
Beowulf Cluster Design and Setup

Amit Jain

Department of Computer Science

Boise State University

April 26, 2006

This material is based upon work supported by the National Science Foundation under grant No.
0321233, Development of Tools to Enable the Port of Software to a Beowulf Cluster. Any opinions,
findings, and conclusions, or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

Download from: http://cs.boisestate.edu/~amit/research/beowulf/beowulf-setup.pdf

Contents

1 Designing a Beowulf Cluster 4

1.1 Cluster Nodes . 4

1.1.1 Hardware . 4

1.1.2 Benchmarking . 4

1.1.3 Node Software . 5

1.2 Networking Hardware . 5

1.2.1 What Type of Network to Use? . 5

1.2.2 Network Topology Design . 6

1.2.3 Ethernet Protocol . 6

1.2.4 Ethernet Packets . 6

1.2.5 TCP/IP Addresses . 7

1.2.6 Network Topology Options . 7

1.2.7 Network Interface Cards . 8

1.3 Network Hardware Design: Case Studies . 9

1.3.1 Flat Neighborhood Networks . 16

1.3.2 Switch-Less Designs . 18

1.3.3 A 5 Node Ring . 18

1.3.4 A n-Node Ring . 19

1.3.5 A 8 Node Hypercube . 19

1.3.6 A 64 Node Hypercube . 20

1.3.7 Closing Comments on Design . 21

1.4 Exercises . 22

2 Beowulf System Software Setup 23

2.1 Overview of Cluster Software . 23

2.2 Network Setup Options . 24

2.3 Setting up a Cluster . 25

2.3.1 Networking Setup . 26

2.3.2 Setting up Remote Shell . 28

2.3.3 Secure Shell: Alternative to Remote shell 31

2

2.3.4 Parallel Shell . 32

2.3.5 Time Synchronization . 34

2.3.6 Firewall Setup . 36

2.3.7 IP Masquerading . 37

2.3.8 Network File System . 38

2.3.9 Domain Name Service . 39

2.3.10 Enabling Mail from the Compute Nodes 39

2.4 Setting up Parallel Software . 40

2.5 Installing the Cluster Automatically . 42

2.5.1 Introduction . 42

2.5.2 Installing the Cluster using YACI . 42

2.6 Managing a Cluster . 43

2.6.1 User Accounts etc . 43

2.6.2 Cluster Monitoring . 43

2.6.3 Workload Management . 43

2.7 Integrated Solutions . 44

3

1 Designing a Beowulf Cluster

The first step is the hardware selection. There are two issues involved in the hardware
selection:

• Specifications of cluster nodes.

• Interconnection design.

1.1 Cluster Nodes

1.1.1 Hardware

• Buy generic PCs and shelves. May want keyboard switches for smaller configurations.
For larger configurations, a better solution would be use the serial ports from each
machine and connect to a terminal server.

• Build custom PCs from commodity off-the-shelf components. Requires a lot of work
to assemble the cluster but we can fine-tune each node to what we want.

• Custom rack-mount nodes. More expensive but saves space. May complicate cooling
issues due to closely packed components.

Some desirable characteristics:

• Dual-processor motherboards may be a good idea. Currently the price/performance
curve falls off for quad or more processors per board. Having dual-processor boards
may cause more load on the network cards in each node. Certain network cards have
dual-network processors in them, making them better candidates for dual-processor
motherboards.

• Spend as much as possible on memory.

• Don’t need a fancy graphics card: either a minimal graphics card or none.

• No keyboards, CD-ROM, mouse, monitors needed for the compute nodes.

1.1.2 Benchmarking

An excellent collection of benchmarks is the Beowulf Performance Suite (available from
paralogic.com). It consists of the following well-known public domain benchmarks.

• bonnie - hard drive performance

4

• stream - memory performance

• netperf - general network performance

• netpipe - detailed network performance

• nas - nas NASA parallel tests

• unixbench - general Unix benchmarks

• lmbench - micro Linux benchmarks

It is also worthwhile to download the latest version of netpipe benchmark. The latest version
allow you to compare network performance with raw TCP, PVM, and MPICH, LAM/MPI
among others.

For parallel benchmarks, NAS parallel are a reasonable test (especially if you will be running
numerical computations on your cluster).

Use the above and other benchmarks to evaluate different architectures, motherboards, net-
work cards before making a decision.

1.1.3 Node Software

Just Install Linux. For parallel libraries, install PVM and MPI both. For example, PVM
and LAM/MPI come preinstalled with Fedora Core Linux (if you install everything or use
custom install and select Scientific Computation packages).

Obviously, you can stick the CD in each machine to install Linux. However, there are some
choices available to allow you to install the cluster over the network. This would be needed
if the nodes do not have CD drives. We will discuss these options later.

1.2 Networking Hardware

1.2.1 What Type of Network to Use?

The following table compares various networking options for a Beowulf cluster. The price
per node includes the price of the network interface cost and the amortized cost of network
switches. Be aware that the network switch price can have a lot of variation. The prices
shown for reasonable choices.

5

Network type maximum bandwidth latency price/node
(Mbits/second) (microsecs) dollars

Fast Ethernet 100 200 40
Gigabit Ethernet 1000 29–62 225
Myrinet 2000 6.8 1100
Myrinet 4000 6.8 1600
Dolphin Wulfkit 4500–10000 2 1200–2000
Infiniband 10000 8 1500–2000

Ethernet is the most cost-effective choice. Ethernet is a packet-based serial multi-drop net-
work requiring no centralized control. All network access and arbitration control is performed
by distributed mechanisms. The price of Gigabit Ethernet is dropping rapidly.

1.2.2 Network Topology Design

Some ranges of possibilities.

• Shared multi-drop passive cable, or

• Tree structure of hubs and switches, or

• Custom complicated switching technology, or

• One big switch.

Before we discuss network topology design, let us look at Ethernet in some more detail.

1.2.3 Ethernet Protocol

In an Ethernet network, machines use the Carrier Sense Multiple Access with Collision Detect
(CSMA/CD) protocol for arbitration when multiple machines try to access the network at
the same time. If packets collide, then the machines choose a random number from the
interval (0, k) and try again. On subsequent collisions, the value k is doubled each time,
making it a lot less likely that a collision would occur again. This is an example of an
exponential backoff protocol.

1.2.4 Ethernet Packets

The Ethernet packet has the format shown below.

6

Check
Sequence

Frame
DataType

Address Address
Source

2 bits62 bits 6 bytes 6 bytes 2 bytes 16−1500 bytes 4 bytes

level software
Used by higher

Ethernet Packet Format

DestinationPreamble Synch
1010......1010 11

Note that the Maximum Transmission Unit (MTU) is 1500 bytes. Messages larger than that
must be broken into smaller packets by higher layer network software. Higher end switches
accept Jumbo packets (up to 9000 bytes), which can improve the performance significantly.

