-xr-x 2 root root 4096 2008-08-02 14:08 tarfiles

drwxr-xr-x 2 root root 4096 2008-12-30 23:26 tools

-r-xr-xr-x 1 root root 3063384 2008-08-02 14:08 vmlinuz.i686

-r-xr-xr-x 1 root root 2896884 2008-08-02 14:08 vmlinuz.x86_64

YACI uses pxelinux to PXE boot each node, which necessitates the use of a custom

kernel for each type of node in the cluster. The standard version of the YACI package

comes with two kernels: vmlinuz.i686 and vmlinuz.x86 64. The first is targeted to

the x86 family of processors and the latter to x86-64 processors. In most cases these

pre-compiled images work as long as the kernel version matches the kernel version of

the operating system being installed on the nodes. If a version of YACI that matches

a particular kernel version cannot be found, there are two options available. The first,

and probably the preferred, is to request a new version from the YACI maintainers.

The second is to create a customized YACI package with a new kernel using the “src”

version of the YACI package. More information on the second option will be given in

Section 4.2.2.

As part of the installation process YACI will create an initrd for the kernel, which

is PXE booted by each slave node. This ram disk is created from the standard utility

programs, modules, and configuration files of the master node. Since an initrd based

on the packages on the master node is not always be appropriate, the automatic

building of the ram disk can be turned off by setting the BUILD RAMDISK field in

the /tftpboot/scripts/variables file to “NO.” A generic initrd file is provided

in the “ramdisk” version of the YACI package, which provides most of the standard

functionality.

17

3.1.2 Using YACI to do an Install

Below is an example of the steps that would be used if YACI were being manually

configured and deployed. Note that the following steps presume TFTP and NFS

servers have been installed on the master node and that all the slave nodes have PXE

(Preboot eXecution Environment) capable network cards.

1. Determine the different types of node images needed. (Although BSACI is

currently set up to create and use just one image, YACI does have the capability

to create and distribute multiple images. This feature might be useful in the

future in that one installer could be set up to create and deploy images to a

mixed set of 32-bit and 64-bit processor nodes.)

2. Determine operating system to be installed on the various nodes and obtain

necessary RPMs. Place these RPMs into the /tftpboot/rpms directory on the

master node.

3. Set up a partition list.NODE TYPE file for every type of image wanted in the

/tftpboot/etc directory.

4. Determine files from master node to be included in node image(s).

5. Create copies of all system configuration files to be included in the slave node

image in the /tftpboot/local directory. Alternatively, files to be copied can

be listed in the /tftpboot/local/localize file. The latter is actually the

newer and preferred method of doing this.

6. Create (if desired) a “post create” script to be executed at the end of the

/tftpboot/scripts/create image script.

18

7. Use the /tftpboot/scripts/create image script to create node images and

initrd ram disk.

8. Create (if desired) a “post-install” script to be executed at the end of the

node install script when it finishes installing an image on a node.

9. Obtain the MAC (Media Access Control) address of each node and create

a MAC.info file in the /tftpboot/etc directory specifying node name MAC

address, and image type for each node.

10. Create a subnet listing for the TFTP server in /etc/dhcpd.conf and add a

host listing for all nodes.

11. Create an entry in the /etc/exports file for the /tftpboot directory.

12. Start the TFTP and NFS servers.

13. Reboot each slave node in cluster.

When each slave node reboots it will PXE boot the default kernel and initrd as de-

termined by the /tftpboot/pxelinux.cfg/default configuration file on the master

node. In the case where different kernels are needed by different nodes, multiple con-

figuration files can be created, allowing custom boot configurations to be defined on a

node by node basis or by IP address range (see the pxelinux documentation for more

details [31]). When the kernel and initrd are loaded the /etc/init.d/node install

script will mount the /tftpboot directory on the master node and execute the

scripts/node install script. Note that there are two scripts called node install.

The first is part of the initrd ram disk downloaded to each node. Its main purpose

19

is to mount the master node via NFS. The second is on the master node under

/tftpboot/scripts but is executed on each node via NFS file sharing.

The second node install script (i.e., the one under /tftpboot/scripts on the

master node) does the work of reformatting the hard drive of each node and installing

the new image. The output of this script is sent to a file under the /tftpboot/log

directory on the master node. The filename is node name.log where node name

corresponds to the node from which the output was generated. These log files are

invaluable when debugging installation problems. The following is an overview of

what the node install script performs.

1. Blank and partion hard disk.

2. Format partitions.

3. Transfer image to node and untar onto hard drive.

4. Populate the /dev directory.

5. Copy over the /etc/fstab and create a new /etc/modules.conf.

6. Configure the boot partition.

7. Set date and time.

8. Run post-install script.

When node install is finished with the install it creates a text file under the

/tftpboot/pxelinux.cfg directory, which is named after the IP address of the node

(written as a single hexadecimal number). This file is created to prevent the node

from PXE booting from the master node after it is rebooted by the node install

script.

20

3.2 BSACI

Referring back to Figure 3.1, there are three ways BSACI assists YACI: it installs and

configures the cluster specific packages on the master node, it provides the packages

to build the slave node image, and sets up the configuration files under YACI for the

image build process. A typical install has the following flow:

1. The user does a clean install of new OS.

2. The cluster installation is started by executing the RUNME.sh script from the

root directory of the install CD. It sets up some environment variables and then

calls scripts/MASTER-SCRIPT-1.sh.

3. The scripts/MASTER-SCRIPT-1.sh script installs YACI, the packages for cre-

ating the slave node image, and HPC packages mentioned in Section 2.2 onto

the master node.

4. After MASTER-SCRIPT-1.sh completes, it returns control to the RUNME.sh,

which then prompts the user concerning whether to do a Web-based (GUI) or

CLI (command-line interface) installation of the slave nodes. The difference

between these two paths is that the CLI requires the hand editing of the

BSACI configuration file (which is placed in the /tmp directory on the master

node during the installation) to enter network interface and slave node

partition information. The Web-based path prompts the user for this

information and then enters the information into the configuration file.

5. Following either path, after the network and partition information is entered, a

series of scripts are called, which set up the configuration files under YACI so

21

that it builds the cluster as desired. BSACI will then prompt the user to reboot

all slave nodes so that it can capture their MAC addresses. At the same time

it will build the slave node image in the background.

6. When the MAC addresses are captured and the slave node image is complete,

BSACI will then have the user reboot each slave node. As the slave nodes

reboot, they PXE boot the YACI kernel as described in Section 3.1.2. BSACI

tracks which nodes have completed their installation and then prompts the user

to reboot the master node when all slave nodes are finished.

3.2.1 Setting up an Installion

One of the advanced features YACI offers is the ability to customize the image created

for the slave nodes. This allows the user to preconfigure the slave node image with

the desired settings before it is installed, thus eliminating the need to individually

configure each node after installation. Even with this time saving feature there is still

a substantial amount of configuration that must be done. Much of this setup requires

specific system information that must be gathered through the use of various system

level utilities and requires a reasonably advanced understanding of the underlying OS.

