
Map-Reduce using Hadoop

Marissa Hollingsworth and Amit Jain∗

Department of Computer Science
College of Engineering

Boise State University

∗Chief Science Officer

Boise Computing Partners

Big Data, Big Disks, Cheap Computers

I “In pioneer days they used oxen for heavy pulling, and when
one ox couldn’t budge a log, they didn’t try to grow a larger
ox. We shouldn’t be trying for bigger computers, but for more
systems of computers.” Rear Admiral Grace Hopper.

I “More data usually beats better algorithms.” Anand
Rajaraman.

I “The good news is that Big Data is here. The bad news is
that we are struggling to store and analyze it.” Tom White.

Big Data, Big Disks, Cheap Computers

I “In pioneer days they used oxen for heavy pulling, and when
one ox couldn’t budge a log, they didn’t try to grow a larger
ox. We shouldn’t be trying for bigger computers, but for more
systems of computers.” Rear Admiral Grace Hopper.

I “More data usually beats better algorithms.” Anand
Rajaraman.

I “The good news is that Big Data is here. The bad news is
that we are struggling to store and analyze it.” Tom White.

Big Data, Big Disks, Cheap Computers

I “In pioneer days they used oxen for heavy pulling, and when
one ox couldn’t budge a log, they didn’t try to grow a larger
ox. We shouldn’t be trying for bigger computers, but for more
systems of computers.” Rear Admiral Grace Hopper.

I “More data usually beats better algorithms.” Anand
Rajaraman.

I “The good news is that Big Data is here. The bad news is
that we are struggling to store and analyze it.” Tom White.

Introduction

I MapReduce is a programming model and an associated
implementation for processing and generating large data sets.

I Users specify a map function that processes a key/value pair
to generate a set of intermediate key/value pairs, and a
reduce function that merges all intermediate values associated
with the same intermediate key.

I Allows programmers without any experience with parallel and
distributed systems to easily utilize the resources of a large
distributed system.

Introduction

I MapReduce is a programming model and an associated
implementation for processing and generating large data sets.

I Users specify a map function that processes a key/value pair
to generate a set of intermediate key/value pairs, and a
reduce function that merges all intermediate values associated
with the same intermediate key.

I Allows programmers without any experience with parallel and
distributed systems to easily utilize the resources of a large
distributed system.

Introduction

I MapReduce is a programming model and an associated
implementation for processing and generating large data sets.

I Users specify a map function that processes a key/value pair
to generate a set of intermediate key/value pairs, and a
reduce function that merges all intermediate values associated
with the same intermediate key.

I Allows programmers without any experience with parallel and
distributed systems to easily utilize the resources of a large
distributed system.

Introduced by Google. Used internally for all major computations
on over 100k servers. Yahoo is running on over 36,000 Linux
servers with 5 PBs of data. Facebook has over 2 PB of data and
growing at 10TB per day. Amazon is leasing servers to run map
reduce computations (EC2 and S3 programs). Microsoft is
developing Dryad (a super set of Map-Reduce).

Introduced by Google. Used internally for all major computations
on over 100k servers. Yahoo is running on over 36,000 Linux
servers with 5 PBs of data. Facebook has over 2 PB of data and
growing at 10TB per day. Amazon is leasing servers to run map
reduce computations (EC2 and S3 programs). Microsoft is
developing Dryad (a super set of Map-Reduce).

MapReduce Programming Model

I Map method, written by the user, takes an input pair and
produces a set of intermediate key/value pairs. The
MapReduce library groups together all intermediate values
associated with the same intermediate key I and passes them
to the Reduce function.

I Reduce method, also written by the user, accepts an
intermediate key I and a set of values for that key. It merges
together these values to form a possibly smaller set of values.
Typically just zero or one output value is produced per Reduce
invocation. The intermediate values are supplied to the users
reduce function via an iterator. This allows us to handle lists
of values that are too large to fit in memory.

I MapReduce Specification Object. Contains names of
input/output files and optional tuning parameters. The user
then invokes the MapReduce function, passing it the
specification object. The users code is linked together with
the MapReduce library.

MapReduce Programming Model

I Map method, written by the user, takes an input pair and
produces a set of intermediate key/value pairs. The
MapReduce library groups together all intermediate values
associated with the same intermediate key I and passes them
to the Reduce function.

I Reduce method, also written by the user, accepts an
intermediate key I and a set of values for that key. It merges
together these values to form a possibly smaller set of values.
Typically just zero or one output value is produced per Reduce
invocation. The intermediate values are supplied to the users
reduce function via an iterator. This allows us to handle lists
of values that are too large to fit in memory.

I MapReduce Specification Object. Contains names of
input/output files and optional tuning parameters. The user
then invokes the MapReduce function, passing it the
specification object. The users code is linked together with
the MapReduce library.

MapReduce Programming Model

I Map method, written by the user, takes an input pair and
produces a set of intermediate key/value pairs. The
MapReduce library groups together all intermediate values
associated with the same intermediate key I and passes them
to the Reduce function.

I Reduce method, also written by the user, accepts an
intermediate key I and a set of values for that key. It merges
together these values to form a possibly smaller set of values.
Typically just zero or one output value is produced per Reduce
invocation. The intermediate values are supplied to the users
reduce function via an iterator. This allows us to handle lists
of values that are too large to fit in memory.

I MapReduce Specification Object. Contains names of
input/output files and optional tuning parameters. The user
then invokes the MapReduce function, passing it the
specification object. The users code is linked together with
the MapReduce library.

A MapReduce Example

Consider the problem of counting the number of occurrences of
each word in a large collection of documents.

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(key, AsString(result));

MapReduce Examples

I Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an identity
function that just copies the supplied intermediate data to the
output.

I Count of URL Access Frequency: The map function
processes logs of web page requests and outputs <URL, 1>.
The reduce function adds together all values for the same
URL and emits a <URL, total count> pair.

I Reverse Web-Link Graph: The map function outputs
<target, source> pairs for each link to a target URL found in
a page named source. The reduce function concatenates the
list of all source URLs associated with a given target URL and
emits the pair: <target, list(source)>

MapReduce Examples

I Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an identity
function that just copies the supplied intermediate data to the
output.

I Count of URL Access Frequency: The map function
processes logs of web page requests and outputs <URL, 1>.
The reduce function adds together all values for the same
URL and emits a <URL, total count> pair.

I Reverse Web-Link Graph: The map function outputs
<target, source> pairs for each link to a target URL found in
a page named source. The reduce function concatenates the
list of all source URLs associated with a given target URL and
emits the pair: <target, list(source)>

MapReduce Examples

I Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an identity
function that just copies the supplied intermediate data to the
output.

I Count of URL Access Frequency: The map function
processes logs of web page requests and outputs <URL, 1>.
The reduce function adds together all values for the same
URL and emits a <URL, total count> pair.

I Reverse Web-Link Graph: The map function outputs
<target, source> pairs for each link to a target URL found in
a page named source. The reduce function concatenates the
list of all source URLs associated with a given target URL and
emits the pair: <target, list(source)>

MapReduce Examples (contd.)

I Inverted Index: The map function parses each document,
and emits a sequence of <word, document ID> pairs. The
reduce function accepts all pairs for a given word, sorts the
corresponding document IDs and emits a
<word, list(document ID)> pair. The set of all output pairs
forms a simple inverted index. It is easy to augment this
computation to keep track of word positions.

I Distributed Sort: The map function extracts the key from
each record, and emits a <key, record> pair. The reduce
function emits all pairs unchanged. This computation depends
on the partitioning and ordering facilities that are provided in
a MapReduce implementation.

MapReduce Examples (contd.)

I Inverted Index: The map function parses each document,
and emits a sequence of <word, document ID> pairs. The
reduce function accepts all pairs for a given word, sorts the
corresponding document IDs and emits a
<word, list(document ID)> pair. The set of all output pairs
forms a simple inverted index. It is easy to augment this
computation to keep track of word positions.

I Distributed Sort: The map function extracts the key from
each record, and emits a <key, record> pair. The reduce
function emits all pairs unchanged. This computation depends
on the partitioning and ordering facilities that are provided in
a MapReduce implementation.

MapReduce Examples (contd.)

I Capitalization Probability: In a collection of text
documents, find the percentage capitalization for each letter
of the alphabet.

’a’ → (“A”, 0)
’A’ → (“A”, 1)

I Track Statistics at Last.fm: We will cover this in detail as
our case study in the second half of the talk.

MapReduce Examples (contd.)

I Capitalization Probability: In a collection of text
documents, find the percentage capitalization for each letter
of the alphabet.

’a’ → (“A”, 0)
’A’ → (“A”, 1)

I Track Statistics at Last.fm: We will cover this in detail as
our case study in the second half of the talk.

MapReduce Examples (contd.)

I Capitalization Probability: In a collection of text
documents, find the percentage capitalization for each letter
of the alphabet.