For many network drivers under Linux, the MTU can be set on the fly without reloading
the driver!

Use the program ethereal to watch Ethernet packets on your network!

1.2.5 TCP/IP Addresses

The most prevalent protocol in networks is the Internet Protocol (IP). There are two higher-
level protocols that run on top of the IP protocol. These are TCP (Transmission Control
Protocol) and UDP (User Datagram Protocol).

IPv4 protocol has 32-bit addresses while the IPv6 protocol has 128-bit addresses. IP address
range is divided into networks along an address bit boundary. The portion of the address
that remains fixed within a network is called the network address and the remainder is the
host address. Three IP ranges are reserved for private networks.

• 10.0.0.0 – 10.255.255.255

• 172.16.0.0 – 172.31.255.255

• 192.168.0.0 – 192.168.255.255

These addresses are permanently unassigned, not forwarded by Internet backbone routers
and thus do not conflict with publicly addressable IP addresses. These make a good choice
for a Beowulf cluster.

We will often use 192.168.0.0 – 192.168.0.255 in our examples. The address with all 0’s in
the host address, that is, 192.168.0.0, is the network address and cannot be assigned to any
machine. The address with all 1’s in the host address, that is, 192.168.0.255 is the network
broadcast address.

1.2.6 Network Topology Options

Hubs and Switches.

7

• Direct wire. Two machines can be connected directly by a Ethernet cable (usually
a Cat 5e cable) without needing a hub or a switch. With multiple NICs per machine,
we can create networks but then we need to specify routing tables to allow packets to
get through. The machines will end up doing double-duty as routers.

• Hubs and Repeaters/ All nodes are visible from all nodes and the CSMA/CD pro-
tocol is still used. A hub/repeater receives signals, cleans and amplifies, redistributes
to all nodes.

• Switches. Accepts packets, interprets destination address fields and send packets
down only the segment that has the destination node. Allows half the machines to
communicate directly with the other half (subject to bandwidth constraints of the
switch hardware). Multiple switches can be connected in a tree or sometimes other
schemes. The root switch can become a bottleneck. The root switch can be a higher
bandwidth switch.

Switches can be managed or unmanaged. Managed switches are more expensive but they
also allow many useful configurations. Here are some examples.

• Port trunking (a.k.a Cisco EtherChannel). Allows up to 4 ports to be treated as
one logical port. For example, this would allow a 4 Gbits/sec connection between two
Gigabit switches.

• Linux Channel Bonding. Channel bonding means to bond together multiple NICs
into one logical network connection. This requires the network switch to support some
form of port trunking. Supported on Linux kernel version 2.4.12 or newer.

• Switch Meshing. Allows up to 24 ports between switches to be treated as a single
logical port, creating a very high bandwidth connection. useful for creating custom
complicated topologies.

• Stackable, High bandwidth Switches. Stackable switches with special high band-
width interconnect in-between the switches. For examples, Cisco has 24-port Gigabit
stackable switches with a 32 Gbits/sec interconnect. Up to 8 such switches can be
stacked together. All the stacked switches can be controlled by one switch and man-
aged as a single switch. If the controlling switch fails, the remaining switches hold an
election and a new controlling switch is elected. Baystack also has stackable switches
with a 40 Gbits/sec interconnect.

1.2.7 Network Interface Cards

The Ethernet card, also known as the Network Interface Controller (NIC), contains the Data
Link Layer and the Physical Layer (the two lowest layers of networking). Each Ethernet card
has a unique hardware address that is know as its MAC address (MAC stands for Media

8

Access Controller). The MAC address is usually printed on the Ethernet card. The command
ifconfig can be used to determine the MAC address from software.

NICs with PXE boot support are essential for larger Beowulf clusters. These greatly simplify
installation of the cluster.

Another issue to consider s that having dual-processor boards may cause more load on the
network cards in each node. Certain network cards have dual-network processors in them,
making them better candidates for dual-processor motherboards. For example, the HP
Broadcomm 5782 NIC has dual-RISC processors so it can handle a send/recv simultaneously.
Check the website http://cs.boisestate.edu/ amit/research/benchmarks.html for a
comparison.

1.3 Network Hardware Design: Case Studies

Here are some sample designs for a 64-node Beowulf cluster with Gigabit Ethernet network.

64−port Gigabit Ethernet switch

64

Design I

Price: ???? HP 9308gl (supports 232 GbE ports) $100,000

9

Dell PowerConnect 5424
Price: $2,200 (website)
 $1,153 (from quote)
Total: $8,800 or $4,612

20 4 4

Port trunking (no more than 4 ports)

16 4
16 20

24−port GbE switch 24−port GbE switch 24−port GbE switch 24−port GbE switch

Design II

10

Dell PowerConnect 5424/5412

24−port GbE switch

24−port GbE switch 24−port GbE switch

24−port GbE switch24−port GbE switch

24−port GbE switch

4
4

4 44

20 2020

Port trunking (no more than 4 ports)

4

24−port GbE switch

Price: $2,200 (website)
 $1,153 (from quote)

Total: $15,400 or $8,071

Design III

11

32−port Gigabit Ethernet switch

32−port Gigabit Ethernet switch 32−port Gigabit Ethernet switch

32−port Gigabit Ethernet switch

HP5308gl 8−slot chassis $1,919
4−port GbE module x 8 $5,624
total/chassis $7,563
Total: $7563 x 4 = $30,252

16 16

1616
16

16
16 16

Switch meshing (no more than 24 ports)

Design Choice IV

12

24−port Gigabit switch

24−port Gigabit switch

24−port Gigabit switch

32

32

32

24

24

16

Total: $11,150
3 x 1.6ft Cisco Stackwise cable
3 x Cisco 3750G−24−T−S switch$3,716 x 3

Design V

13

 $100 x 2
2 x Baystack 5510−48T switch $4400 x 2
2 x 1.6ft Stacking cable
Total: $9000

48−port Gigabit switch

48−port Gigabit switch

48

40 40

16

Design VI

14

.

dual 2.4 GHz Xeons, 1GB RAM, 80GB ATA100 driveEach Compute Node:
Gigabit Switch: Cisco 24−port Gigabit stacking cluster switch

 32000 MBits/sec link

1000 MBits/sec link

192.168.1.101 192.168.1.120 192.168.1.121 192.168.1.140 192.168.1.141 192.168.1.160

Gigabit SwitchGigabit SwitchGigabit Switch

Bonding
Linux Channel

192.168.1.1
campus backbone
1000 MBits/sec to
To Internet

(dual 2.4 GHz Xeons, 4GB RAM, RAID disk drives)Node00

node00

beowulf

node01 node20 node21 node40 node41 node60

15

1.3.1 Flat Neighborhood Networks

A Flat Neighborhood Network uses multiple NICs per machine in such a way that we can
get from any machine to any machine in one hop. It requires special routing to be setup at
each node. However, it does not require the use of managed switches, which may save cost
and get higher performance at the same time. The following FNNs were designed using a
Genetic Algorithm (available on the website: http://aggregate.org/FNN).