Fortunately, BSACI comes to the rescue by automating this task, not only saving

the user time, but making it possible for someone with less advanced system level

knowledge to do a complete installion. A bonus feature is that it also reduces the

probability of human induced error.

The task of gathering information and then using it to set up the various con-

figuration files is delegated to a set of bash scripts found in the scripts/ directory

under the root directory of the installation CD. These scripts can be categorized into

22

several different groups depending on their functionality and the order in which they

run. The main functionality classifications are probe, configure, and do scripts and

each one can be easily identified by its name, i.e., probe-*, config*-, and do * [1].

As the name implies, the probe-* scripts have the task of collecting master node

system information. These scripts are deployed by the Web-based install application

so that it can provide a selection of parameters to choose from in its setup stage.

The information gathered by probing is stored in a master configuration file where it

is later retrieved by the Web-base application and ultimately by the config-* and

do * scripts.

The last two classifications of scripts are aimed at either creating or modifying

various system level configuration files both on the master node and in the slave

node image. The distinction between a config-* and do * scripts is that config-*

scripts are generally focused on setting up a particular file, while the do * scripts

can be a little more involved (for example, they may copy or edit multiple files).

Also, config*- scripts are deployed first, although this ordering does appear to be

somewhat arbitrary and probably could be changed if the need arises.

The other broad categorization of these scripts is whether or not they need to have

knowledge about the nodes in the system (i.e., the number of nodes, node naming

conventions, network address, etc.). Since collecting node information requires man-

ual input, i.e., rebooting each node to collect MAC addresses, it is one of the slower

portions of the install. In order to make the most efficient use of time and resources,

the gathering of MAC addresses is done in parallel with the creation of the slave

node image, since one is I/O and the other is processor bound. Since creating the

image requires that the setup to all files that will be encapsulated in the tarball image

be completed before building commences, the “needs node knowledge” distinction is

23

made. To simplify the deployment of these scripts at the various stages, four staging

ground scripts were created, namely

• quickie--all-config.1.sh

• quickie--almostall-do.1.sh

• quickie--all-config.2.sh

• quickie--almostall-do.2.sh

They are deployed in the order given with the first two deploying before the

capturing of MAC addresses and the last two after. At the top level these four scripts

are called from a set of MASTER-SCRIPT-* scripts located in either the scripts direc-

tory on the installation CD, or the htdocs directory of the Web-based application,

depending on the installation path followed.

3.2.2 Web-Based Application

The Web-based installation application was conceived as an easy method to produce

a high quality GUI interface for the novice user. The application prompts for the

applicable network and slave node partition information, in most cases providing

default settings and/or a list of valid choices to choose from. A web server is not

typically part of a default OS installion so BSACI provides its own Apache [33] web

server for this task. The web server is installed under the /tmp directory on the

master node with the understanding that it will be removed after the installation is

complete. The application is written in a combination of PHP and Javascript. The

application (web server and code) is located in the srcs/ directory of the installation

CD portion of the project in a tarball called apache-overlay.tar. It is copied from

24

the CD and untared by the MASTER-SCRIPT-1.sh script, which also starts the web

server, so the web application can be accessed later.

25

CHAPTER 4

PUTTING IT ALL (BACK) TOGETHER

4.1 Beginning an Upgrade to a New Operating System

Some of the most daunting aspects of a project such as this have little to do with

the development of the actual code that makes it function. With the BSACI up-

grade project, most of these daunting tasks can be boiled down to the following two

statements: developing an effective test platform, and managing the vast amount

of source material in the project. While these are mostly logistical issues, they can

greatly impede progress if good solutions are not found. Often these solutions become

what is colloquially known in the technical trades as “tribal knowledge.” In other

words, they are passed on only by word of mouth and lost if an effective transfer from

one maintainer to another is not made. Often they are taken for granted, because

once they are known they seem obvious, hiding the fact that much time was spent in

refining them.

4.1.1 Agile Test Platform

One of the greatest challenges to testing the installer is the amount of time that is

required to restore the master node to a pristine starting point. If done as most users

would be doing this, it would require installing (or reinstalling) the OS of choice from

scratch. After the installation was complete, updates to the system would then have

26

to be downloaded and installed. These two tasks together can take an hour or more

depending on hard drive size and download speed. Assuming that most maintainers

(at least for the foreseeable future) are going to be students who most likely only

have a couple of hours here and there in a day to devote to the project, this obviously

makes for slow progress.

Paul Kreiner, in the original thesis on BSACI, recommends using a platform

virtualization tool such as VMWare [34], which allows a snapshot of a virtual node

to be taken. This snapshot can be used as a restore point to bring the node back to a

pristine state in much less time than a full install. Virtualization tools also have the

added advantage that multiple nodes can be set up on one computer, thus making a

virtual cluster.

The down side of virtualization software is that although there are many open

source solutions (including parts of VMWare itself), most of the advanced features

like Snapshot tend to be commercial add-ons. Since the market for these tools is

mostly focused on enterprise applications, full commercial licenses tend to be rather

expensive, and the cost can be prohibitive. Also, one of the stated goals of BSACI is

to look for open source solutions. Still, the advantages of virtualization are notable, so

it is probably worth revisiting at the onset of a major upgrade to see if more features

become open source in the future.

Luckily, virtualization tools are not the only resources for backing up partitions

and hard drives. A quick search will reveal that there are a plethora of such utilities

ranging from full commercial tools to freeware and open source tools. Many are

geared only for Microsoft Windows and NTFS. Several, such as SystemRescueCd and

Ghost for Linux (G4L), are completely open sourced and support ext2 and ext3 file

27

systems. They also have the added advantage that they boot from a CD, making it

much easier to back up the root file system.

Ultimately what proved to be the simplest solution was to use a live CD1 [35, 36]

and the dd command-line utility to make a backup image. The dd utility allows low

level copying of raw data from files and block devices. Use of the utility is fairly

simple with the following command line being all that is needed to initiate a backup

of the sda1 partition to a file called root.back.

dd if=/dev/sda1 conv=sync,noerror bs=4k of=/backup/root.back

Referring back to the original premise for doing the backup, i.e., restoring a

pristine state in less time than a full installation requires, anyone who has ever done a

full backup image of a hard drive knows that it is not exactly a quick operation. A few

observations can help in this regard. Though it is tempting to pipe the output of dd

through gzip or some other compression medium to create a smaller backup image, it

is not recommended due to the fact that it greatly increases the time required to back

up and restore. Not using compression has the complication of finding a secondary

storage medium large enough to hold the entire root partition. Hard drive storage

capacity is growing more rapidly than the standard Linux distribution, so this concern

is likely to diminish in the near future.

Still, making a backup of the entire root partion, even without compression, can

take enough time that the benefits gained over a full installation are minimal. With

this in mind, it is useful to minimize the size of the root partition. One method

of accomplishing this is to split off portions of the file system that are not greatly

affected by an installation, to separate partitions. In the case of the Fedora 7 version

1A live CD or live DVD is a CD or DVD containing a bootable computer operating system. Live
CDs are unique in that they have the ability to run a complete, modern operating system on a
computer lacking mutable secondary storage, such as a hard disk drive [37].