’a’ → (“A”, 0)
’A’ → (“A”, 1)

I Track Statistics at Last.fm: We will cover this in detail as
our case study in the second half of the talk.

MapReduce versus Relational Databases

Traditional RDBMS MapReduce
Data size GB-TBs TBs-PBs
Access Interactive and batch Batch
Updates Read/write many times Write once, read many times
Structure Static Schema Dynamic Schema
Integrity High Low
Scaling Nonlinear Linear

Hadoop is a software platform that lets one easily write and run
parallel-distributed applications that process vast amounts of data.
Features of Hadoop:

I Scalable: Hadoop can reliably store and process Petabytes.

I Economical: It distributes the data and processing across
clusters of commonly available computers. These clusters can
number into the thousands of nodes.

I Efficient: By distributing the data, Hadoop can process it in
parallel on the nodes where the data is located. This makes it
extremely efficient.

I Reliable: Hadoop automatically maintains multiple copies of
data and automatically redeploys computing tasks based on
failures.

Hadoop subprojects
The core subprojects:

I Hadoop Common: The common utilities that support the other
Hadoop subprojects.

I HDFS: A distributed file system that provides high throughput access
to application data.

I MapReduce: A software framework for distributed processing of
large data sets on compute clusters.

Other Hadoop-related projects at Apache include:

I Avro: A data serialization system.
I Chukwa: A data collection system for managing large distributed

systems.
I HBase: A scalable, distributed database.
I Hive: A data warehouse infrastructure with SQL ad hoc querying.
I Mahout: A scalable machine learning and data mining library.
I Pig : A high-level parallel data-flow language and execution

framework.
I ZooKeeper : A high-performance distributed coordination service.
I Sqoop: A tool for efficiently moving data between relational

databases and HDFS.

Hadoop subprojects
The core subprojects:

I Hadoop Common: The common utilities that support the other
Hadoop subprojects.

I HDFS: A distributed file system that provides high throughput access
to application data.

I MapReduce: A software framework for distributed processing of
large data sets on compute clusters.

Other Hadoop-related projects at Apache include:

I Avro: A data serialization system.
I Chukwa: A data collection system for managing large distributed

systems.
I HBase: A scalable, distributed database.
I Hive: A data warehouse infrastructure with SQL ad hoc querying.
I Mahout: A scalable machine learning and data mining library.
I Pig : A high-level parallel data-flow language and execution

framework.
I ZooKeeper : A high-performance distributed coordination service.
I Sqoop: A tool for efficiently moving data between relational

databases and HDFS.

Hadoop Implementation

Hadoop implements MapReduce, using the Hadoop Distributed
File System (HDFS) (see figure below.) MapReduce divides
applications into many small blocks of work. HDFS creates
multiple replicas of data blocks for reliability, placing them on
compute nodes around the cluster. MapReduce can then process
the data where it is located.

Hadoop History

I Hadoop is sub-project of the Apache foundation. Receives
sponsorship from Google, Yahoo, Microsoft, HP and others.

I Hadoop is written in Java. Hadoop MapReduce programs can
be written in Java as well as several other languages.

I Hadoop grew out of the Nutch Web Crawler project.

I Hadoop programs can be developed using Eclipse/NetBeans
on Linux or MS Windows. To use MS Windows requires
Cygwin package. MS Windows is recommended for
development but not as a full production Hadoop cluster.

I Used by Yahoo, Facebook, Amazon, RackSpace, Twitter,
eBay, LinkedIn, New York Times, Last.fm, E-Harmony,
Microsoft (via acquisition of Powerset) and many others.
Several cloud consulting companies like Cloudera.

I New York Times article on Hadoop.
http://www.nytimes.com/2009/03/17/technology/

business-computing/17cloud.html

Hadoop History

I Hadoop is sub-project of the Apache foundation. Receives
sponsorship from Google, Yahoo, Microsoft, HP and others.

I Hadoop is written in Java. Hadoop MapReduce programs can
be written in Java as well as several other languages.

I Hadoop grew out of the Nutch Web Crawler project.

I Hadoop programs can be developed using Eclipse/NetBeans
on Linux or MS Windows. To use MS Windows requires
Cygwin package. MS Windows is recommended for
development but not as a full production Hadoop cluster.

I Used by Yahoo, Facebook, Amazon, RackSpace, Twitter,
eBay, LinkedIn, New York Times, Last.fm, E-Harmony,
Microsoft (via acquisition of Powerset) and many others.
Several cloud consulting companies like Cloudera.

I New York Times article on Hadoop.
http://www.nytimes.com/2009/03/17/technology/

business-computing/17cloud.html

Hadoop History

I Hadoop is sub-project of the Apache foundation. Receives
sponsorship from Google, Yahoo, Microsoft, HP and others.

I Hadoop is written in Java. Hadoop MapReduce programs can
be written in Java as well as several other languages.

I Hadoop grew out of the Nutch Web Crawler project.

I Hadoop programs can be developed using Eclipse/NetBeans
on Linux or MS Windows. To use MS Windows requires
Cygwin package. MS Windows is recommended for
development but not as a full production Hadoop cluster.

I Used by Yahoo, Facebook, Amazon, RackSpace, Twitter,
eBay, LinkedIn, New York Times, Last.fm, E-Harmony,
Microsoft (via acquisition of Powerset) and many others.
Several cloud consulting companies like Cloudera.

I New York Times article on Hadoop.
http://www.nytimes.com/2009/03/17/technology/

business-computing/17cloud.html

Hadoop Map-Reduce Inputs and Outputs

I The Map/Reduce framework operates exclusively on <key , value >
pairs, that is, the framework views the input to the job as a set of
<key , value > pairs and produces a set of <key , value > pairs as the
output of the job, conceivably of different types.

I The key and value classes have to be serializable by the framework
and hence need to implement the Writable interface. Additionally, the
key classes have to implement the WritableComparable interface to
facilitate sorting by the framework.

I The user needs to implement a Mapper class as well as a Reducer
class. Optionally, the user can also write a Combiner class.

(input) < k1, v1 >→ map→< k2, v2 >→ combine→< k2, v2 >

→ reduce→< k3, v3 > (output)

Hadoop Map-Reduce Inputs and Outputs

I The Map/Reduce framework operates exclusively on <key , value >
pairs, that is, the framework views the input to the job as a set of
<key , value > pairs and produces a set of <key , value > pairs as the
output of the job, conceivably of different types.

I The key and value classes have to be serializable by the framework
and hence need to implement the Writable interface. Additionally, the
key classes have to implement the WritableComparable interface to
facilitate sorting by the framework.

I The user needs to implement a Mapper class as well as a Reducer
class. Optionally, the user can also write a Combiner class.

(input) < k1, v1 >→ map→< k2, v2 >→ combine→< k2, v2 >

→ reduce→< k3, v3 > (output)

Hadoop Map-Reduce Inputs and Outputs

I The Map/Reduce framework operates exclusively on <key , value >
pairs, that is, the framework views the input to the job as a set of
<key , value > pairs and produces a set of <key , value > pairs as the
output of the job, conceivably of different types.

I The key and value classes have to be serializable by the framework
and hence need to implement the Writable interface. Additionally, the
key classes have to implement the WritableComparable interface to
facilitate sorting by the framework.

I The user needs to implement a Mapper class as well as a Reducer
class. Optionally, the user can also write a Combiner class.

(input) < k1, v1 >→ map→< k2, v2 >→ combine→< k2, v2 >

→ reduce→< k3, v3 > (output)

How to write a Hadoop Map class
Subclass from MapReduceBase and implement the Mapper interface.

public class MyMapper<K extends WritableComparable, V extends Writable>
extends MapReduceBase implements Mapper<K, V, K, V> { ... }

The Mapper interface provides a single method:
public void map(K key, V val, OutputCollector<K, V> output,
Reporter reporter)

I WriteableComparable key:
I Writeable value:
I OutputCollector output: this has the collect method to output a

<key, value> pair
I Reporter reporter: allows the application code to permit alteration

of status

The Hadoop system divides the input data into logical “records” and then
calls map() once for each record. For text files, a record is one line of text.
The key then is the byte-offset and the value is a line from the text file.
For other input types, it can be defined differently. The main method is
responsible for setting output key values and value types.

How to write a Hadoop Reduce class
Subclass from MapReduceBase and implement the Reducer interface.

public class MyReducer<K extends WritableComparable, V extends Writable>
extends MapReduceBase implements Reducer<K, V, K, V> {...}

The Reducer interface provides a single method:
public void reduce(K key, Iterator<V> values,
OutputCollector<K, V> output, Reporter reporter)

I WriteableComparable key:
I Iterator values:
I OutputCollector output:
I Reporter reporter:

Given all the values for the key, the Reduce code typically iterates
over all the values and either concatenates the values together in
some way to make a large summary object, or combines and
reduces the values in some way to yield a short summary value.

WordCount example in Java with Hadoop
Problem: To count the number of occurrences of each word in a large
collection of documents.