Here is the layout for a 24-node FNN using 2 16-port Gigabit switches.

The FNN design found that requires the fewest switches uses 3 16-port switches to connect
24 PCs each using no more than 2 NICs/PC. The FNN is given below in the format switch-
number: list-of-PCs-connected.

0: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1: 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23 2: 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23

The following diagram shows the layout of the 24-node FNN.

7421 8 9 10 11 12 13 14 15 1716 18 19 232221206530

16−port Gigabit Switch16−port Gigabit Switch 16−port Gigabit Switch

A 24−node FNN

The FNN design found that requires the fewest switches uses 3 48-port switches to connect
64 PCs each using no more than 2 NICs/PC. The FNN is given below in the format switch-
number: list-of-PCs-connected.

0: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 42 43 44 45 46 47 48 49 50 51 52 53

1: 12 13 14 15 16 17 18 19 20 21 22 23 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

2: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 36 37 38 39 40

41 54 55 56 57 58 59 60 61 62 63

The FNN design found that requires the fewest switches uses 11 24-port switches to connect

16

64 PCs each using no more than 4 NICs/PC. The FNN is given below in the format switch-
number: list-of-PCs-connected.

0: 0 1 2 3 4 5 6 7 8 9 10 11 36 37 38 39 40 41 54 55 56 57 58 59

1: 0 1 2 3 4 5 12 13 14 15 16 17 30 31 32 33 34 35 48 49 50 51 52 53

2: 0 1 2 3 4 5 18 19 20 21 22 23 42 43 44 45 46 47 60 61 62 63

3: 0 1 2 3 4 5 24 25 26 27 28 29 42 43 44 45 46 47 60 61 62 63

4: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

5: 6 7 8 9 10 11 30 31 32 33 34 35 54 55 56 57 58 59 60 61 62 63

6: 6 7 8 9 10 11 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

7: 12 13 14 15 16 17 30 31 32 33 34 35 42 43 44 45 46 47 54 55 56 57 58 59

8: 12 13 14 15 16 17 36 37 38 39 40 41 48 49 50 51 52 53 60 61 62 63

9: 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

10: 18 19 20 21 22 23 24 25 26 27 28 29 48 49 50 51 52 53 54 55 56 57 58 59

The following diagram illustrates the setup, along with a cost analysis.

24−port GbE switch 24−port GbE switch 24−port GbE switch

48−port Gigabit Ethernet switch 48−port Gigabit Ethernet switch 48−port Gigabit Ethernet switch

24−port GbE switch

2 NICs/node

4 NICs/node

0 1 10

Price $6500 x 3 + $50 x 60
Extra cost for NICs 64 x 50 = $3200
Total $25,700 (or $17,000 with BayStack 48−port switches)

= $22,500 HP 4108gl chassis, JP4863A GbE switch modules

Dell PowerConnect 5424 switchesPrice $2200 x 11 + $150 x 64 = $33,200
or $1153 x 11 + $150 x 64 = $22,283

Flat Neighborhood Network Designs VII and VIII

Note that for our design case of 64 nodes, we were not able to achieve a very cost-effective
FNN. That would, however, change with time as more unmanaged and commodity Gigabit
switches with 24 port or more become available at lower costs than managed Gigabit switches.
Note that the FNN designs will give lower latency (since all communications go through only
one switch) and higher bandwidth as well.

17

The catch is that a fairly complicated routing needs to be set at each node. The designers
of FNN have programs that can generate this automatically. Parallel libraries like PVM and
MPI would also has to be modified to follow the specialized routing.

1.3.2 Switch-Less Designs

We can use the routing capabilities of Linux kernel and do away altogether with switches.
All we need then are the network interface cards and some Ethernet cables! Let us see some
examples.

1.3.3 A 5 Node Ring

To setup a ring, each machine has two NICs: eth0 and eth1. The private IP addresses
assigned to the nodes are shown in the figure below.

Node 0 Node 1 Node 2 Node 3 Node 40.1 1.2 0.2 1.3 0.3 1.4 0.4 1.5 0.51.1

192.168.1.3 192.168.1.4 192.168.1.5192.168.1.2
192.168.0.2 192.168.0.3 192.168.0.4 192.168.0.5eth0

eth1
192.168.0.1
192.168.1.1

hostname n0 n2 n3 n4n1

A 5 node ring

For the ring to work, we must set the routing properly. Let us consider Node n0. To route
to node n1, we can simply make 192.168.0.1 be the gateway. Similarly to route to node n4,
we can make 192.168.1.1 be the gateway. Things get more interesting for the remaining two
nodes. For node n2, it is shorter to route via node n1, while for node n3, it is shorter to
route via node n4. The following script, which can be run at system boot up time, shows
the routing for node n0.

route add -host 192.168.0.2 gw 192.168.0.1

route add -host 192.168.0.5 gw 192.168.1.1

route add -host 192.168.0.3 gw 192.168.0.1

route add -host 192.168.0.4 gw 192.168.1.1

Similar scripts can be generated for each of the other four nodes.

18

1.3.4 A n-Node Ring

In order to create larger rings, we can write scripts or programs to automate the task of
coming up with the route commands. We can also use the concept of net masks to simplify
the routing commands. Suppose we have 15 machines in our ring, with IP addresses in
the range 192.168.0.1–192.168.0.15. Then consider the network address 192.168.0.0 (which
implicitly selects all 254 machines in the range 192.168.0.1–192.168.0.254, 192.168.0.255 is the
broadcast address). If we use a netmask of 255.255.255.0, then we are selecting all addresses
in that network. However, a netmask of 255.255.255.248 selects machines with addresses in
the range 192.168.0.1–192.168.0.7. Similarly, a netmask of 255.255.255.248 selects machines
with addresses in the range 192.168.0.8–192.168.0.254, which for us would be the furthest 8
machines. So now we can use the following script to set up the routing on node n0.

route add -net 192.168.0.0 netmask 255.255.255.248 gw 192.168.0.1

route add -net 192.168.0.0 netmask 255.255.255.7 gw 192.168.1.1

1.3.5 A 8 Node Hypercube

The following figure shows a 8-node hypercube with direct connections. Each node has three
NICs: eth0, eth1. and eth2. The convention is that the ith NIC corresponds to the ith
dimension. The addresses are shown below.

Node eth0 eth1 eth2
n0 192.168.0.1 192.168.1.1 192.168.2.1
n1 192.168.0.2 192.168.1.2 192.168.2.2
n2 192.168.0.3 192.168.1.3 192.168.2.3
n3 192.168.0.4 192.168.1.4 192.168.2.4
n4 192.168.0.5 192.168.1.5 192.168.2.5
n5 192.168.0.6 192.168.1.6 192.168.2.6
n6 192.168.0.7 192.168.1.7 192.168.2.7
n7 192.168.0.8 192.168.1.8 192.168.2.8

The following diagram shows the hypercube.