28

of BSACI it was found that creating separate partitions for the /tftpboot (this is

where the slave node image is created and takes up several gigabytes of storage) and

/tmp directories allowed the root file system partition to be sized to 14 gigabytes.

This provided enough room for the OS and cluster packages, plus some additional

space to use while testing the final installation. With a root partition sized thus, it

is possible to boot the live CD and restore the partition in 20 minutes or less, which

amounts to at least a factor of 3 reduction in time for a full installation. It should be

noted that a significant portion of that time is spent in booting the graphical interface

of the live CD, so finding a command-line version of a live CD might produce even

greater time savings.

4.1.2 Managing Source Material

All projects have some sort of management philosophy, which over time must be

revisited to ensure that it meets the continually changing needs of the developers.

Though it is often unspecified, the philosophy is apparent by the very layout of the

project itself. When the Fedora 7 upgrade began it was obvious that one of the

overarching concerns of the original project was the considerable amount of storage

space required for all the binary packages needed to build the slave node. To work

around this concern, only the installation scripts for BSACI had been placed under

revision control, and not any of the binary packages. While there are a variety of

reasons why this made sense2, it ultimately lead to problems when reassembling the

project at the beginning of this upgrade. As noted in the original BSACI writeup [1],

one of the most time consuming aspects of an upgrade is collecting, filtering and

2For example, most software revision control systems are designed around the concept of archiving
text source code and therefore are not all that efficient when it comes to storing binary files.

29

verifying these packages. It would be a devastating setback if once this task is

complete these packages where lost due to hardware malfunction or human error.

Weighing all of these considerations, it was decided that with hard disk space

becoming more abundant and the arguments for archiving the binary packages rea-

sonable ones, it was time to include the binaries in the Subversion [38] (SVN) archive.

The first attempt at doing this was to just replace all of the placeholder files with

the actual files and then check them into the repository. This created the problem

that most of the packages were stored in one large tar file (over 0.5 gigbytes with

the Fedora 7 release), which meant that any time one package was changed, a new

0.5 gigabyte tar file would have to be checked in, consuming a great deal more space

than is needed. To work around this issue a compromise solution was devised in

which the large tar file was removed from the repository and replaced again with its

corresponding placeholder file. A directory was added to the repository, outside of

the CD portion of the project where the tar file could be untarred, thereby allowing

easier access to all of the individual packages. Since building the tar file was a time

consuming process in and of itself, a build script was created, which automated the

process, not only saving time but also helping to reduce errors as well.

The above mentioned method of archiving the binaries files seems to work well.

Later research has indicated that SVN, unlike many other revision control systems,

actually does make some attempt to compress binary files through an algorithm that

compares the difference between what is currently checked in and what is being

checked in, so this new philosophy may not have been as necessary as originally

thought. Checking in or deleting a single package is much faster than checking in the

entire 0.5 gigabyte tarball so that alone justifies this tactic. In many ways, having all

of the packages in an untarred format makes them easier to work with as well. Also,

30

the new tarball make file has proven to be a time saving device in that it allows the

tarball image to be quickly rebuilt during the refining process of creating a new slave

node image.

Another useful observation in regard to source maintenance is that ultimately

BSACI is destined for a portable medium such as CD or DVD and as such can only

be tested in a similar manner. With 2 gigabyte (and greater) USB thumb drives being

reasonably priced these days, it is useful to download the SVN project directly to one

of these, so that testing and updating can be done from the same source (it also cuts

down on the number of CDs that will have to be burned). Depending on the size of

the thumb drive some care may be needed in choosing which parts of the project to

download. Luckily, SVN is very flexible in that each subdirectory in a project can be

checked out on its own. Because SVN creates a backup copy of all files when a project

is downloaded, the thumb drive needs to be at least twice the size of the actual source

files to accommodate the checkout.

4.2 Package Upgrading

The majority of the software packages installed by BSACI are OS distribution RPMs

intended for the slave node image. The remaining few are made up of the cluster

specific packages mentioned in Section 2.2. Most of the software packages are in

the RPM format, the rest are stored in compressed BZIP2 archives. During the

final process of making an installation CD, all these packages are tarballed into one

archive, called tftpboot-distro-overlay.tar, which replaces the placeholder file of

the same name in the srcs/ directory under the CD portion of the project. The main

reason for single archive is that it transfers from the CD to the master node in less

31

time than copying all packages separately. No compression is used on the tarball for

a couple of reasons. First, since all packages are either RPM or BZIP2 archives and

are already in a compressed form, not much size reduction is gained by compressing

the complete archive. Second, unpacking the archive takes considerably more time if

compression is involved.

The untarred packages can be found in the

development-tools/sources/Fedora 7/tftpboot-distro-overlay

directory of the BSACI SVN repository. The contents of the

tftpboot-distro-overlay directory is as follows:

drwxr-xr-x 7 root root 4096 2009-02-05 15:26 dist

-rw-r--r-- 1 root root 660 2009-02-05 15:26 Makefile

drwxr-xr-x 3 root root 4096 2009-02-05 15:17 rpms

drwxr-xr-x 3 root root 4096 2009-02-05 15:17 site-specific-local

-rwxr-xr-x 1 root root 1157 2009-02-05 15:26 updateRPMList_repos.sh

The Makefile and updateRPMList repos.sh script are used to automate the

tarball building process. The tarball will contain the three directories and all of their

contents. The dist directory contains all of the packages mentioned above. The rpms

directory contains a symbolic link to all of the packages that are to be included in the

slave node image. The site-specific-local directory only contains one file, which

is a list of all the RPMs to be included in the slave node image.

During installation, the tarball is untarred in the /tftpboot directory on the

master node after YACI has been installed. The rpms/ directory and the RPM list

are required by YACI. The dist/ directory was conceived at the inception of BSACI

as a method for organizing the packages in some fashion. This is due to YACI not

32

being able to tolerate subdirectories in the rpms/ directory. Rather than placing all

packages for the slave node image in the rpms/ directory with no organization to

them, they were organized under the dist/ directory with symbolic links to each of

them being placed in the rpms/ directory.

The Fedora 7 version of BSACI uses the same directory structure as in the Fedora

Core 5 release, which essentially followed the naming conventions of the Fedora Core 5

repositories. The exception to the repository naming convention is the others/

directory, which is intended for packages specific to a cluster installation. The

others/ directory has a subdirectory called master/, which holds packages only

intended for the master node.

4.2.1 Slave Node

As mentioned in Section 2.3, the packages for the creation of the slave node image

are a subset of what a normal workstation installation would be. Having the slave

node built from a subset of a full distribution actually complicates the upgrade

process in that the equivalent subset of packages must be extracted from each new

distribution. There are two likely scenarios that need to be dealt with when doing

an upgrade. In the first, and most likely scenario, BSACI is being moved from one

revision of a particular distribution to a different revision of the same distribution.