/**
* Counts the words in each line.
* For each line of input, break the line into words and emit them as (word, 1).
*/

public static class Map extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable>

{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException

{
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
output.collect(word, one);

}
}

}

WordCount Example continued

/**
* A reducer class that just emits the sum of the input values.
*/

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable>

{
public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException

{
int sum = 0;
while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}
}

WordCount Example continued

public static void main(String[] args) throws Exception
{

if (args.length != 2) {
printUsage();
System.exit(1);

}
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(new Path(args[0]));
FileOutputFormat.setOutputPath(new Path(args[1]));

JobClient.runJob(conf);
}

MapReduce: High-Level Data Flow

Case Analysis Example

public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private final static IntWritable zero = new IntWritable(0);
private Text word = new Text();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String line = value.toString();

for (int i = 0; i < line.length(); i++) {
if (Character.isLowerCase(line.charAt(i))) {

word.set(String.valueOf(line.charAt(i)).toUpperCase());
output.collect(word, zero);

} else if (Character.isUpperCase(line.charAt(i))) {
word.set(String.valueOf(line.charAt(i)));
output.collect(word, one);

} else {
word.set("other");
output.collect(word, one);

}
}

}

Case Analysis Example (contd.)

public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, Text> {

private Text result = new Text();

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {

long total = 0;
int upper = 0;

while (values.hasNext()) {
upper += values.next().get();
total++;

}
result.set(String.format("%16d %16d %16d %16.2f", total, upper,

(total - upper),((double)upper / total)));
output.collect(key, result);

}
}

Case Analysis Example (contd.)

public static void main(String[] args) throws Exception {
if (args.length != 2) {

printUsage();
System.exit(1);

}
JobConf conf = new JobConf(CaseAnalysis.class);
conf.setJobName("caseanalysis");

conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);

conf.setMapperClass(Map.class);
// conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);
}

MapReduce Optimizations

I Overlap of maps, shuffle, and sort
I Mapper locality

I Schedule mappers close to the data.

I Combiner
I Mappers may generate duplicate keys
I Side-effect free reducer can be run on mapper node
I Minimizes data size before transfer
I Reducer is still run

I Speculative execution to help with load-balancing
I Some nodes may be slower
I Run duplicate task on another node, take first answer as

correct and abandon other duplicate tasks
I Only done as we start getting toward the end of the tasks

Setting up Hadoop
I Download the latest stable version of Hadoop from

http://hadoop.apache.org/.
I Unpack the tarball that you downloaded in previous step.

tar xzvf hadoop-0.20.2.tar.gz
I Edit conf/hadoop-env.sh and at least set JAVA HOME to point to

Java installation folder. You will need Java version 1.6 or higher.
I Now run bin/hadoop to test Java setup. You should get output

similar to shown below.

[amit@kohinoor hadoop-0.20.2]$ bin/hadoop
Usage: hadoop [--config confdir] COMMAND
where COMMAND is one of:
...

I We can use hadoop in three modes:
I Standalone mode: Everything runs in a single process. Useful for

debugging.
I Pseudo-distributed mode: Multiple processes as in distributed mode

but they all run on one host. Again useful for debugging distributed
mode of operation before unleashing it on a real cluster.

I Distributed mode: “The real thing!” Multiple processes running on
multiple machines.

Setting up Hadoop
I Download the latest stable version of Hadoop from

http://hadoop.apache.org/.
I Unpack the tarball that you downloaded in previous step.

tar xzvf hadoop-0.20.2.tar.gz
I Edit conf/hadoop-env.sh and at least set JAVA HOME to point to

Java installation folder. You will need Java version 1.6 or higher.
I Now run bin/hadoop to test Java setup. You should get output

similar to shown below.

[amit@kohinoor hadoop-0.20.2]$ bin/hadoop
Usage: hadoop [--config confdir] COMMAND
where COMMAND is one of:
...

I We can use hadoop in three modes:
I Standalone mode: Everything runs in a single process. Useful for

debugging.
I Pseudo-distributed mode: Multiple processes as in distributed mode

but they all run on one host. Again useful for debugging distributed
mode of operation before unleashing it on a real cluster.

I Distributed mode: “The real thing!” Multiple processes running on
multiple machines.

Standalone and Pseudo-Distributed Mode

I Hadoop comes ready to run in standalone mode out of the box. Try
the following with the wordcount jar file to test Hadoop.

mkdir input
cp conf/*.xml input
bin/hadoop jar wordcount.jar input output
cat output/*

I To run in pseudo-distributed mode, we need to specify the following:
I The NameNode (Distributed Filesystem master) host and port. This is

specified with the configuration property fs.default.name.
I The JobTracker (MapReduce master) host and port. This is specified

with the configuration property mapred.job.tracker.
I The Replication Factor should be set to 1 with the property

dfs.replication.
I A slaves file that lists the names of all the hosts in the cluster. The

default slaves file is conf/slaves it should contain just one hostname:
localhost.

I Make sure that you can run ssh localhost command without a
password. If you cannot, then set it up as follows:
ssh-keygen -t dsa -P ’’ -f ~/.ssh/id_dsa
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Standalone and Pseudo-Distributed Mode

I Hadoop comes ready to run in standalone mode out of the box. Try
the following with the wordcount jar file to test Hadoop.

mkdir input
cp conf/*.xml input
bin/hadoop jar wordcount.jar input output
cat output/*

I To run in pseudo-distributed mode, we need to specify the following:
I The NameNode (Distributed Filesystem master) host and port. This is

specified with the configuration property fs.default.name.
I The JobTracker (MapReduce master) host and port. This is specified

with the configuration property mapred.job.tracker.
I The Replication Factor should be set to 1 with the property

dfs.replication.
I A slaves file that lists the names of all the hosts in the cluster. The

default slaves file is conf/slaves it should contain just one hostname:
localhost.

I Make sure that you can run ssh localhost command without a
password. If you cannot, then set it up as follows:
ssh-keygen -t dsa -P ’’ -f ~/.ssh/id_dsa
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Standalone and Pseudo-Distributed Mode

I Hadoop comes ready to run in standalone mode out of the box. Try
the following with the wordcount jar file to test Hadoop.

mkdir input
cp conf/*.xml input
bin/hadoop jar wordcount.jar input output
cat output/*

I To run in pseudo-distributed mode, we need to specify the following:
I The NameNode (Distributed Filesystem master) host and port. This is

specified with the configuration property fs.default.name.
I The JobTracker (MapReduce master) host and port. This is specified

with the configuration property mapred.job.tracker.
I The Replication Factor should be set to 1 with the property

dfs.replication.
I A slaves file that lists the names of all the hosts in the cluster. The

default slaves file is conf/slaves it should contain just one hostname:
localhost.

I Make sure that you can run ssh localhost command without a
password. If you cannot, then set it up as follows:
ssh-keygen -t dsa -P ’’ -f ~/.ssh/id_dsa
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Pseudo-Distributed Mode

I To run everything in one node, edit three config files so that
they contain the configuration shown below:

--> conf/core-site.xml
<configuration>
<property> <name>fs.default.name</name>

<value>hdfs://localhost:9000</value> </property>
</configuration>

--> conf/hdfs-site.xml
<configuration>
<property> <name>dfs.replication</name>

<value>1</value> </property>
</configuration>

--> conf/mapred-site.xml
<configuration>
<property> <name>mapred.job.tracker</name>

<value>localhost:9001</value> </property>
</configuration>

Pseudo-Distributed Mode

I To run everything in one node, edit three config files so that
they contain the configuration shown below:

--> conf/core-site.xml
<configuration>
<property> <name>fs.default.name</name>

<value>hdfs://localhost:9000</value> </property>
</configuration>

--> conf/hdfs-site.xml
<configuration>
<property> <name>dfs.replication</name>

<value>1</value> </property>
</configuration>

--> conf/mapred-site.xml
<configuration>
<property> <name>mapred.job.tracker</name>

<value>localhost:9001</value> </property>
</configuration>

Pseudo-Distributed Mode

I To run everything in one node, edit three config files so that
they contain the configuration shown below:

--> conf/core-site.xml
<configuration>
<property> <name>fs.default.name</name>

<value>hdfs://localhost:9000</value> </property>
</configuration>

--> conf/hdfs-site.xml
<configuration>
<property> <name>dfs.replication</name>

<value>1</value> </property>
</configuration>

--> conf/mapred-site.xml
<configuration>
<property> <name>mapred.job.tracker</name>

<value>localhost:9001</value> </property>
</configuration>

Pseudo-Distributed Mode

I Now create a new Hadoop distributed file system (HDFS)
with the command:
bin/hadoop namenode -format

I Start the Hadoop daemons.
bin/start-all.sh

I Put input files into the Distributed file system.
bin/hadoop dfs -put input input

I Now run the distributed job and copy output back to local file
system.
bin/hadoop jar wordcount.jar input output

bin/hadoop dfs -get output output

I Point your web browser to localhost:50030 to watch the
Hadoop job tracker and to localhost:50070 to be able to
browse the Hadoop DFS and get its status.