19

eth0 192.168.0.1
eth1 192.168.1.1
eth2 192.168.2.1

n0 −−> eth0

 similarly for other nodes

n2

n6

n4 n5

n7

n0 n1

n3

0.1

2.1

1.1

2.4
0.4

1.41.3

0.3
2.3

0.2

2.2

1.2

2.7

2.5

0.5 0.6

2.6
1.6

1.8

0.8

2.8

0.7

1.7

1.5

Now for each node, we have three direct connections to its neighbors. For the remaining
nodes, we will use a simple routing scheme. If the node is in the ith dimensions, route
packets to it using the ith NIC. For example, the following shows the routing script for node
n0.

route add -host 192.168.0.2 gw 192.168.0.1

route add -host 192.168.0.3 gw 192.168.1.1

route add -host 192.168.0.5 gw 192.168.2.1

route add -host 192.168.0.4 gw 192.168.1.1

route add -host 192.168.0.6 gw 192.168.2.1

route add -host 192.168.0.7 gw 192.168.2.1

route add -host 192.168.0.8 gw 192.168.2.1

Again we can write scripts/programs to generate the routing files automatically. We leave
the reader to ponder if there is a better way to route than the one we have presented.

1.3.6 A 64 Node Hypercube

A switch-less 64-node hypercube would requires 6 network cards nodes per machine. That
gives us a cost of $64×$50×6 = $19, 200 for the network cards. A 64-node hypercube would
require (64× log 64)/2 = 192 network cables. Assuming $5 per cable adds another $960 for
a total amount of $20,160.

A layout for the 64-node hypercube is shown next.

20

64−node Hypercube: Design IX

1.3.7 Closing Comments on Design

Some observations about the switch less designs.

• Note that switch less design can improve bisection width significantly but at the ex-
pense of latency.

• They are not necessarily less expensive. For example, to build a 64-node hypercube,
we would need 6 Gigabit cards per machine, which would cost $300 per node, which is
higher than the cost of our Design number VI presented earlier with Gigabit switches.

• Direct connections can be used to supplement switched designs. An excellent example is
at the website http://www.cita.utoronto.ca/webpages/mckenzie/tech/networking/.

• An interesting website is an automated Cluster Design Website (http://aggregate.org/CDR/).
Give it a try!

21

1.4 Exercises

1. Write the routing rules for the 24-node FNN using 3 16-port switches discussed earlier
in this section.

2. Write a program or script to generate the routing commands for a d-dimensional hy-
percube built from PCs without switches.

3. Design network and routing for a 8× 8 mesh using PCs and direct cables without any
switches.

4. Generalize your solution to an
√

n×
√

n mesh.

5. Can you suggest an improvement to our Beowulf Cluster design V using the idea of
direct wiring? The improvement should cost less than $5,000 (based on prices used in
this document)?

6. Can you suggest a simple way of automatically routing around nodes that are down?

22

2 Beowulf System Software Setup

2.1 Overview of Cluster Software

For effective use of a Beowulf cluster as a shared, production tool, the first five of the following
list could be considered essential and the others very desirable.

1. automated cluster installation

2. remote hardware management (remote power on/off, monitoring CPU temperature
etc.)

3. cluster management (monitoring, system administration etc.)

4. job scheduling

5. libraries/languages for parallel programming

6. tuning and analysis utilities

7. integrated distributions

Let us consider these topics in order. Remote hardware management has made substantial
strides in recent years. Improved mother boards with sensors and corresponding monitor-
ing software makes it possible to monitor CPU temperature, fan speed etc and be able to
remotely power on and off. The area of cluster management has seen a lot of activity as
well. Some examples of cluster management software include Ganglia[8], utilities from the
scyld distribution[9], ClusterWorX[10], ClusterEdge[11] and MSC.Linux[12]. Graphical
programs are also available to check on the state of the cluster either as part of these software
or separately. Software for other system administration tasks is in various stages of devel-
opment. Many of the above cluster management utilities also support automated cluster
installation. Good examples are YACI (Yet Another Cluster Installer) [24], OSCAR (Open
Source Cluster Application Resources) [26], LUI [20] and ROCKS [27].

With multiple users on a cluster, a sophisticated job scheduling software is required. Compre-
hensive solutions like Condor[13], LSF(Load Sharing Facility)/ClusterWare[14], PBS (Portable
Batch System)[15], SLURM[21], among others, are available. However, they do have a learn-
ing curve associated with them.

In the area of parallel libraries/languages, there is a plethora of choices, which can be hard
to choose from. There are data-parallel languages like HPF (High-Performance Fortran)[16],
ZPL[17] and many others. However the problems of conversion/rewriting of existing For-
tran, C, C++ codes into these languages as well as how to extract high performance deters
many scientists. Parallelizing compilers are available for HPF. But the performance of the

23

resulting code is, in general, not very high. As a result, libraries that augment existing se-
quential languages like Fortran, C, C++ are popular. Another choice is between distributed-
shared memory and distributed memory. For performance reasons, most scientists choose
distributed memory. The two most widely used libraries in scientific programs are MPI[7]
and PVM[6], which are based on the distributed memory model.

Less research has been done in the area of tuning and analysis for parallel programs. Some
visualizations programs are available for PVM[6] and MPI[7]. Another project in this area
is TAU[18]. There have also been recent efforts at providing integrated distributions with
all software bundled together. Examples are scyld[9], OSCAR[19] and LUI[20].

In the rest of this section, we will focus on more detailed setups for clusters.

2.2 Network Setup Options

There are three possibilities.

• Stand alone cluster. A cluster with all private IP addresses. Requires no Internet
connection but has very limited access.

• Universally accessible cluster. All machines have public IP addresses and can thus
be accessed from anywhere. This can be a high maintenance security nightmare! It
can also be hard and expensive to get so many public IP addresses.

• Guarded cluster. There are two scenarios here.

– One machine has two NIC’s: one with a public IP address and the other with a
private IP address. All other machines have only private IP addresses. Thus only
machine is vulnerable. IP Masquerading can be used to give the private nodes
access to the Internet, if needed. This is the most common Beowulf configuration.

– The cluster machines still have public addresses but firewall software limits access
to all but one machine from a limited set of outside machines. One machine is
still publicly accessible. This is more flexible but requires a careful firewall setup.
This would be the case when a system administrator wants to configure already
existing machines into a cluster.

When assigning addresses and hostnames, it helps to keep them simple and uniform. For
example: ws01, ws02, ws03, ..., ws08. Or ws001, ws002, ..., ws255. Labeling each machine
with its host name, IP address and MAC address can be handy. It is also possible to use
dynamically assigned addresses and names for each node, using one machine as the DHCP
(Dynamic Host Configuration Protocol) server. See the reference [3] for more details.