The second involves migrating BSACI to a completely different distribution. The

Fedora 7 upgrade falls under the first scenario, so most of the observations made here

regard revision changes, although some ideas will also be presented concerning the

latter scenario.

As mentioned in Section 4.2, the naming convention for the directories containing

the RPMs for the slave node image follow the naming conventions of the Fedora

33

Core 5 repositories: namely base, updates, and extras, with all non-Fedora RPMs

being put in the others subdirectory. All RPMs from the various repositories go into

the directory named after their repository of origin. Revisions after Fedora Core 5

actually have a slightly different repository naming convention in that the extras

repository has been replaced by an Everything repository. Since the same basic

structure still remains (i.e., base and updates repositories), it was therefore decided

to use a convention similar to the previous revision of BSACI. The new convention

is that all packages from the base and updates repositories are still placed in the

directories corresponding to the repository of origin, and all other packages, which

originated from Fedora, are placed in the extras directory.

Even though well over 90% of these RPMs had direct replacements from Fedora

Core 5 to Fedora 7, with over 600 RPMs in the project it was still somewhat chal-

lenging to find the proper replacement for each RPM. The reason for this was that

many packages had very similar file names like

hal-0.5.9-8.fc7.i386.rpm

hal-libs-0.5.9-8.fc7.i386.rpm

hal-cups-utils-0.6.9-1.fc7.i386.rpm

which made it somewhat difficult to do an automated sort strictly on file name. Still,

with over 600 packages to find out of thousands, a manual solution was not feasible

either. Luckily the rpm utility itself provides a nice feature called “queryformat”

to help uniquely identify packages. The listings in Appendix A are for two short

scripts developed during the course of this project. Both extractPackName.bash

and findNewRev.bash scripts use the queryformat function to help pinpoint the exact

name of a package. The extractPackName.bash script recursively searches through

a directory and its subdirectories and extracts the name of all the RPM packages

therein. The findNewRev.bash script can then use the list generated by the former

34

script to search a downloaded repository to find matching updates. Currently these

scripts use the package name as the key but both could easily be modified to add

other distinguishing features, such as architecture, revision, etc.

The procedure for finding the updates goes something like this:

1. Use extractPackName.bash and redirect its output to a file.

2. Since packages found in the updates repository have similarly named packages

in other repositories, it is best to start with the updates repository when using

findNewRev.bash to find matching updates. The reason is that packages in the

updates repository should be the most up to date, and therefore if an update

exists then that revision of the package is the one to include.

The output of findNewRev.bash is formated

<package name>,<upgrade file name>

with each package on a separate line. If a direct replacement is not found for

the package then the “upgrade file name” is replaced with “###” making it

easy to filter the output (using grep, for example).

3. After performing the previous step and creating a list of packages not yet

found, repeat the same process on the remaining list, sorting through the base

repository and then any remaining repositories.

There is a reasonable chance that when the above process is complete, a few

remaining packages will still not have a direct upgrade. The most likely reasons for

this are that the package is not part of the OS release, or that the OS has discontinued

the use of the package. For the first case, most packages produced for an OS release are

35

fairly clearly labeled. In the case of Fedora 7 a “.fc7.” is found in most file names.

Unfortunately, this cannot be a sole determiner of whether a package was created

for distribution with a particular OS. This is because many packages will use similar

naming conventions to indicate that a package was built specific for a particular OS,

even though the package is not directly maintained by the OS distributors. Another

resource for determining the origin of a package is to use the query information option,

i.e.,

rpm -qpi <package-file-name>

to see if the packager is listed. If it is determined to be a non-OS package, most likely

it is cluster specific and its replacement, if one exists, will most likely be found at the

Web site of the actual utility itself.

An example of the second case, which actually arose during the Fedora 7 upgrade,

is the portmap package being replaced by rpcbind. If it is suspected that the package

is no longer part of a distribution, it is always a good idea to first verify that the

scripts did not make a mistake or that all packages in the repository were downloaded

before sorting began. After verifying that the upgrade package truly does not exist,

the challenge is to determine if and how to replace it. The Fedora release notes and

Google are good resources for this task. The RPM package itself can also provide

useful information through the use of the RPM query option (rpm -q).

Once an upgrade is found for each of the old packages, or it is determined that its

functionality is no longer required, then comes the true test of whether the new set

of RPMs will produce a functional image: build an actual image and install it on a

node. An image is created by the create image script found in the YACI scripts/

directory. Since this subject is well covered in the original BSACI documentation [1]

it will not be repeated here. One difference worth noting, however, is the use of the

36

test rpmlist script rather than the create image in the early stages of verifying

whether all package dependencies are met, since this is not mentioned in the original

documentation. The test rpmlist script is a shortened version of creat image,

which does a mock build of a node file system, only verifying that the dependencies

are met but not actually installing any packages. It is useful in that when first

verifying the package set it is likely that several iterations will be needed before all

dependencies are met. The test rpmlist script is much quicker than create image

at this task.

Moving to another distribution of Linux will require an altered approach, since

it will essentially require building a slave node image from scratch. This is due to

the lack of a one-to-one relationship between the packages of the original and new

distribution. An approach for changing distributions would be to do a normal install

of the new distribution of choice and compare it to the installation of a node done with

an existing BSACI project. To save some time, packages that are already known to

be unnecessary (like desktops, desktop support, office, etc.) should not be installed.

Even though there will not be a direct one-to-one correspondence between pack-

ages from one distribution to another, the rpm utility can still provide some help.

Most of the distributions derive their base package set from the same source code (e.g.,

nobody creates their own version of awk, they all use gawk) so even if the top-level

package names do not line up, many of the underlying ones will. The following RPM

command-line will provide a listing of all packages installed on a system, not just the

top level names.

rpm -qa --provides | sort > RPMS.txt

37

This process still will likely require a good deal of manual labor but hopefully can

serve as a starting point from which to begin. Other RPM querying options (i.e., -qa

options) that might prove useful are --whatprovides and --whatrequires.

4.2.2 Master Node

Packages for the master node fall into two categories: those required for building the

cluster (see Section 2.2), and those that are for temporary use during the installation

process (e.g., YACI and the Web-based installion application).

Cluster Specific Packages

Packages specific to building a cluster are, as mentioned in Section 4.2, a part of the

tftpboot-distro-overlay.tar archive and most are stored in the

others/master/ directory of the development section of the project. The packages

are a mixture of RPM and BZIP2 archives. All packages that are in BZIP2 archives

have been specifically compiled for this project either because there was not an

up-to-date RPM version of it or because there was special configuration required.

Some judgment will be needed to decide how best to upgrade these packages, or

whether to update them at all. Below is a brief summary of the updates done for

the Fedora 7 upgrade.

• Message Passing Interface (MPI) Libraries

MPICH2 Updated to the 1.0.6 release of the code. Recompiled for Fedora 7.

OPEN MPI Updated to 1.2.4 release of the code. Recompiled for Fedora 7.