I When you are done, stop the Hadoop daemons as follows.
bin/stop-all.sh

Pseudo-Distributed Mode

I Now create a new Hadoop distributed file system (HDFS)
with the command:
bin/hadoop namenode -format

I Start the Hadoop daemons.
bin/start-all.sh

I Put input files into the Distributed file system.
bin/hadoop dfs -put input input

I Now run the distributed job and copy output back to local file
system.
bin/hadoop jar wordcount.jar input output

bin/hadoop dfs -get output output

I Point your web browser to localhost:50030 to watch the
Hadoop job tracker and to localhost:50070 to be able to
browse the Hadoop DFS and get its status.

I When you are done, stop the Hadoop daemons as follows.
bin/stop-all.sh

Pseudo-Distributed Mode

I Now create a new Hadoop distributed file system (HDFS)
with the command:
bin/hadoop namenode -format

I Start the Hadoop daemons.
bin/start-all.sh

I Put input files into the Distributed file system.
bin/hadoop dfs -put input input

I Now run the distributed job and copy output back to local file
system.
bin/hadoop jar wordcount.jar input output

bin/hadoop dfs -get output output

I Point your web browser to localhost:50030 to watch the
Hadoop job tracker and to localhost:50070 to be able to
browse the Hadoop DFS and get its status.

I When you are done, stop the Hadoop daemons as follows.
bin/stop-all.sh

Pseudo-Distributed Mode

I Now create a new Hadoop distributed file system (HDFS)
with the command:
bin/hadoop namenode -format

I Start the Hadoop daemons.
bin/start-all.sh

I Put input files into the Distributed file system.
bin/hadoop dfs -put input input

I Now run the distributed job and copy output back to local file
system.
bin/hadoop jar wordcount.jar input output

bin/hadoop dfs -get output output

I Point your web browser to localhost:50030 to watch the
Hadoop job tracker and to localhost:50070 to be able to
browse the Hadoop DFS and get its status.

I When you are done, stop the Hadoop daemons as follows.
bin/stop-all.sh

Pseudo-Distributed Mode

I Now create a new Hadoop distributed file system (HDFS)
with the command:
bin/hadoop namenode -format

I Start the Hadoop daemons.
bin/start-all.sh

I Put input files into the Distributed file system.
bin/hadoop dfs -put input input

I Now run the distributed job and copy output back to local file
system.
bin/hadoop jar wordcount.jar input output

bin/hadoop dfs -get output output

I Point your web browser to localhost:50030 to watch the
Hadoop job tracker and to localhost:50070 to be able to
browse the Hadoop DFS and get its status.

I When you are done, stop the Hadoop daemons as follows.
bin/stop-all.sh

Pseudo-Distributed Mode

I Now create a new Hadoop distributed file system (HDFS)
with the command:
bin/hadoop namenode -format

I Start the Hadoop daemons.
bin/start-all.sh

I Put input files into the Distributed file system.
bin/hadoop dfs -put input input

I Now run the distributed job and copy output back to local file
system.
bin/hadoop jar wordcount.jar input output

bin/hadoop dfs -get output output

I Point your web browser to localhost:50030 to watch the
Hadoop job tracker and to localhost:50070 to be able to
browse the Hadoop DFS and get its status.

I When you are done, stop the Hadoop daemons as follows.
bin/stop-all.sh

A Case Study

I Internet radio and community-driven music discovery service
founded in 2002.

I Users transmit information to Last.fm servers indicating which
songs they are listening to.

I The received data is processed and stored so the user can
access it in the form of charts and so Last.fm can make
intelligent taste and compatibility decisions for generating
recommendations and radio stations.

I The track listening data is obtained from one of two sources:
I The listen is a scrobble when a user plays a track of his or her

own and sends the information to Last.fm through a client
application.

I The listen is a radio listen when the user tunes into a Last.fm
radio station and streams a song.

I Last.fm applications allow users to love, skip or ban each track
they listen to. This track listening data is also transmitted to
the server.

A Case Study

I Internet radio and community-driven music discovery service
founded in 2002.

I Users transmit information to Last.fm servers indicating which
songs they are listening to.

I The received data is processed and stored so the user can
access it in the form of charts and so Last.fm can make
intelligent taste and compatibility decisions for generating
recommendations and radio stations.

I The track listening data is obtained from one of two sources:
I The listen is a scrobble when a user plays a track of his or her

own and sends the information to Last.fm through a client
application.

I The listen is a radio listen when the user tunes into a Last.fm
radio station and streams a song.

I Last.fm applications allow users to love, skip or ban each track
they listen to. This track listening data is also transmitted to
the server.

A Case Study

I Internet radio and community-driven music discovery service
founded in 2002.

I Users transmit information to Last.fm servers indicating which
songs they are listening to.

I The received data is processed and stored so the user can
access it in the form of charts and so Last.fm can make
intelligent taste and compatibility decisions for generating
recommendations and radio stations.

I The track listening data is obtained from one of two sources:
I The listen is a scrobble when a user plays a track of his or her

own and sends the information to Last.fm through a client
application.

I The listen is a radio listen when the user tunes into a Last.fm
radio station and streams a song.

I Last.fm applications allow users to love, skip or ban each track
they listen to. This track listening data is also transmitted to
the server.

A Case Study

I Internet radio and community-driven music discovery service
founded in 2002.

I Users transmit information to Last.fm servers indicating which
songs they are listening to.

I The received data is processed and stored so the user can
access it in the form of charts and so Last.fm can make
intelligent taste and compatibility decisions for generating
recommendations and radio stations.

I The track listening data is obtained from one of two sources:
I The listen is a scrobble when a user plays a track of his or her

own and sends the information to Last.fm through a client
application.

I The listen is a radio listen when the user tunes into a Last.fm
radio station and streams a song.

I Last.fm applications allow users to love, skip or ban each track
they listen to. This track listening data is also transmitted to
the server.

Big Data at Last.fm

I Over 40M unique visitors and 500M pageviews each month

I Scrobble stats:
I Up to 800 scrobbles per second
I More than 40 million scrobbles per day
I Over 40 billion scrobbles so far

I Radio stats:
I Over 10 million streaming hours per month
I Over 400 thousand unique stations per day

I Each scrobble and radio listen generates at least one log line.

I In other words...lots of data!!

Big Data at Last.fm

I Over 40M unique visitors and 500M pageviews each month
I Scrobble stats:

I Up to 800 scrobbles per second
I More than 40 million scrobbles per day
I Over 40 billion scrobbles so far

I Radio stats:
I Over 10 million streaming hours per month
I Over 400 thousand unique stations per day

I Each scrobble and radio listen generates at least one log line.

I In other words...lots of data!!

Big Data at Last.fm

I Over 40M unique visitors and 500M pageviews each month
I Scrobble stats:

I Up to 800 scrobbles per second
I More than 40 million scrobbles per day
I Over 40 billion scrobbles so far

I Radio stats:
I Over 10 million streaming hours per month
I Over 400 thousand unique stations per day

I Each scrobble and radio listen generates at least one log line.

I In other words...lots of data!!

Big Data at Last.fm

I Over 40M unique visitors and 500M pageviews each month
I Scrobble stats:

I Up to 800 scrobbles per second
I More than 40 million scrobbles per day
I Over 40 billion scrobbles so far

I Radio stats:
I Over 10 million streaming hours per month
I Over 400 thousand unique stations per day

I Each scrobble and radio listen generates at least one log line.

I In other words...lots of data!!

I Started using Hadoop in 2006 as users grew from thousands
to millions.

I Hundreds of daily, monthly, and weekly jobs including,
I Site stats and metrics
I Chart generation (track statistics)
I Metadata corrections (e.g. misspellings of artists)
I Indexing for search and combining/formatting data for

recommendations
I Data insights, evaluations, reporting

I This case study will focus on the chart generation (Track
Statistics) job, which was the first Hadoop implementation at
Last.fm.

I Started using Hadoop in 2006 as users grew from thousands
to millions.

I Hundreds of daily, monthly, and weekly jobs including,
I Site stats and metrics
I Chart generation (track statistics)
I Metadata corrections (e.g. misspellings of artists)
I Indexing for search and combining/formatting data for

recommendations
I Data insights, evaluations, reporting

I This case study will focus on the chart generation (Track
Statistics) job, which was the first Hadoop implementation at
Last.fm.

I Started using Hadoop in 2006 as users grew from thousands
to millions.

I Hundreds of daily, monthly, and weekly jobs including,
I Site stats and metrics
I Chart generation (track statistics)
I Metadata corrections (e.g. misspellings of artists)
I Indexing for search and combining/formatting data for

recommendations
I Data insights, evaluations, reporting

I This case study will focus on the chart generation (Track
Statistics) job, which was the first Hadoop implementation at
Last.fm.