24

2.3 Setting up a Cluster

We will assume that Red Hat Linux 9.0, Fedora Core 1/2/3 and later releases are being used.
The changes for other versions of Linux should be none or minor. We will use two running
examples.

Example 1. Guarded Beowulf Cluster with public addresses. The machine pp00.boisestate.edu
is the master node, while pp01.boisestate.edu,. . ., pp07.boisestate.edu are the compute
nodes. The host names are publicly addressable Internet names and they map to public In-
ternet addresses. This could also be the scenario where the machines already exist for other
reasons and we want to band them together into a cluster.

Here are the IP addresses for these machines. This addresses are assigned by the system
administrator for the DNS service of your organization.

132.178.208.230 pp00.boisestate.edu

132.178.208.231 pp01.boisestate.edu

132.178.208.232 pp02.boisestate.edu

132.178.208.233 pp03.boisestate.edu

132.178.208.234 pp04.boisestate.edu

132.178.208.235 pp05.boisestate.edu

132.178.208.236 pp06.boisestate.edu

132.178.208.237 pp07.boisestate.edu

Example 2. Guarded Beowulf with private addresses. The master machine is
onyx.boisestate.edu. It has two network interfaces. The public interface has the name
onyx, while the private interface has the name ws00 associated with it. There are 16 ma-
chines on the private network. Their names are ws01,. . .,ws16. Here is the /etc/hosts file
on each of the machines. Note the use of private IP addresses in the range 192.168.0.xxx.

Do not remove the following line, or various programs

that require network functionality will fail.

127.0.0.1 localhost.localdomain localhost

132.178.208.159 onyx.boisestate.edu onyx

192.168.0.1 ws00

192.168.0.101 ws01

192.168.0.102 ws02

192.168.0.103 ws03

192.168.0.104 ws04

192.168.0.105 ws05

192.168.0.106 ws06

192.168.0.107 ws07

192.168.0.108 ws08

192.168.0.109 ws09

25

192.168.0.110 ws10

192.168.0.111 ws11

192.168.0.112 ws12

192.168.0.113 ws13

192.168.0.114 ws14

192.168.0.115 ws15

192.168.0.116 ws16

2.3.1 Networking Setup

Example 1. Here the machines already exist with the specified network parameters, so we
can skip this section.

Example 2. The main network setup file on the master node is the following.

/etc/sysconfig/network

Here is that file on the private Beowulf cluster example master node.

NETWORKING=yes

HOSTNAME=onyx.boisestate.edu

GATEWAY=132.178.208.1

The directory /etc/sysconfig/network-scripts/ contains specific setup files for the var-
ious network interfaces. On our example private Beowulf cluster with a public and private
network interface, the relevant files in the directory /etc/sysconfig/network-scripts/

are ifcfg-eth0 and ifcfg-eth1.

Here is the ifcfg-eth1 file for our example cluster.

DEVICE=eth1

BOOTPROTO=none

BROADCAST=132.178.223.255

IPADDR=132.178.208.159

NETMASK=255.255.240.0

NETWORK=132.178.208.0

ONBOOT=yes

USERCTL=no

PEERDNS=no

GATEWAY=132.178.208.1

TYPE=Ethernet

And here is the ifcfg-eth0 file for our example cluster.

26

DEVICE=eth0

BOOTPROTO=none

BROADCAST=192.168.0.255

IPADDR=192.168.0.1

NETMASK=255.255.255.0

NETWORK=192.168.0.0

ONBOOT=yes

USERCTL=no

PEERDNS=no

TYPE=Ethernet

After setting up these files, restart the network using the following command.

/sbin/service network restart

You can use the /sbin/ifconfig command to check the network setup. On our example
cluster, here is the output of the ifconfig command.

[amit@onyx network-scripts]$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:E0:81:27:4D:27

inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:78936337 errors:0 dropped:0 overruns:0 frame:0
TX packets:88868442 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:3448909838 (3289.1 Mb) TX bytes:45533193 (43.4 Mb)
Interrupt:48 Base address:0xd800 Memory:fe9e0000-fea00000

eth1 Link encap:Ethernet HWaddr 00:E0:81:27:4D:26
inet addr:132.178.208.159 Bcast:132.178.223.255 Mask:255.255.240.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:46147977 errors:0 dropped:0 overruns:26 frame:0
TX packets:14629806 errors:0 dropped:0 overruns:7 carrier:0
collisions:0 txqueuelen:100
RX bytes:1941881538 (1851.9 Mb) TX bytes:850990172 (811.5 Mb)
Interrupt:17 Base address:0xb000 Memory:fe7fd000-fe7fd038

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:10029390 errors:0 dropped:0 overruns:0 frame:0
TX packets:10029390 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:2790547401 (2661.2 Mb) TX bytes:2790547401 (2661.2 Mb)

You can also use the graphical network configuration tool that comes with Red Hat Linux

27

9.0 and later releases.

The network setup files for the compute nodes are generated automatically by the cluster
installation software, for example, using YACI (see Section 2.5.2).

2.3.2 Setting up Remote Shell

The rsh service is insecure but it is universally available and is useful when combined with
appropriate restrictions for a universally accessible cluster. In a private Beowulf cluster, the
rsh service makes more sense since all the traffic is on the private network and not visible
from the public network.

Example 1. Guarded Beowulf Cluster with public addresses. The machine pp00.boisestate.edu
is the master node, while pp01.boisestate.edu,. . ., pp07.boisestate.edu are the compute
nodes. The host names are publicly addressable Internet names. We want to allow rsh access
in the cluster but only allow secure shell access from outside the cluster.

Here are sample setup files for the xinetd daemon that controls access to services.

Access to rsh service is only from pp00.boisestate.edu. Here is the file /etc/xinetd.d/rsh
for this setup. This file would be the same on all nodes.

#location: /etc/xinetd.d/rsh

service shell

{

socket_type = stream

wait = no

user = root

log_on_success += USERID

log_on_failure += USERID

server = /usr/sbin/in.rshd

instances = UNLIMITED

only_from = pp00.boisestate.edu

}

After editing this file, reload the xinetd configuration using the following command on each
machine.

/sbin/service xinetd reload

The file /etc/hosts.equiv lists equivalent machines that can use rsh. Here is the /etc/hosts.equiv
on each node.

pp00.boisestate.edu

pp01.boisestate.edu

pp02.boisestate.edu

28

pp03.boisestate.edu

pp04.boisestate.edu

pp05.boisestate.edu

pp06.boisestate.edu

pp07.boisestate.edu

Next add a line containing rsh to /etc/securetty to allow root to login to the whole cluster
without a password. Here is a sample file from all nodes.

vc/1

vc/2

vc/3

vc/4

vc/5

vc/6

vc/7

vc/8

vc/9

vc/10

vc/11

tty1

tty2

tty3

tty4

tty5

tty6

tty7

tty8

tty9

tty10

tty11

rsh

The last step is to create a .rhosts file for the root user on each node. This file∼root/.rhosts
contains the following line.

pp00.boisestate.edu

Now we are set. Test it out.