LAM Obtained the Fedora 7 release of the RPM packages.

PVM Recompiled for Fedora 7.

38

• Support libraries for MPI programming.

PTK Recompiled for Fedora 7 and new MPI libraries.

Global Arrays Recompiled for Fedora 7 and new MPI libraries.

HDF5 Recompiled for Fedora 7 and new MPI libraries.

SZIP Recompiled for Fedora 7 and new MPI libraries.

PRAND New addition to BASCI

• Support and management tools.

Oscar modules No updates. Fixed paths in scripts to point to new MPI
libraries.

PBS Recompiled for Fedora 7.

ClusMon Recompiled for Fedora 7.

• Parallel and distributed remote shell clients.

PDSH Obtained the Fedora 7 source RPM package and recreated packages.
(Needed to rebuild source because pdsh-mod-machines-*.rpm, which is
needed by BSACI, is not part of the standard Fedora release).

BEOSH Recompiled for Fedora 7.

• Parallel and/or distributed file systems.

PVFS2 Updated to the 2.7.0 release of code. Compiled for Fedora 7 and
MPICH2.

GFarm Grid Filesystem No update.

With the exception of GFarm, there were no significant updates to the above

mentioned packages. In the case of GFarm, it was decided not to update because the

new release had just recently been introduced and appeared not to be in general use

yet. Most updates to the above packages were done mainly for compatibility with

Fedora 7. All packages that were based on the original source code were recompiled

under Fedora to help ensure compatibility.

There are a few details concerning building the BZIP2 packages that are worth

noting. As mentioned above, one of the reasons for compiling these packages from

39

the original source code is to perform special configuration. Fortunately, most of

this special configuration has been captured in a set of configurations scripts in

the build-scripts directory under the development-tools section of the project.

Mostly this special setup is aimed either at relocating where the software ultimately

is installed or the need to link various packages to libraries of other packages being

installed on the cluster. Since there is an interdependence between some of these

packages, the order in which they are built is important. In general, the MPI libraries

should be built first, followed by other libraries (such as HDF5), which offer support

to MPI applications. For more information on what packages are relocated and the

various interdependencies between packages, it is best the study the actual build

scripts.

In order for these packages to be archived into BZIP2 packages, they must be

correctly installed after compiling. All of the code sets currently included have a make

install option that allows this to be easily done. It is worth capturing the output

of the make install step to both ensure that everything installed correctly and also

verify where the various components are installed. Another resource of determining

what files are needed by each package is to look at the BZIP2 packages of the previous

revision. The archiving is done from the perspective of the root directory and can be

done using the tar archiving utility.

The process used to install RPM packages was changed for the Fedora 7 release of

BSACI. It was found that the method used in the Fedora 5 version of BSACI would

erroneously not install some packages if certain packages in the base OS installation

on the master node had changed. The problem occurred because the Fedora 5 version

of BSACI did not provide any means for the user to deal with package conflicts. The

most common conflict was that a newer version of a package was already installed.

40

Having a package not installed because a newer version was already installed was not

a problem, but it would cause the entire group of packages (including the packages

not having the conflict) to not install.

In an attempt to provide a more robust solution to the above mentioned problem,

the installMasterNodeRpms.pl script was devised (See listing in Appendix B). It is

designed to detect if the reason for package installation failure is because the package

(or a newer version of it) is already installed, and it will simply skip the installation

of the package while providing a message noting that the package was not installed.

If rpm is not able to install a package for another reason, then the user is given the

error message with the options to either retry the installation of the package with the

current setting, force the installation of the package using one of, or a combination

of, the --force or --nodeps options, or to skip the installation altogether. These

options give the user several methods to work around potential installation problems

without halting the installation itself. For instance, if the problem was due to a

missing or out-of-date dependency, then the package meeting the dependency could

be located, installed using a separate terminal window, and the “retry installation

option” can be used to resume the installation.

The installMasterNodeRpms.pl script also allows the maintainer of BSACI to

customize the installation options of each package. This feature was added because

of the need to force tcl-8.4 and tcl-8.5 to coexist in the current version of BSACI,

but it may also be useful in solving future problems.

The disadvantage of the installMasterNodeRpms.pl script is that currently all

RPM packages that need to be installed on the master node have to be listed in a file

called packagesToInstallMasterNode.txt. The list has to be ordered according to

dependency needs, i.e., packages that require other packages in the list must be listed

41

after their dependency. The need to list the packages in order of dependencies could

probably be worked around, but this is left for future work.

YACI

Although YACI has more to do with the installation of the slave node than that of

the master node, the actual application itself resides on the master node and thus

will be considered by this report a part of the master node installation.

After being installed by the MASTER-SCRIPT-1.sh script, YACI is patched to help

customize it to the needs of BSACI. To be more specific, these patches fix some

bugs, change the image from being a compressed tar file to a regular tar file3, and

add modifications to provide additional debug output during the installation process.

Bug patches need to be evaluated from update to update to verify whether they are

still needed or not. The other patches need to be checked to verify that they still

apply cleanly to new revisions of the scripts.

The tftpboot-script-overlay.tar is then, as the name implies, overlaid, or

added to, the YACI files in the /tftboot/ directory. It contains a set of files for

inclusion in the new slave node image when it is built. To help encode the path of

where the file is to be installed in the slave node image, a “%” is used to denote

a “/”, e.g., the bashrc file located in the /etc directory is stored as %etc%bashrc

in the local directory. These files will later be modified by a set of configuration

scripts to provide system specific information obtained from the master node. These

configuration scripts are described in more detail in Section 3.2.1.

3An uncompressed archive is used with BSACI to increase installation speed. With gigabit eth-
ernet cards being standard on most cluster nodes these days, it is faster to upload an uncompressed
file than to upload a compressed file and uncompress it.

42

An update to YACI will need to be considered whenever there is a significant

change in kernel revisions during an upgrade. This is necessary to ensure that the

PXE kernel included in the package stays synchronized with the kernel of the new

distribution. The ChangeLog under the usr/share/doc/yaci-<version> directory

contains the revision of the kernel. The kernel revision in YACI does not have to match

exactly the revision being installed, but the closer it is, the less likely unexpected

problems are. The maintainers of YACI are very willing to help with kernel updates

and will usually have a new version of YACI out on their web site [29] within a day

or two of requesting one. Contact information for the maintainers of YACI can also

be found on the web site.

Customized PXE Kernels

Sometimes the standard kernel of YACI, even when it is fully up to date, will be

configured differently enough from the kernel to be installed that a custom PXE boot

kernel will have to be created. One such situation arose during the course of this

project, and although it is unlikely to happen often, it is probably worth sharing a

few details concerning the problem and how it was solved. The problem encountered

with the Fedora 7 upgrade was that its kernel used a newer module to interface

with SATA and PATA hard drives than the YACI kernel did. The newer module

represented these types of hard drives as /dev/sd[a,b...] instead of the way they

have been traditionally represented, i.e., /dev/hd[a,b...]. This difference caused

the boot loader portion of the node image installation to mis-configure grub, so that

the new image did not boot properly. After considering possible solutions, the most

reasonable one seemed to be to add the new module that used the new libsata to

43

the kernel included with YACI, since most major distributions of Linux were moving

to the newer module.