I Last.FM’s “Herd of Elephants”
I 44 Nodes
I 8 cores per node
I 16GB memory per node
I 4 disks of 1 TB spinning at 7200 RPM per node

I Hive integration to run optimized SQL queries for analysis.

I Last.FM’s “Herd of Elephants”
I 44 Nodes
I 8 cores per node
I 16GB memory per node
I 4 disks of 1 TB spinning at 7200 RPM per node

I Hive integration to run optimized SQL queries for analysis.

Last.fm Chart Generation (Track Statistics)
The goal of the Track Statistics program is to take incoming
listening data and summarize it into a format that can be used to
display on the website or used as input to other Hadoop programs.

Last.fm Chart Generation (Track Statistics)
The goal of the Track Statistics program is to take incoming
listening data and summarize it into a format that can be used to
display on the website or used as input to other Hadoop programs.

Track Statistics Program
Two jobs to calculate values from the data, and a third job to merge the results.

Track Statistics Jobs
I Input: Gigabytes of space-delimited text files of the form (userID

trackID scrobble radioPlay skip), where the last three fields are 0 or 1.

UserId TrackId Scrobble Radio Skip
111115 222 0 1 0
111113 225 1 0 0
111117 223 0 1 1
111115 225 1 0 0

I Output: Charts require the following statistics per track:
I Number of unique listeners
I Number of scrobbles
I Number of radio listens
I Total number of listens
I Number of radio skips

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 1 1 0 1 1
225 2 2 2 0 0

Track Statistics Jobs
I Input: Gigabytes of space-delimited text files of the form (userID

trackID scrobble radioPlay skip), where the last three fields are 0 or 1.

UserId TrackId Scrobble Radio Skip
111115 222 0 1 0
111113 225 1 0 0
111117 223 0 1 1
111115 225 1 0 0

I Output: Charts require the following statistics per track:
I Number of unique listeners
I Number of scrobbles
I Number of radio listens
I Total number of listens
I Number of radio skips

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 1 1 0 1 1
225 2 2 2 0 0

Track Statistics Jobs
I Input: Gigabytes of space-delimited text files of the form (userID

trackID scrobble radioPlay skip), where the last three fields are 0 or 1.

UserId TrackId Scrobble Radio Skip
111115 222 0 1 0
111113 225 1 0 0
111117 223 0 1 1
111115 225 1 0 0

I Output: Charts require the following statistics per track:
I Number of unique listeners
I Number of scrobbles
I Number of radio listens
I Total number of listens
I Number of radio skips

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 1 1 0 1 1
225 2 2 2 0 0

Track Statistics Jobs
I Input: Gigabytes of space-delimited text files of the form (userID

trackID scrobble radioPlay skip), where the last three fields are 0 or 1.

UserId TrackId Scrobble Radio Skip
111115 222 0 1 0
111113 225 1 0 0
111117 223 0 1 1
111115 225 1 0 0

I Output: Charts require the following statistics per track:
I Number of unique listeners
I Number of scrobbles
I Number of radio listens
I Total number of listens
I Number of radio skips

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 1 1 0 1 1
225 2 2 2 0 0

UniqueListeners Job
Calculates the number of unique listeners per track.

I UniqueListenersMapper input:
I key is the line number of the current log entry.
I value is the space-delimited log entry.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I UniqueListenersMapper function:
I if(scrobbles <= 0 && radioListens <=0) output nothing;

else output(trackId, userId)
I map(0, ‘111115 222 0 1 0’) → <222, 111115>

I UniqueListenersMapper output:

TrackId UserId
IntWritable IntWritable

222 111115
225 111113
223 111117
225 111115

UniqueListeners Job
Calculates the number of unique listeners per track.

I UniqueListenersMapper input:
I key is the line number of the current log entry.
I value is the space-delimited log entry.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I UniqueListenersMapper function:
I if(scrobbles <= 0 && radioListens <=0) output nothing;

else output(trackId, userId)
I map(0, ‘111115 222 0 1 0’) → <222, 111115>

I UniqueListenersMapper output:

TrackId UserId
IntWritable IntWritable

222 111115
225 111113
223 111117
225 111115

UniqueListeners Job
Calculates the number of unique listeners per track.

I UniqueListenersMapper input:
I key is the line number of the current log entry.
I value is the space-delimited log entry.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I UniqueListenersMapper function:

I if(scrobbles <= 0 && radioListens <=0) output nothing;
else output(trackId, userId)

I map(0, ‘111115 222 0 1 0’) → <222, 111115>

I UniqueListenersMapper output:

TrackId UserId
IntWritable IntWritable

222 111115
225 111113
223 111117
225 111115

UniqueListeners Job
Calculates the number of unique listeners per track.

I UniqueListenersMapper input:
I key is the line number of the current log entry.
I value is the space-delimited log entry.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I UniqueListenersMapper function:
I if(scrobbles <= 0 && radioListens <=0) output nothing;

else output(trackId, userId)
I map(0, ‘111115 222 0 1 0’) → <222, 111115>

I UniqueListenersMapper output:

TrackId UserId
IntWritable IntWritable

222 111115
225 111113
223 111117
225 111115

UniqueListeners Job
Calculates the number of unique listeners per track.

I UniqueListenersMapper input:
I key is the line number of the current log entry.
I value is the space-delimited log entry.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I UniqueListenersMapper function:
I if(scrobbles <= 0 && radioListens <=0) output nothing;

else output(trackId, userId)
I map(0, ‘111115 222 0 1 0’) → <222, 111115>

I UniqueListenersMapper output:

TrackId UserId
IntWritable IntWritable

222 111115
225 111113
223 111117
225 111115

UniqueListeners Job
Calculates the number of unique listeners per track.

I UniqueListenersMapper input:
I key is the line number of the current log entry.
I value is the space-delimited log entry.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I UniqueListenersMapper function:
I if(scrobbles <= 0 && radioListens <=0) output nothing;

else output(trackId, userId)
I map(0, ‘111115 222 0 1 0’) → <222, 111115>

I UniqueListenersMapper output:

TrackId UserId
IntWritable IntWritable

222 111115
225 111113
223 111117
225 111115

UniqueListenersMapper Class

public static class UniqueListenersMapper extends MapReduceBase implements
Mapper<LongWritable, Text, IntWritable, IntWritable> {

@Override
public void map(LongWritable offset, Text line,
OutputCollector<IntWritable, IntWritable> output, Reporter reporter)
throws IOException {

String[] parts = (line.toString()).split(" ");

int scrobbles = Integer.parseInt(parts[COL_SCROBBLE]);
int radioListens = Integer.parseInt(parts[COL_RADIO]);

/* Ignore track if marked with zero plays */
if (scrobbles <= 0 && radioListens <= 0) return;

/* Output user id against track id */
IntWritable trackId = new IntWritable(Integer.parseInt(parts[COL_TRACKID]));
IntWritable userId = new IntWritable(Integer.parseInt(parts[COL_USERID]));

output.collect(trackId, userId);
}

}

UniqueListenersReducer

I UniqueListenersReducer input:
I key is the TrackID output by UniqueListenersMapper.
I value is the iterator over the list of all UserIDs who listened to the

track.

TrackId Iterator<UserIds>
IntWritable Iterator<IntWritable>
222 111115
225 111113 111115
223 111117

I UniqueListenersReducer function:
I Add userIds to a HashSet as you iterate the list. Since a HashSet

doesn’t store duplicates, the size of the set will be the number of
unique listeners.

I reduce(225, ‘111115 111113’) → <225, 2>

I UniqueListenersReducer output:

TrackId numListeners
IntWritable IntWritable
222 1
223 1
225 2

UniqueListenersReducer

I UniqueListenersReducer input:
I key is the TrackID output by UniqueListenersMapper.
I value is the iterator over the list of all UserIDs who listened to the

track.

TrackId Iterator<UserIds>
IntWritable Iterator<IntWritable>
222 111115
225 111113 111115
223 111117

I UniqueListenersReducer function:
I Add userIds to a HashSet as you iterate the list. Since a HashSet

doesn’t store duplicates, the size of the set will be the number of
unique listeners.

I reduce(225, ‘111115 111113’) → <225, 2>

I UniqueListenersReducer output:

TrackId numListeners
IntWritable IntWritable
222 1
223 1
225 2

UniqueListenersReducer

I UniqueListenersReducer input:
I key is the TrackID output by UniqueListenersMapper.
I value is the iterator over the list of all UserIDs who listened to the

track.

TrackId Iterator<UserIds>
IntWritable Iterator<IntWritable>
222 111115
225 111113 111115
223 111117

I UniqueListenersReducer function:

I Add userIds to a HashSet as you iterate the list. Since a HashSet
doesn’t store duplicates, the size of the set will be the number of
unique listeners.