[amit@pp00 amit]:rsh pp00 date

Mon Dec 1 15:46:06 MST 2003

29

[amit@pp00 amit]: for i in 1 2 3 4 5

> do

> rsh pp0$i date

> done

Mon Dec 1 15:44:56 MST 2003

Mon Dec 1 15:45:00 MST 2003

Mon Dec 1 15:44:57 MST 2003

Mon Dec 1 15:44:25 MST 2003

Mon Dec 1 15:46:29 MST 2003

Example 2. Guarded Beowulf Cluster with private addresses. The machine ws00
is the master node, while ws01,. . ., ws16 are the compute nodes. The setup for enabling rsh

is the same as above. The difference is that we use the private name for the master node
instead of the public name. Here is the /etc/hosts.equiv file.

ws00

ws01

ws02

ws03

ws04

ws05

ws06

ws07

ws08

ws09

ws10

ws11

ws12

ws13

ws14

ws15

ws16

Here is the /etc/xinetd.d/rsh file.

service shell

{

socket_type = stream

wait = no

user = root

log_on_success += USERID

log_on_failure += USERID

30

server = /usr/sbin/in.rshd

disable = no

only_from = ws00

}

The file ∼root/.rhosts contains the following line on each node.

ws00

The file /etc/securetty is the same as in the previous example.

2.3.3 Secure Shell: Alternative to Remote shell

Secure shell (ssh) can be used as a replacement for remote shell (rsh). Below we will compare
the two approaches for Beowulf clusters.

• The security of secure shell is based on the encryption of any passwords that are sent
over the network. The remote shell does not use any encryption. Hence you should
never type a password when using the remote shell. However that is not an issue with
Beowulf clusters since access without passwords is desired for the cluster.

• The secure shell also encrypts the data being transmitted. So we take a performance
hit as compared to the remote shell.

• The remote shell uses privileged ports (ports with numbers ¡ 1024). There are only so
many of these ports, so running large number of remote shell commands simultaneously
can run out of ports. However, in practice, this is not a significant issue. The secure
shell is not limited by this restriction.

Example 2. For Example 2 (private Beowulf), using remote shell gives the best perfor-
mance without losing on security. For Example 1 (Guarded Beowulf with public addresses),
using secure shell may be a better solution. It is however more complex to setup, if we want
it to be more secure than remote shell.

Example 1. Here we can setup automatic login with secure shell. The only way to do this
and be more secure than the remote shell is on a per user level. Each user would need to
run a secure shell agent. See the man page for ssh-agent on secure shell agent. Normally,
the agent is automatically started when you are running X windows.

1. Look in your ~/.ssh directory on the master node. There should be two files, id rsa

and id rsa.pub. If not, create them using ssh-keygen -t rsa.

31

2. Check the file mode of ~/.ssh/authorized keys on the remote machine. It must be
600 (not readable by anyone other than yourself). You can assure this with chmod 600
~/.ssh/authorized keys.

3. Append your local id rsa.pub to the remote host’s /.ssh/authorized keys.

Now you should be able to ssh to the remote host without a password. To use secure shell
as your remote shell, we will need to define a few environment variables in the system wide
/etc/bashrc file.

export DSH_PATH /usr/bin/ssh

export PVM_RSH /usr/bin/ssh

export LAM_RSH /usr/bin/ssh

2.3.4 Parallel Shell

Here we will discuss pdsh, a simple, open-source parallel shell that is quite useful for system
administration. It relies on either the remote shell or the secure shell to be properly config-
ured on the cluster. The website for pdsh is http://www.llnl.gov/linux/pdsh/pdsh.html.

Example 1 and Example 2. The simplest way to setup pdsh is get the RPM file and
install it on the master node.

rpm -ivh pdsh-1.7-6.i386.rpm

Set up a file called /usr/local/etc/machines that lists the hostnames of all the machines
in the cluster. Now we are all set to use pdsh.

pdsh -a

pdsh> date

ws16: Mon Dec 1 15:40:07 MST 2003

ws04: Mon Dec 1 15:40:07 MST 2003

ws14: Mon Dec 1 15:40:07 MST 2003

ws07: Mon Dec 1 15:40:07 MST 2003

ws01: Mon Dec 1 15:40:07 MST 2003

ws12: Mon Dec 1 15:40:07 MST 2003

ws08: Mon Dec 1 15:40:07 MST 2003

ws06: Mon Dec 1 15:40:07 MST 2003

ws09: Mon Dec 1 15:40:07 MST 2003

ws10: Mon Dec 1 15:40:07 MST 2003

ws02: Mon Dec 1 15:40:07 MST 2003

ws03: Mon Dec 1 15:40:07 MST 2003

ws00: Mon Dec 1 15:40:07 MST 2003

ws15: Mon Dec 1 15:40:07 MST 2003

32

ws05: Mon Dec 1 15:40:07 MST 2003

ws13: Mon Dec 1 15:40:07 MST 2003

ws11: Mon Dec 1 15:40:07 MST 2003

pdsh> exit

[root@onyx sysconfig]#

The parallel shell allows the user to execute the same command across the cluster. You can
also use it to run one command at a time and pipe the output to a filter.

pdsh -a cat /etc/resolv.conf | dshbak

ws06

search boisestate.edu
nameserver 132.178.16.3
nameserver 132.178.208.127

ws00

search boisestate.edu
nameserver 132.178.16.3
nameserver 132.178.208.127

ws09

search boisestate.edu
nameserver 132.178.16.3
nameserver 132.178.208.127

...

ws08

search boisestate.edu
nameserver 132.178.16.3
nameserver 132.178.208.127

ws02

search boisestate.edu
nameserver 132.178.16.3
nameserver 132.178.208.127

ws16

33

search boisestate.edu
nameserver 132.178.16.3
nameserver 132.178.208.127

[root@onyx sysconfig]#

To copy files to the cluster, use the pdcp command, which is part of the pdsh package. For
example:

pdcp -x ws00 -a /etc/passwd /etc/passwd

executed on ws00 copies the password file from the master to all the nodes. Check the man
page for pdcp and pdsh more on the options.

2.3.5 Time Synchronization

The Network Time Protocol (http://www.ntp.org) is an accepted standard for synchroniz-
ing time on a system with a remote time server. You will need to find either a network time
server or get a card which receives synchronized time from satellite broadcasts. Either way,
you have a machine whose time is accurate to within a few milliseconds.

On the cluster, we would synchronize the master with the remote time server. Then we
would setup the compute nodes to synchronize their time with the master.

Example 1. The setup for a cluster with publicly addressable compute nodes is the same
as for Example 2 below, except for using the appropriate addresses.