There is ample literature available concerning the intricacies of compiling the

Linux kernel, and since the steps for doing this are likely to change from kernel to

kernel, only the details that are applicable to YACI are covered here.

1. Obtain a copy of the kernel source that is of the same revision as the kernel to

be installed. There are several ways of doing this. In the case of Fedora, all

RPMs on the installation DVD have a counterpart source RPM. The kernel,

being in its own RPM package, therefore has its own source RPM. This package

should be installed on a system that is similar to the type of compute node being

targeted for a slave node (i.e., same processor type and OS version).

2. Obtain the latest version of the YACI source RPM and install it on the same

machine as the kernel source code. Source RPMs are designated by

yaci-<version>.src.rpm. Installing the YACI source package places

yaci-12-7.4.tar.bz2 and the yaci.spec in the /usr/src/redhat/SOURCES/

directory. At least this is the case for the Fedora OS; other operating systems

may have different locations for installing source files. Uncompress the tar file.

The YACI source RPM is needed primarily so that the YACI RPM can be

rebuilt with the new kernel inside. Also included in YACI are the configuration

files used to build previous versions of YACI kernels. These configuration files

are useful starting points for the decision of how to configure the new kernel.

3. Prepare kernel code for compilation. With the Fedora 7 kernel release, this in-

volved performing a make mrproper and then copying the desired configuration

file to .config in the top-level directory of the kernel project. Using one of the

44

more recent YACI configuration files is probably the best choice for a starting

point. The other option is to start from one of the default configuration files

provided with the kernel.

4. After the configuration file is in place and before making additional modifi-

cations to it, it is probably best to do a test compilation. If a compilation

error does occur, then most likely there is a problem with the configuration

file (although it is a good idea to verify that all relevant patches have been

applied). Sorting out configuration problems can be rather tedious. Generally,

the best approach is to try different configuration files (either from YACI or

one that came with the kernel code itself) until one that compiles completely is

found. Then compare the working configuration file (i.e., that one that produces

a fully compiled kernel) with the one considered to be closest to what YACI

needs. The xconfig utility, invoked by doing a make xconfig, provides some

limited search capabilities, which can be useful in this endeavor. The xconfig

utility formats the config file, which is a text file, into a more readable listing

by organizing related options together so that their connections can be more

easily discerned. It also provides additional information about what each option

controls. Since the configuration file is a text file it can also be searched with

command line utilities, such as grep, and compared with other configuration

files that are similar in nature.

5. After the kernel compiles, it is good practice to test it by trying to use it in

an install. This verifies that it at least provides the same functionality as the

45

kernel that is to be replaced. To do this, a bzimage4 needs to be made and

placed in the /tftpboot directory, replacing the old image.

6. When the kernel from step 5 meets expectations, then changes can be made to

the configuration file to add the new desired functionality. Recompile and test

the kernel in the same manner as step 5.

7. Once the kernel is performing as desired it needs to be packaged with the YACI

RPM. The following instructions assume that the rpmbuild package has been

installed. Note, there is a Makefile associated with the YACI source code but

it will not work outside of Lawrence Livermore National Laboratory since it

is designed to update the project from the CVS repository before creating the

RPM. The instructions below work without access to the repository.

(a) Replace the kernel image in the

/usr/src/redhat/SOURCES/yaci-<version>/

directory with the newly compiled image. The easiest way of doing this

is to rename the new image the same name as the old. If a new name is

desired then changes need to be made to the pxelinux.cfg/default file

in the project.

(b) Inspect the project documentation and update appropriately.

(c) Create a BZIP2 tar file of the YACI project directory. The tar file should

also be located in /usr/src/redhat/SOURCES/.

(d) In the /usr/src/redhat/SPECS directory edit the yaci.spec and update

the project version information and documentation. Also, verify that the

4A bzimage is a compressed version of the Linux image, which was developed to help work around
memory limitations, most notably the i386 Real mode limit [32]

46

spec file references the correct BZIP2 file and that the “package include

file list” is still correct.

(e) Create the RPM by issuing the rpmbuild -ba yaci.spec command from

the shell prompt while in the /usr/src/redhat/SPECS directory.

A new copy of YACI will be in /usr/src/redhat/RPMS/noarch/. A new

copy of the source RPM can be found in /usr/src/redhat/SRPMS/.

Web-Based Application

The Web-based installation application ultimately ported quite cleanly from Fedora

Core 5 to Fedora 7. At first it was thought that the Apache web server would need

to be recompiled to make it compatible with Fedora 7, but when tested, the current

server packaged in the apache-overlay.tar file from the Fedora Core 5 release of

BSACI functioned correctly. Minor adjustments were needed, but for the most part

it just worked. Although the Web-based application itself did not require many

changes, it was necessary to learn a certain number of debugging techniques to use in

conjunction with it, since it is the control center for the final portion of the installation.

Debugging the web application portion of the installation can be rather tedious since

data is passed back and forth between PHP, Javascript, and BASH shell scripts,

making it rather hard to follow. The fact that there are no easy to install debugging

tools for this type of application only adds to this difficultly. Future maintainers of

BSACI may have more web experience and therefore this may be less of an issue to

them. Even so, a few techniques that proved useful during the Fedora 5 to Fedora 7

upgrade may be useful to future maintainers; these are shared below.

Even without a debugger, a reasonable amount of debugging can be accomplished

by printing variable information on the web page itself. Since all code is in script

47

form and does not require compiling, debugging can sometimes be done in real time

by changing scripts and then refreshing the browser. This is useful because BSACI

sets a lock when the web application is open, which makes it tricky to reopen the

application after the web browser is closed. Some caution should be used with this

technique, however, since refreshing the page may have some undesired consequences,

such as restarting a lengthy build of the node image.

As mentioned above, once started, the web application puts a lock in place, making

it impossible to restart if the web browser has been closed. The lock is to keep more

than one web browser from opening the web page at the same time. It is created

by placing a file named DELETE THIS LOCKFILE in the htdocs/ directory of the web

application. Also, along this line, the CDROOT and CONFFILE environment variables,

which are created during the RUNME.sh script, are necessary for the web application to

work properly. If for some reason the master node is rebooted, or for whatever reason

these variables are lost, then these environment variables will need to be restored

before restarting the application.

4.3 Testing

Exhaustive testing of all the components in BSACI would take an inordinate amount

of time and probably is not necessary since most of its packages have received a

reasonable amount of testing before they are released for general consumption. With

this in mind, testing focused more on whether the package was correctly installed

than on verifying all of its functionality. To this end, a reasonable subset of the more

typical use of each package was chosen as the testing criteria.

A brief summary of the testing is given below.