I reduce(225, ‘111115 111113’) → <225, 2>

I UniqueListenersReducer output:

TrackId numListeners
IntWritable IntWritable
222 1
223 1
225 2

UniqueListenersReducer

I UniqueListenersReducer input:
I key is the TrackID output by UniqueListenersMapper.
I value is the iterator over the list of all UserIDs who listened to the

track.

TrackId Iterator<UserIds>
IntWritable Iterator<IntWritable>
222 111115
225 111113 111115
223 111117

I UniqueListenersReducer function:
I Add userIds to a HashSet as you iterate the list. Since a HashSet

doesn’t store duplicates, the size of the set will be the number of
unique listeners.

I reduce(225, ‘111115 111113’) → <225, 2>

I UniqueListenersReducer output:

TrackId numListeners
IntWritable IntWritable
222 1
223 1
225 2

UniqueListenersReducer

I UniqueListenersReducer input:
I key is the TrackID output by UniqueListenersMapper.
I value is the iterator over the list of all UserIDs who listened to the

track.

TrackId Iterator<UserIds>
IntWritable Iterator<IntWritable>
222 111115
225 111113 111115
223 111117

I UniqueListenersReducer function:
I Add userIds to a HashSet as you iterate the list. Since a HashSet

doesn’t store duplicates, the size of the set will be the number of
unique listeners.

I reduce(225, ‘111115 111113’) → <225, 2>

I UniqueListenersReducer output:

TrackId numListeners
IntWritable IntWritable
222 1
223 1
225 2

UniqueListenersReducer

I UniqueListenersReducer input:
I key is the TrackID output by UniqueListenersMapper.
I value is the iterator over the list of all UserIDs who listened to the

track.

TrackId Iterator<UserIds>
IntWritable Iterator<IntWritable>
222 111115
225 111113 111115
223 111117

I UniqueListenersReducer function:
I Add userIds to a HashSet as you iterate the list. Since a HashSet

doesn’t store duplicates, the size of the set will be the number of
unique listeners.

I reduce(225, ‘111115 111113’) → <225, 2>

I UniqueListenersReducer output:

TrackId numListeners
IntWritable IntWritable
222 1
223 1
225 2

UniqueListenersReducer Class

/**
* Receives a list of user IDs per track ID and puts them into a
* set to remove duplicates. The size of this set (the number of
* unique listeners) is emitted for each track.
*/

public static class UniqueListenersReducer extends MapReduceBase
implements Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {

@Override
public void reduce(IntWritable trackId, Iterator<IntWritable> values,
OutputCollector<IntWritable, IntWritable> output, Reporter reporter)
throws IOException {

Set<Integer> userIds = new HashSet<Integer>();

/* Add all users to set, duplicates automatically removed */
while (values.hasNext()) {
IntWritable userId = values.next();
userIds.add(Integer.valueOf(userId.get()));

}

/* Output trackId -> number of unique listeners per track */
output.collect(trackId, new IntWritable(userIds.size()));

}
}

SumTrackStats Job
Adds up the scrobble, radio and skip values for each track.

I SumTrackStatsMapper input: The same as UniqueListeners.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I SumTrackStatsMapper function:
I Simply parse input and output the values as a new TrackStats object (see

next slide).
I map(0, ‘111115 222 0 1 0’) →

<222, new TrackStats(0, 1, 0, 1, 0)>

I SumTrackStatsMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
225 0 1 1 0 0
223 0 1 0 1 1
225 0 1 1 0 0

SumTrackStats Job
Adds up the scrobble, radio and skip values for each track.

I SumTrackStatsMapper input: The same as UniqueListeners.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I SumTrackStatsMapper function:
I Simply parse input and output the values as a new TrackStats object (see

next slide).
I map(0, ‘111115 222 0 1 0’) →

<222, new TrackStats(0, 1, 0, 1, 0)>

I SumTrackStatsMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
225 0 1 1 0 0
223 0 1 0 1 1
225 0 1 1 0 0

SumTrackStats Job
Adds up the scrobble, radio and skip values for each track.

I SumTrackStatsMapper input: The same as UniqueListeners.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I SumTrackStatsMapper function:

I Simply parse input and output the values as a new TrackStats object (see
next slide).

I map(0, ‘111115 222 0 1 0’) →
<222, new TrackStats(0, 1, 0, 1, 0)>

I SumTrackStatsMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
225 0 1 1 0 0
223 0 1 0 1 1
225 0 1 1 0 0

SumTrackStats Job
Adds up the scrobble, radio and skip values for each track.

I SumTrackStatsMapper input: The same as UniqueListeners.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I SumTrackStatsMapper function:
I Simply parse input and output the values as a new TrackStats object (see

next slide).
I map(0, ‘111115 222 0 1 0’) →

<222, new TrackStats(0, 1, 0, 1, 0)>

I SumTrackStatsMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
225 0 1 1 0 0
223 0 1 0 1 1
225 0 1 1 0 0

SumTrackStats Job
Adds up the scrobble, radio and skip values for each track.

I SumTrackStatsMapper input: The same as UniqueListeners.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I SumTrackStatsMapper function:
I Simply parse input and output the values as a new TrackStats object (see

next slide).
I map(0, ‘111115 222 0 1 0’) →

<222, new TrackStats(0, 1, 0, 1, 0)>

I SumTrackStatsMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
225 0 1 1 0 0
223 0 1 0 1 1
225 0 1 1 0 0

SumTrackStats Job
Adds up the scrobble, radio and skip values for each track.

I SumTrackStatsMapper input: The same as UniqueListeners.

LineOfFile UserId TrackId Scrobble Radio Skip
LongWritable IntWritable IntWritable Boolean Boolean Boolean

0 111115 222 0 1 0
1 111113 225 1 0 0
2 111117 223 0 1 1
3 111115 225 1 0 0

I SumTrackStatsMapper function:
I Simply parse input and output the values as a new TrackStats object (see

next slide).
I map(0, ‘111115 222 0 1 0’) →

<222, new TrackStats(0, 1, 0, 1, 0)>

I SumTrackStatsMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
225 0 1 1 0 0
223 0 1 0 1 1
225 0 1 1 0 0

TrackStats object

public class TrackStats implements WritableComparable<TrackStats> {

private IntWritable listeners;
private IntWritable plays;
private IntWritable scrobbles;
private IntWritable radioPlays;
private IntWritable skips;

public TrackStats(int numListeners, int numPlays, int numScrobbles,
int numRadio, int numSkips) {

this.listeners = new IntWritable(numListeners);
this.plays = new IntWritable(numPlays);
this.scrobbles = new IntWritable(numScrobbles);
this.radioPlays = new IntWritable(numRadio);
this.skips = new IntWritable(numSkips);

}

public TrackStats() {
this(0, 0, 0, 0, 0);

}

...

}

SumTrackStatsMapper Class

public static class SumTrackStatsMapper extends MapReduceBase
implements Mapper<LongWritable, Text, IntWritable,
TrackStats> {

@Override
public void map(LongWritable offset, Text line,
OutputCollector<IntWritable, TrackStats> output,
Reporter reporter) throws IOException {

String[] parts = (line.toString()).split(" ");
int trackId = Integer.parseInt(parts[COL_TRACKID]);
int scrobbles = Integer.parseInt(parts[COL_SCROBBLE]);
int radio = Integer.parseInt(parts[COL_RADIO]);
int skip = Integer.parseInt(parts[COL_SKIP]);

TrackStats track = new TrackStats(0, scrobbles + radio,
scrobbles, radio, skip);

output.collect(new IntWritable(trackId), track);
}

}

SumTrackStatsReducer
I SumTrackStatsReducer input:

I key is the TrackID output by the mapper.
I value is the iterator over the list of TrackStats associated with

the track.

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (0,1,0,1,0)
225 (0,1,1,0,0) (0,1,1,0,0)
223 (0,1,0,1,1)

I SumTrackStatsReducer function:
I Create new TrackStats object to hold totals for current track.
I Iterate through values and add the stats of each value to the stats

of the object we created.
I reduce(225,‘(0,1,1,0,0) (0,1,1,0,0)’) → <225,

(0,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

SumTrackStatsReducer
I SumTrackStatsReducer input:

I key is the TrackID output by the mapper.
I value is the iterator over the list of TrackStats associated with

the track.

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (0,1,0,1,0)
225 (0,1,1,0,0) (0,1,1,0,0)
223 (0,1,0,1,1)

I SumTrackStatsReducer function:
I Create new TrackStats object to hold totals for current track.
I Iterate through values and add the stats of each value to the stats

of the object we created.
I reduce(225,‘(0,1,1,0,0) (0,1,1,0,0)’) → <225,

(0,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

SumTrackStatsReducer
I SumTrackStatsReducer input:

I key is the TrackID output by the mapper.
I value is the iterator over the list of TrackStats associated with

the track.

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (0,1,0,1,0)
225 (0,1,1,0,0) (0,1,1,0,0)
223 (0,1,0,1,1)

I SumTrackStatsReducer function:
I Create new TrackStats object to hold totals for current track.