Example 2. In the following example, assume that we are setting up NTP on the private
cluster with ws00 (192.168.0.1) as the master node.

On each compute node, the file /etc/ntp.conf contains the following lines in the appropriate
sections.

restrict 127.0.0.1

server 192.168.0.1

The files /etc/ntp/ntpservers and /etc/ntp/step-tickers contain the following line.

192.168.0.1

On the master node ws00, we want to set the server to actual time server that we are
contacting (132.178.208.127, in this case) and allow the compute nodes to get time from us.
The /etc/ntp.conf file contains the following entries in appropriate sections.

Prohibit general access to this service.

34

restrict default ignore

restrict 132.178.208.127 mask 255.255.255.255 nomodify notrap noquery

Permit all access over the loopback interface. This could

be tightened as well, but to do so would effect some of

the administrative functions.

restrict 127.0.0.1

-- CLIENT NETWORK -------

Permit systems on this network to synchronize with this

time service. Do not permit those systems to modify the

configuration of this service. Also, do not use those

systems as peers for synchronization.

restrict 192.168.0.0 mask 255.255.255.0 notrust nomodify notrap

...

server 132.178.208.127

The file /etc/ntp/ntpservers and /etc/ntp/step-tickers contain the following line.

192.168.0.1

You may also add additional servers for the master (as a fallback measure).

You will also have punch a hole in the firewall for the NTP packets to get through. Add the
following line to /etc/sysconfig/iptables and restart the firewall on the master node.

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.127 --sport 123 -d 0/0 -j ACCEPT

Then restart the firewall as follows:

/sbin/service iptables restart

Now we can start the NTP service on the master.

/sbin/service ntpd start

Watch for messages in /var/log/messages to ensure that the time service is operational.
At this point, you can also start up the time service on the compute nodes.

pdsh -a -x ws00 /sbin/service ntpd start

35

2.3.6 Firewall Setup

Example 1. For the Example 1 (cluster with public addresses), the simplest option would
be to trust all the machines in the network. Below we show the lines we would add to
/etc/sysconfig/iptables to get the desired effect.

Allow all TCP traffic between the nodes

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp -s 132.178.208.230/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp -s 132.178.208.231/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp -s 132.178.208.232/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp -s 132.178.208.233/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp -s 132.178.208.234/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp -s 132.178.208.235/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp -s 132.178.208.236/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp -s 132.178.208.237/32 -d 0/0 --syn -j ACCEPT

Now for the UDP traffic

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.230/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.231/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.232/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.233/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.234/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.235/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.236/32 -d 0/0 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.237/32 -d 0/0 --syn -j ACCEPT

Then restart the firewall on all nodes.

pdsh -a /sbin/service iptables restart

Example 2. Here we will discuss using iptables firewall for a private Beowulf cluster. Since
the master is the only node accessible from a public network, the firewall is used only on
the master node. The goal is that we allow only limited access to the master via the public
network but allow full access from the private network. The limited access might include
secure shell (via port 22), sendmail (via port 25), domain name service (via port 53), NTP
time service (via port 123) and a few selected others.

In the example configuration file shown below, eth1 is the network interface connected to
the public network, while eth0 is the network connected to the private network.

Note: ifup-post will punch the current name servers through the

firewall; such entries will *not* be listed here.

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

36

:OUTPUT ACCEPT [0:0]

:RH-Lokkit-0-50-INPUT - [0:0]

-A INPUT -j RH-Lokkit-0-50-INPUT

-A FORWARD -j RH-Lokkit-0-50-INPUT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp --dport 22 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp --dport 25 --syn -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 0/0 --sport 67:68 -d 0/0 --dport 67:68 -i eth0 -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 0/0 --sport 67:68 -d 0/0 --dport 67:68 -i eth1 -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.127 --sport 123 -j ACCEPT

-A RH-Lokkit-0-50-INPUT -i lo -j ACCEPT

-A RH-Lokkit-0-50-INPUT -i eth0 -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.16.3 --sport 53 -d 0/0 -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -s 132.178.208.127 --sport 53 -d 0/0 -j ACCEPT

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp --syn -j REJECT

-A RH-Lokkit-0-50-INPUT -p udp -m udp -j REJECT

COMMIT

Here the ports 67,68 are for remote booting that we will use for DHCP and cluster install.
The machines 132.178.16.3 and 132.178.208.127 are providing Domain Name Service. The
machine 132.178.208.127 is our NTP time server.

You can restart the firewall with the new configuration with the command:

/sbin/service iptables restart

2.3.7 IP Masquerading

There are two options for a Beowulf cluster with private network.

• The compute nodes only have network access to the master node. This is the easy
setup. The cluster installer (YACI) discussed later does this by default.

• The compute nodes have access to the public network but entities in the public network
have no access to the compute nodes. They only see one machine: the master node.

To have the second setup, we need to use IP Network Address Translation and IP Mas-
querading.

First of all, the kernel should have NAT support in it. The stock kernel in Red Hat
Linux 9.0 and later systems have NAT capability by default. On the master, the file
/etc/rc.d/rc.local should have the following entries, assuming eth0 is the private in-
terface and eth1 is the public interface.

#set up masquerading for the clients

37

modprobe iptable_nat

iptables -t nat -F

echo " FWD: Allow all connections OUT and only existing and related ones IN"

iptables -A FORWARD -i eth1 -o eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

#iptables -A FORWARD -j LOG

echo " Enabling SNAT (MASQUERADE) functionality on eth1"

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

#turn on IP forwarding

echo 1 > /proc/sys/net/ipv4/ip_forward

Create a script, say /usr/local/adm/bin/restart nat that contains the above commands.
Make it writeable/executable only by the superuser.

chmod 744 /usr/local/adm/bin/restart nat

Then run the script to enable NAT and masquerading without having to reboot the master
node.

/usr/local/adm/bin/restart nat

On the compute nodes, the file /etc/rc.d/rc.local should have the following line in it.

route add default gw 192.168.0.1

To enable the routing the command can be given manually without having to reboot the
compute nodes.

pdsh -a -x ws00 route add default gw 192.168.0.1

Now the compute nodes have full access to the public network but they cannot be accessed
from the public network.

2.3.8 Network File System

Example 1. Please read the discussion for Example 2 below. A Network File System
considerably simplifies the cluster environment and should be setup even for a publicly
addressable cluster, if possible.

Example 2. The simplest setup to use is to let users have the same home directory on all
nodes. In addition, allowing /usr/local/ to be shared is useful.

38

The most common choice for a common file system is NFS (Network File System). There
are faster network file systems in the offing but currently NFS is the established system that
has kernel level support.

To start NFS, use the following command.

/sbin/service nfs start

On the master node, which is the NFS server as well, create the file /etc/exports, which
lists the directories to be exported to the compute nodes. Here is the exports file from onyx

(or ws00).