48

• Slave Node

– verified that slave node boots correctly

– verified file system is populated correctly

– verified that slave node correctly mounts shared folders on Master Node

– verified that users can do keyless ssh into slave nodes from other nodes in

the system

– verified slave node can run a X Window client application

– verified that node names are correctly generated

• Master Node

– verified that the /home, /opt, and /usr/local are shared correctly via

NFS

– verified that ssh and MPI keys are correctly generated for each user

– verified external network connection

– MPI Packages (MPICH2, Open MPI, LAM, and PVM)

– verified MPI libraries (A set of example programs is provided with the

installation of BSACI, that exercise some of the more commonly used

features of these libraries. Although there was not a specific code set

for LAM, the Open MPI code set was similar enough to be used to

test it. Testing of packages such as the PBS and OSCAR modules,

which provide support for programs that use the MPI libraries, was

done in conjunction with the MPI testing.)

– Parallel Shells (PDSH and BEOSH)

49

– verified that PDSH and BEOSH shells can be invoked from any nodes

in the system, not just the master node

– verified that it is possible to run shells across all nodes or just a subset

of nodes

– Parallel File Systems (PVFS2 and GFarm)

– verified that both the PVFS2 and GFarm file systems are set up on

each node and can be accessed

– ClusMon

– verified that the web application was functional and able to interface

with database

50

CHAPTER 5

CONCLUSIONS

In the end, the success of a project comes down to one thing: did it work? Fortunately,

it can be reported that the Boise State Automated Cluster Installer was successfully

upgraded to Fedora Release 7. All packages were successfully ported and a good

sampling of the functionality of the cluster was tested and verified to be working. It

was decided toward the end of this project that the Boise State Beowulf cluster would

be better served by being ported to CentOS for the reasons described in Section 1.3,

so the Fedora 7 release was never installed on it. Fortunately, the current release

of CentOS (5.2) shared enough in common with Fedora 7 that most of the updated

cluster packages could be used “as is” in the CentOS conversion, which was carried

out by Dr. Amit Jain. With the use of the Fedora 7 version of BSACI it was possible

for the CentOS conversion to be completed in about two weeks, a relatively short

amount of time for this project.

One of the purposes of BSACI is to provide a tool that will allow the student to

easily explore HPC clusters. Since Fedora is more targeted for the home user than

CentOS, the Fedora 7 version of BSACI may be a better choice for the novice, since

they may already have some familiarity with it. With this in mind the Fedora 7

version of BSACI can still play an important role.

51

As with any software project having a maintenance process is important. By

following the process outlined and using the scripts provided for updating from one

revision of a given distribution to the next should save time and some frustration the

next time this has to be done. Having all the binary packages in the repository now

guarantees that the ISO image can correctly be rebuilt when needed. Lastly, it is

hoped that some of the lessons learned and shared in this report about testing and

management of this project will be of benefit to future maintainers.

52

REFERENCES

[1] Paul Kreiner. Automated Installation of Linux High-Performance Computing
Clusters. Masters in Computer Science Thesis, Boise State University, 2007.

[2] OSCAR. Open Cluster Group. 2000–2008. Web. Last viewed 20 Mar 2009.
<http://svn.oscar.openclustergroup.org/>

[3] Fedora 7 Installation Guide Red Hat, Inc. July 2007. Web. Last viewed 20 Mar
2009. http://docs.fedoraproject.org/install-guide/f7/en US/

[4] “Fedora Life Cycle” The Fedora Project. Red Hat, Inc. 2009. Web. Last viewed
20 Mar 2009. <http://fedoraproject.org/wiki/LifeCycle>

[5] Ralph Angenendt. “What is CentOS?” CentOS Wiki. Creative Commons. 16
Feb 2009. Web. Last viewed 20 Mar 2009. <http://wiki.centos.org/>

[6] Singer, J. “Practices of Software Maintenance.” Software Maintenance, 1998.
Proceedings. International Conference on 16–20 Nov 1998. Pages:139–145

[7] “What makes a cluster a Beowulf?” Beowulf Project. Beowulf.org. 2004–2007.
Web. Last viewed 20 Mar 2009.
<http://www.beowulf.org/overview/index.html>

[8] MPICH2 Argonne National Laboratory. Web. Last viewed 20 Mar 2009.
<http://www.mcs.anl.gov/research/projects/mpich2/>

[9] The Open MPI Project. Trustees of Indiana University. Mar 2009. Web. Last
viewed 20 Mar 2009. <http://www.open-mpi.org/>

[10] LAM/MPI Project. Trustees of Indiana University. 14 Feb 2007. Web. Last
viewed 20 Mar 2009. <http://www.lam-mpi.org/>

[11] PVM (Parallel Virtual Machine). Computer Science and Mathematics Division
of Oak Ridge National Laboratory. 3 Apr 2007. Web. Last viewed 20 Mar 2009.
<http://www.csm.ornl.gov/pvm/>

[12] Kirsten Allison. PTK: A Parallel Toolkit Library. Masters in Computer Science
Thesis, Boise State University, 2007.

53

[13] Global Arrays Toolkit. Computational Sciences and Mathematics, Pacific
Northwest National Laboratory. Dec. 2008. Web. Last viewed 20 Mar 2009.
<http://www.emsl.pnl.gov/docs/global/>

[14] HDF5. The HDF Group. Mar 2009. Web. Last viewed 20 Mar 2009.
<http://www.hdfgroup.org/HDF5/>

[15] Michael Schindler SZIP. Compression Consulting. 1999–2002. Web. Last
viewed 20 Mar 2009. <http://www.compressconsult.com/szip/>

[16] Jason Main & Amit Jain. “PRAND: A Parallel Random Number Generator”
Dr. Amit Jain Research. Boise State University. 2 Oct 2008 Web. Last viewed
20 Mar 2009. <http://cs.boisestate.edu/∼amit/research/prand/>

[17] “OSCAR Administration Guide” OSCAR Open Cluster Group. 2000–2008.
Web. Last viewed 20 Mar 2009.
<http://svn.oscar.openclustergroup.org/trac/

oscar/wiki/AdminGuide/Packages#Switcher>

[18] PBS Gridworks. Altair Engineering, Inc. 2009. Web. Last viewed 20 Mar 2009.
<http://www.pbsgridworks.com/>

[19] Conrad Kennington. A Beowulf Cluster Monitor. Masters in Computer Science
Thesis, Boise State University, 2006.

[20] Parallel Distributed Shell. Source Forge. 1999–2009. Web. Last viewed 20 Mar
2009. <http://sourceforge.net/projects/pdsh/>

[21] Mason Vail. beosh: The Beowulf Cluster Shell. Masters in Computer Science
Thesis, Boise State University, 2006.