I Iterate through values and add the stats of each value to the stats
of the object we created.

I reduce(225,‘(0,1,1,0,0) (0,1,1,0,0)’) → <225,
(0,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

SumTrackStatsReducer
I SumTrackStatsReducer input:

I key is the TrackID output by the mapper.
I value is the iterator over the list of TrackStats associated with

the track.

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (0,1,0,1,0)
225 (0,1,1,0,0) (0,1,1,0,0)
223 (0,1,0,1,1)

I SumTrackStatsReducer function:
I Create new TrackStats object to hold totals for current track.
I Iterate through values and add the stats of each value to the stats

of the object we created.

I reduce(225,‘(0,1,1,0,0) (0,1,1,0,0)’) → <225,
(0,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

SumTrackStatsReducer
I SumTrackStatsReducer input:

I key is the TrackID output by the mapper.
I value is the iterator over the list of TrackStats associated with

the track.

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (0,1,0,1,0)
225 (0,1,1,0,0) (0,1,1,0,0)
223 (0,1,0,1,1)

I SumTrackStatsReducer function:
I Create new TrackStats object to hold totals for current track.
I Iterate through values and add the stats of each value to the stats

of the object we created.
I reduce(225,‘(0,1,1,0,0) (0,1,1,0,0)’) → <225,

(0,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

SumTrackStatsReducer
I SumTrackStatsReducer input:

I key is the TrackID output by the mapper.
I value is the iterator over the list of TrackStats associated with

the track.

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (0,1,0,1,0)
225 (0,1,1,0,0) (0,1,1,0,0)
223 (0,1,0,1,1)

I SumTrackStatsReducer function:
I Create new TrackStats object to hold totals for current track.
I Iterate through values and add the stats of each value to the stats

of the object we created.
I reduce(225,‘(0,1,1,0,0) (0,1,1,0,0)’) → <225,

(0,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

SumTrackStatsReducer

public static class SumTrackStatsReducer extends MapReduceBase
implements Reducer<IntWritable, TrackStats, IntWritable,
TrackStats> {

@Override
public void reduce(IntWritable trackId, Iterator<TrackStats> values,

OutputCollector<IntWritable, TrackStats> output, Reporter
reporter) throws IOException {

/* Sum totals for this track */
TrackStats sum = new TrackStats();

while(values.hasNext()) {
TrackStats trackStats = (TrackStats) values.next();
sum.setListeners(sum.getListeners() + trackStats.getListeners());
sum.setPlays(sum.getPlays() + trackStats.getPlays());
sum.setSkips(sum.getSkips() + trackStats.getSkips());
sum.setScrobbles(sum.getScrobbles() + trackStats.getScrobbles());
sum.setRadioPlays(sum.getRadioPlays() + trackStats.getRadioPlays());

}
output.collect(trackId, sum);

}
}

Merging the Results: MergeResults Job
Merges the output from the UniqueListeners and SumTrackStats jobs.

I Specify a mapper for each input type:

MultipleInputs.addInputPath(conf, sumInputDir,
SequenceFileInputFormat.class, IdentityMapper.class);

MultipleInputs.addInputPath(conf, listenersInputDir,
SequenceFileInputFormat.class, MergeListenersMapper.class);

I IdentityMapper simply emits the trackId and TrackStats object
output by the SumTrackStats job.

I IdentityMapper input and output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

Merging the Results: MergeResults Job
Merges the output from the UniqueListeners and SumTrackStats jobs.

I Specify a mapper for each input type:

MultipleInputs.addInputPath(conf, sumInputDir,
SequenceFileInputFormat.class, IdentityMapper.class);

MultipleInputs.addInputPath(conf, listenersInputDir,
SequenceFileInputFormat.class, MergeListenersMapper.class);

I IdentityMapper simply emits the trackId and TrackStats object
output by the SumTrackStats job.

I IdentityMapper input and output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

Merging the Results: MergeResults Job
Merges the output from the UniqueListeners and SumTrackStats jobs.

I Specify a mapper for each input type:

MultipleInputs.addInputPath(conf, sumInputDir,
SequenceFileInputFormat.class, IdentityMapper.class);

MultipleInputs.addInputPath(conf, listenersInputDir,
SequenceFileInputFormat.class, MergeListenersMapper.class);

I IdentityMapper simply emits the trackId and TrackStats object
output by the SumTrackStats job.

I IdentityMapper input and output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

Merging the Results: MergeResults Job
Merges the output from the UniqueListeners and SumTrackStats jobs.

I Specify a mapper for each input type:

MultipleInputs.addInputPath(conf, sumInputDir,
SequenceFileInputFormat.class, IdentityMapper.class);

MultipleInputs.addInputPath(conf, listenersInputDir,
SequenceFileInputFormat.class, MergeListenersMapper.class);

I IdentityMapper simply emits the trackId and TrackStats object
output by the SumTrackStats job.

I IdentityMapper input and output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

Merging the Results: MergeResults Job
Merges the output from the UniqueListeners and SumTrackStats jobs.

I Specify a mapper for each input type:

MultipleInputs.addInputPath(conf, sumInputDir,
SequenceFileInputFormat.class, IdentityMapper.class);

MultipleInputs.addInputPath(conf, listenersInputDir,
SequenceFileInputFormat.class, MergeListenersMapper.class);

I IdentityMapper simply emits the trackId and TrackStats object
output by the SumTrackStats job.

I IdentityMapper input and output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 0 1 0 1 1
225 0 2 2 0 0

MergeListenersMapper
Prepares the data for input to the final reducer function by mapping the
TrackId to a TrackStats object with the number of unique listeners
set.

I MergeListenersMapper input: The UniqueListeners job
output.

TrackId numListeners
IntWritable IntWritable

222 1
223 1
225 2

I MergeListenersMapper function:
I Create a new TrackStats object per track and set the

numListeners attribute.
I map(225, 2) → <225, new TrackStats(2, 0, 0, 0, 0)>

I MergeListenersMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
222 1 0 0 0 0
223 1 0 0 0 0
225 2 0 0 0 0

MergeListenersMapper
Prepares the data for input to the final reducer function by mapping the
TrackId to a TrackStats object with the number of unique listeners
set.

I MergeListenersMapper input: The UniqueListeners job
output.

TrackId numListeners
IntWritable IntWritable

222 1
223 1
225 2

I MergeListenersMapper function:
I Create a new TrackStats object per track and set the

numListeners attribute.
I map(225, 2) → <225, new TrackStats(2, 0, 0, 0, 0)>

I MergeListenersMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
222 1 0 0 0 0
223 1 0 0 0 0
225 2 0 0 0 0

MergeListenersMapper
Prepares the data for input to the final reducer function by mapping the
TrackId to a TrackStats object with the number of unique listeners
set.

I MergeListenersMapper input: The UniqueListeners job
output.

TrackId numListeners
IntWritable IntWritable

222 1
223 1
225 2

I MergeListenersMapper function:

I Create a new TrackStats object per track and set the
numListeners attribute.

I map(225, 2) → <225, new TrackStats(2, 0, 0, 0, 0)>

I MergeListenersMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
222 1 0 0 0 0
223 1 0 0 0 0
225 2 0 0 0 0

MergeListenersMapper
Prepares the data for input to the final reducer function by mapping the
TrackId to a TrackStats object with the number of unique listeners
set.

I MergeListenersMapper input: The UniqueListeners job
output.

TrackId numListeners
IntWritable IntWritable

222 1
223 1
225 2

I MergeListenersMapper function:
I Create a new TrackStats object per track and set the

numListeners attribute.
I map(225, 2) → <225, new TrackStats(2, 0, 0, 0, 0)>

I MergeListenersMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
222 1 0 0 0 0
223 1 0 0 0 0
225 2 0 0 0 0

MergeListenersMapper
Prepares the data for input to the final reducer function by mapping the
TrackId to a TrackStats object with the number of unique listeners
set.

I MergeListenersMapper input: The UniqueListeners job
output.

TrackId numListeners
IntWritable IntWritable

222 1
223 1
225 2

I MergeListenersMapper function:
I Create a new TrackStats object per track and set the

numListeners attribute.
I map(225, 2) → <225, new TrackStats(2, 0, 0, 0, 0)>

I MergeListenersMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
222 1 0 0 0 0
223 1 0 0 0 0
225 2 0 0 0 0

MergeListenersMapper
Prepares the data for input to the final reducer function by mapping the
TrackId to a TrackStats object with the number of unique listeners
set.

I MergeListenersMapper input: The UniqueListeners job
output.

TrackId numListeners
IntWritable IntWritable

222 1
223 1
225 2

I MergeListenersMapper function:
I Create a new TrackStats object per track and set the

numListeners attribute.
I map(225, 2) → <225, new TrackStats(2, 0, 0, 0, 0)>

I MergeListenersMapper output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
222 1 0 0 0 0
223 1 0 0 0 0
225 2 0 0 0 0

MergeListenersMapper

public static class MergeListenersMapper extends MapReduceBase
implements Mapper<IntWritable, IntWritable, IntWritable,
TrackStats>

{

@Override
public void map(IntWritable trackId, IntWritable listenerCount,

OutputCollector<IntWritable, TrackStats> output,
Reporter reporter) throws IOException {

TrackStats trackStats = new TrackStats();
trackStats.setListeners(listenerCount.get());

output.collect(trackId, trackStats);
}

}

Final Reduce Stage: SumTrackStatsReducer
Finally, we have two partially defined TrackStats objects for each track. We
can reuse the SumTrackStatsReducer to combine them and emit the final
result.

I SumTrackStatsReducer input:
I key is the TrackID output by the two mappers.
I value is the iterator over the list of TrackStats associated with the track (in

this case, one contains the unique listener count and the other contains the
play, scrobble, radio listen, and skip counts).

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (1,0,0,0,0) (0,1,0,1,0)
223 (1,0,0,0,0) (0,1,0,1,1)
225 (2,0,0,0,0) (0,2,2,0,0)

I SumTrackStatsReducer function:
I reduce(225,‘(2,0,0,0,0) (0,2,2,0,0)’) → <225, (2,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 1 1 0 1 1
225 2 2 2 0 0

Final Reduce Stage: SumTrackStatsReducer
Finally, we have two partially defined TrackStats objects for each track. We
can reuse the SumTrackStatsReducer to combine them and emit the final
result.

I SumTrackStatsReducer input:
I key is the TrackID output by the two mappers.
I value is the iterator over the list of TrackStats associated with the track (in

this case, one contains the unique listener count and the other contains the
play, scrobble, radio listen, and skip counts).

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (1,0,0,0,0) (0,1,0,1,0)
223 (1,0,0,0,0) (0,1,0,1,1)
225 (2,0,0,0,0) (0,2,2,0,0)

I SumTrackStatsReducer function:
I reduce(225,‘(2,0,0,0,0) (0,2,2,0,0)’) → <225, (2,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 1 1 0 1 1
225 2 2 2 0 0

Final Reduce Stage: SumTrackStatsReducer
Finally, we have two partially defined TrackStats objects for each track. We
can reuse the SumTrackStatsReducer to combine them and emit the final
result.

I SumTrackStatsReducer input:
I key is the TrackID output by the two mappers.
I value is the iterator over the list of TrackStats associated with the track (in

this case, one contains the unique listener count and the other contains the
play, scrobble, radio listen, and skip counts).

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (1,0,0,0,0) (0,1,0,1,0)
223 (1,0,0,0,0) (0,1,0,1,1)
225 (2,0,0,0,0) (0,2,2,0,0)

I SumTrackStatsReducer function:
I reduce(225,‘(2,0,0,0,0) (0,2,2,0,0)’) → <225, (2,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 1 1 0 1 1
225 2 2 2 0 0

Final Reduce Stage: SumTrackStatsReducer
Finally, we have two partially defined TrackStats objects for each track. We
can reuse the SumTrackStatsReducer to combine them and emit the final
result.

I SumTrackStatsReducer input:
I key is the TrackID output by the two mappers.
I value is the iterator over the list of TrackStats associated with the track (in

this case, one contains the unique listener count and the other contains the
play, scrobble, radio listen, and skip counts).

TrackId Iterator<TrackStats>
IntWritable Iterator<TrackStats>
222 (1,0,0,0,0) (0,1,0,1,0)
223 (1,0,0,0,0) (0,1,0,1,1)
225 (2,0,0,0,0) (0,2,2,0,0)

I SumTrackStatsReducer function:
I reduce(225,‘(2,0,0,0,0) (0,2,2,0,0)’) → <225, (2,2,2,0,0)>

I SumTrackStatsReducer output:

TrackId numListeners numPlays numScrobbles numRadioPlays numSkips
IntWritable IntWritable IntWritable IntWritable IntWritable IntWritable

222 0 1 0 1 0
223 1 1 0 1 1
225 2 2 2 0 0

Final SumTrackStatsReducer
From the SumTrackStats job.

public static class SumTrackStatsReducer extends MapReduceBase
implements Reducer<IntWritable, TrackStats, IntWritable,
TrackStats> {

@Override
public void reduce(IntWritable trackId, Iterator<TrackStats> values,

OutputCollector<IntWritable, TrackStats> output, Reporter
reporter) throws IOException {

/* Sum totals for this track */
TrackStats sum = new TrackStats();

while(values.hasNext()) {
TrackStats trackStats = (TrackStats) values.next();
sum.setListeners(sum.getListeners() + trackStats.getListeners());
sum.setPlays(sum.getPlays() + trackStats.getPlays());
sum.setSkips(sum.getSkips() + trackStats.getSkips());
sum.setScrobbles(sum.getScrobbles() + trackStats.getScrobbles());
sum.setRadioPlays(sum.getRadioPlays() + trackStats.getRadioPlays());

}
output.collect(trackId, sum);

}
}

Putting it all together
Hadoop provides a ToolRunner to simplify “job chaining“.

I All job classes should extend Configured and implement Tool.
public class MergeResults extends Configured implements Tool

I Then override the run method with specific job configuration.
public int run(String[] args) throws Exception {

Path sums = new Path("sums");

Path listeners = new Path("listeners");

Path output = new Path("output");

JobConf conf = new JobConf(UniqueListeners.class).setJobName("Merge");

MultipleInputs.addInputPath(conf, sums,

SequenceFileInputFormat.class, IdentityMapper.class);

MultipleInputs.addInputPath(conf, listeners,

SequenceFileInputFormat.class, MergeListenersMapper.class);

FileOutputFormat.setOutputPath(conf, output);

conf.setReducerClass(SumTrackStats.SumTrackStatsReducer.class);

conf.setOutputKeyClass(IntWritable.class);

conf.setOutputValueClass(TrackStats.class);

try { JobClient.runJob(conf); } catch (Exception e) { return 1; }

return 0;

}

Putting it all together
The driver class simply runs each job in the correct order.

public class GenerateTrackStatistics {

public static void main(String[] args) throws Exception {

if(args.length != 2) {

System.out.println("Usage: GenerateTrackStatistics "

+ "<input path> <output path>");

System.exit(0);

}

/* Run UniqueListeners job */

int exitCode = ToolRunner.run(new UniqueListeners(), args);

/* Run SumTrackStats job */

if(exitCode == 0)

exitCode = ToolRunner.run(new SumTrackStats(), args);

/* Run Merge job */

if(exitCode == 0)

exitCode = ToolRunner.run(new MergeResults(), args);

System.exit(exitCode);

}

}

If you are interested in the complete code, email me at:

marissahollingsworth@u.boisestate.edu

References

I MapReduce: Simplified Data Processing on Large Clusters. Jeffrey
Dean and Sanjay Ghemawat, Google Inc. OSDI 2004.

I Hadoop: An open source implementation of MapReduce.
http://hadoop.apache.org/.

I Can Your Programming Language Do This? Joel Spolsky.
http://www.joelonsoftware.com/items/2006/08/01.html

I Hadoop: The Definitive Guide (2nd ed.). Tom White, October 2010,
O’Reilly.

I MapReduce tutorial at Yahoo.
http://developer.yahoo.com/hadoop/tutorial/

I Hadoop Eclipse Plugin: Jar file packaged with Hadoop in
contrib/eclipse-plugin folder.

I Data Clustering using MapReduce. Makho Ngazimbi (supervised by
Amit Jain). Masters in Computer Science project report, Boise State
University, 2009.

I Last.fm. The main website: http://www.last.fm/.

New Hadoop API
The biggest change in 0.20 onwards is a large refactoring of the core
MapReduce classes.

I All of the methods take Context objects that allow us to add new
methods without breaking compatibility.

I Mapper and Reducer now have a ”run” method that is called once
and contains the control loop for the task, which lets applications
replace it.

I Mapper and Reducer by default are Identity Mapper and Reducer.
I The FileOutputFormats use part-r-00000 for the output of reduce 0

and part-m-00000 for the output of map 0.
I The reduce grouping comparator now uses the raw compare instead

of object compare.
I The number of maps in FileInputFormat is controlled by min and max

split size rather than min size and the desired number of maps.

Hadoop added the classes in a new package at
org.apache.hadoop.mapreduce.

WordCount example with new Hadoop API
Problem: To count the number of occurrences of each word in a large
collection of documents.

/**
* Counts the words in each line.
* For each line of input, break the line into words
* and emit them as (word, 1).
*/

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}

}

WordCount Example with new Hadoop API (contd.)

/**
* A reducer class that just emits the sum of the input values.
*/
public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
}

WordCount Example with new Hadoop API (contd.)

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf,

args).getRemainingArgs();
if (otherArgs.length != 2) {

System.err.println("Usage: wordcount <in> <out>");
System.exit(2);

}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