[22] Mason Vail & Amit Jain. “BEOSH: The Beowulf Cluster Shell” Dr. Amit Jain
Research. Boise State University. Web. Last viewed 20 Mar 2009.
<http://cs.boisestate.edu/∼amit/research/beosh/>

[23] PVFS. PVFS Project. Web. Last viewed 20 Mar 2009.
<http://www.pvfs.org/>

[24] Gfarm file system. Asia Pacific Grid. 31 Mar 2007. Web. Last viewed 20 Mar
2009. <http://datafarm.apgrid.org/>

[25] Amit Jain. “Beowulf Cluster Design and Setup” Dr. Amit Jain Research. Boise
State University. 26 Apr 2006. Web. Last viewed 20 Mar 2009.
<http://cs.boisestate.edu/∼amit/research/
beowulf/beowulf-setup.pdf>

54

[26] Douglas Eadline, Ph.D. “Achieving High Performance at Low Cost: The Dual
Core Commodity Cluster Advantage” High-Performance and Enterprise
Computing. Appro. June 2006. Web. Last viewed 20 Mar 2009.
<http://www.appro.com/whitepaper/PentiumD-WP5-final.pdf>

[27] Joel Adams & David Vos. “Small-College Supercomputing: Building A Beowulf
Cluster At A Comprehensive College” Publications (Joel Adams). Calvin
College. Mar 2002. Web. Last viewed 20 Mar 2009.
<http://www.calvin.edu/∼adams/professional/
publications/SmallCollegeSupercomputing.pdf>

[28] “Cluster (Computing)” Wikipedia. Wikimedia Foundation, Inc. Mar 2009. Web.
Last viewed 20 Mar 2009.
<http://en.wikipedia.org/wiki/Computer cluster>

[29] Makia Minich & Trent D’Hooge YACI. Lawrence Livermore National
Laboratory. Web. Last viewed 20 Mar 2009. <http://www.yaci.org/>

[30] RPM. Open Source Lab. Web. Last viewed 20 Mar 2009.
<http://www.rpm.org/>

[31] PXELinux. The SysLinux Project. 11 Jun 2008. Web. Last viewed 20 Mar
2009. <http://syslinux.zytor.com/wiki/index.php/PXELINUX>

[32] “vmlinux” Wikipedia. Wikimedia Foundation, Inc. 4 Feb 2009. Web. Last
viewed 20 Mar 2009. <http://en.wikipedia.org/wiki/Vmlinux>

[33] Apache HTTP Server Project. The Apache Software Foundation. 2009. Web.
Last viewed 20 Mar 2009. <http://httpd.apache.org/>

[34] VMware. VMware Inc. 2009. Web. Last viewed 20 Mar 2009.
<http://www.VMware.com>

[35] Knoppix. Knoppix.Net. Web. Last viewed 20 Mar 2009.
<http://www.knoppix.com/>

[36] FedoraLiveCD. The Fedora Project. Red Hat, Inc. 13 Feb 2009. Web. Last
viewed 20 Mar 2009. <http://fedoraproject.org/wiki/FedoraLiveCD>

[37] “Live CD” Wikipedia. Wikimedia Foundation, Inc. Mar 2009. Web. Last viewed
20 Mar 2009. <http://en.wikipedia.org/wiki/Live CD>

[38] Subversion. Tigris.org. 2001–2008. Web. Last viewed 20 Mar 2009.
<http://subversion.tigris.org/>

55

APPENDIX A

RPM SORTING SCRIPTS

A.1 extractPackName.bash

#!/bin/bash

if ["$1" = "-h"] || ["$1" = "-help"] || ["$1" = "--help"]

then

more << EOF

$0 <Directory to Search> [Search Depth]

Searches directory and all its subdirectoies for rpm packages

and extracts the their names. A optional search depth

can be added to limit the depth of the search.

EOF

exit 0;

fi

if [! -d "${1}"]

then

echo Need valid directory to search

exit -1

fi

pushd "${1}" 2>&1 >/dev/null

if [-n "$2"]

then

RPMS=‘find . -maxdepth ${2} -name ’*.rpm’‘

56

else

RPMS=‘find . -name ’*.rpm’‘

fi

for i in $RPMS

do

name=‘rpm -qp --queryformat "%{NAME}" $i‘

echo -e "$name,${i##*/}"

done

popd 2>&1 >/dev/null

A.2 findNewRev.bash

#!/bin/bash

if ["$1" = "-h"] || ["$1" = "-help"] || ["$1" = "--help"]

then

more << EOF

$0 <Input File> <Directory to Search>

Searches through a directory of rpm packages and

tries to match those packages to the list in the

input file.

EOF

fi

if [! -f "$1"]

then

echo Need valid input file

exit -1

fi

if [! -d "${2}"]

then

echo Need valid directory to search

57

exit -1

fi

for i in ‘cat $1‘

do

i=${i%%,*}

potential=‘ls "${2}"$i*.rpm 2>/dev/null | sed ’s/ /\\\ /g’‘

if [-n "$potential"]

then

(

IFS=$’\n’

found=0

for j in $potential

do

temp=$(rpm -qp --queryformat "%{NAME}" "${j}")

if ["$i" = "$temp"]

then

echo $i,${j##*/}

found=1

fi

done

if [$found -eq 0]

then

echo $i,###

fi

)

else

echo $i,###

fi

done

58

APPENDIX B

MASTER NODE RPM INSTALL SCRIPT

#!/usr/bin/perl

$|=1;

if (@ARGV==0)

{

print "Useage: $0 <rpm list>\n";

}

open (RPMFILE, $ARGV[0]) or die "Cannot open file";

@rpmList= <RPMFILE>;

close (RPMFILE);

chomp @rpmList;

foreach $i (@rpmList) {

$i=~s/#.*//;

}

for ($i=0; $i<@rpmList; $i++) {

if ($rpmList[$i]=~m/^[\t]*$/) {

splice(@rpmList, $i, 1);

$i--;

}

}

foreach $i (@rpmList) {

59

$file=$i;

$options=$i;

$file=~s/(.*),/$1/;

$options=~s/.*,[\t]*(.*)/$1/;

if ($options=~m/^$/) {

$options="--upgrade --nosignature";

}

while (1) {

print "Installing $file\n";

$results=‘rpm --test $options $file 2>&1‘;

if ($?!=0) {

if ($results=~m/already installed/) {

print " Skipping installation of $file \

... package already installed.\n";

last;

}

else {

print "\nThe following conflict ocurred while\

testing the installion of $file\n\n";

print "--$results--\n";

print "How do you want to proceed?\n\n";

print "If you can correct the problem in\

another shell\n";

print "then type \"t\" to test again and \

install.\n\n";

print "To force installation by using the \

--force option type \"f\"\n";

print "To do a --nodeps installation type \

\"d\"\n\n";

print "Options f and d can be combined.\n\n";

print "Or \"Enter\" without typing anything \

to skip\n";

$response=<STDIN>;

if ($response=~m/[t]/) {

next;

}

60

elsif ($response=~m/[fFdD]/) {

$response=~s/[^fFdD]//;

$response=~s/[fF]/ --force/;

$response=~s/[dD]/ --nodeps/;

$options=$options . $response;

system "rpm $options $file";

last;

}

else {

last;

}

}

}

else {

system "rpm $options $file";

last;

}

}

}