/tftpboot 192.168.0.0/24(rw,no_root_squash)

/home 192.168.0.0/24(rw,no_root_squash)

/usr/local 192.168.0.0/24(rw,no_root_squash)

/var/spool/mail 192.168.0.0/24(rw,no_root_squash)

[amit@onyx etc]$

Now to export the directories, use the command:

/usr/sbin/exportfs -va

On the client side, the following lines should be in the file /etc/fstab

ws00:/home /home nfs soft,rw,suid 0 0

ws00:/usr/local /usr/local nfs soft,rw,suid 0 0

ws00:/var/spool/mail /var/spool/mail nfs soft,rw,suid 0 0

Notice we use ws00 since the compute nodes are connected to the private network interface
on onyx. This way, the shared directories are mounted automatically at bootup time.

2.3.9 Domain Name Service

Example 1. This step is does not apply to Example 1.

Example 2. Set aliases (canonical names) for the private name of the master node to be
equal to the public name of master node in the Domain Name Service. This turns out to be
handy for running some system management software. You will have to contact your system
administrator to accomplish this step.

2.3.10 Enabling Mail from the Compute Nodes

Example 1. This step is does not apply to Example 1.

Example 2. This step is not necessary for mist clusters unless you want the capability of
using mail from any of the compute nodes.

39

Sendmail and postfix are the two most popular mail transport agents for Linux. Rather than
getting into their specifics, we will describe what needs to be done. To allow compute nodes
to use mail, three steps are needed.

• In each compute node, set relay host to be the master node. This would be dependent
upon whether you chose to use postfix or sendmail.

• NFS mount /var/spool/mail on each compute node.

• Set aliases (canonical names) for the compute nodes to be equal to the master node’s
public name in DNS. This would allow systems that check the validity of an Internet
address before accepting email to be placated. For example, here is the result of doing
a lookup for ws03 in our example cluster.

[amit@onyx amit]$ host ws03

ws03.boisestate.edu is an alias for onyx.boisestate.edu.

onyx.boisestate.edu has address 132.178.208.159

[amit@onyx amit]$

2.4 Setting up Parallel Software

PVM and LAM/MPI already come pre-installed with Red Hat Linux 9, Fedora Core 1/2 (if
you choose to install everything or install Scientific Libraries package group).

The only tricky issue is if you have multiple network cards on the master node. You have
to modify PVM and MPI to use the right network interface. In our example, we want the
PVM and MPI applications to use ws00 instead of onyx, assuming that is our master node.
For MPI, the solution is simple: set a global environment variable MPI HOST=ws00;export

MPI HOST. This can be done in /etc/bashrc file so that all users see the value when they
login.

For PVM, modify the invocation string lines in the script /usr/local/lib/pvmd. The
original invocation string is:

exec $PVM_ROOT/lib/$PVM_ARCH/pvmd3$sfx $@

Modify it to (for each occurrence):

exec $PVM_ROOT/lib/$PVM_ARCH/pvmd3$sfx -nws00 $@

This needs to be done only on the master node.

It is also handy to setup other environment variables needed for PVM and MPI in the global
/etc/bashrc file.

--

#setup for PVM3

40

PVM_ARCH=LINUXI386

export PVM_ARCH

PVM_ROOT=/usr/share/pvm3

export PVM_ROOT

MANPATH=$MANPATH:$PVM_ROOT/man

export MANPATH

PVM_DPATH=$PVM_ROOT/lib/pvmd

export PVM_DPATH

PATH=$PATH:$PVM_ROOT/lib:$HOME/pvm3/bin/$PVM_ARCH:

export PATH

XPVM_ROOT=/usr/share/pvm3/xpvm

export XPVM_ROOT

PVM_TMP=/tmp

export PVM_TMP

PVM_DEBUGGER=$PVM_ROOT/lib/debugger.ddd

export PVM_DEBUGGER

PVM_EXPORT=DISPLAY:PATH:PVM_DEBUGGER

export PVM_EXPORT

#for ddd debugger

export XEDITOR=gvim

#--

#--

create PVM directories auto-magically for users

if ! [-d ~/pvm3]

then

mkdir ~/pvm3

mkdir ~/pvm3/bin

mkdir ~/pvm3/bin/$PVM_ARCH

fi

#--

#--

setup for LAM/MPI

LAMRSH=rsh;export LAMRSH

#--

41

2.5 Installing the Cluster Automatically

2.5.1 Introduction

All of the above discussion on setting up clusters assumed that you had Linux installed on
each cluster already. In Example 1, we had a set of machines that already existed with Linux
on them, so installation was not an issue.

In Example 2, we did not specify how to get the systems up. Obviously we can install
them manually one by one but that would be unacceptably slow and error prone process. A
cluster installation software automates the process. Good examples are YACI (Yet Another
Cluster Installer) [24], OSCAR (Open Source Cluster Application Resources) [26], LUI [20]
and ROCKS [27].

2.5.2 Installing the Cluster using YACI

,,,

.-’‘ (’.

.-’ ,_ ; ___ _,

__.’) \’.__.’(:;’.__.’/

__..--"" (’.__{’:’);}__.’

.’ (; (.-|‘ ’ |-.

/ ()) ’-p q-’

(; ; ; ; |.---.|

) ((; \ o o)

|) ; |)) /’.__/

) ;) ; | ; //

() _,\ ; //

; (,_,,-~""~‘"" \ (//

.’ ’. /<_

_)--\ \ \--\

)--\""‘)--\"‘

‘""‘ ‘""‘

YACI (Yet Another Cluster Installer) is a flexible cluster installer that is open-source. See
its webpage [24] for details about downloading and using it.

YACI builds a tarball image of a compute node on the master node. Each compute node
boots up and sends a DHCP request. The DHCP server running on the master node has the
MAC addresses of the compute node hard-coded so it can give them back a fixed address
via DHCP. Once the compute node has a address, then it uses tftp (Trivial File Transfer
Protocol) to transfer a PXE image (Pre-Execution Environment). The PXE image boots
and then downloads via TFTP a Linux kernel. This kernel starts booting and then acts as
a installation kernel. It creates partitions on the local disk, creates the file systems and then

42

copies the image to the local hard disk via NFS (or using Multicasting, if available). Once
the installation is finished, the compute node boots into the newly installed system.

Using YACI, we can do all of the steps discussed earlier in this documents automatically.
For example, we were able to install a 61 node cluster from bar disk to fully working in 12
minutes using YACI.

YACI comes with excellent documentation. There are a few caveats in its use. Please contact
amit@cs.boisestate.edu, if you have questions.

2.6 Managing a Cluster

2.6.1 User Accounts etc

Simple scripts are sufficient for pushing password and related files across the cluster. Network
Information System (NIS) can also be used to keep the user information consistent although
there is anecdotal evidence against the scalability of NIS.

The files to be kept consistent include /etc/passwd, /etc/shadow, /etc/group, /etc/bashrc

and possibly others depending upon the installation.

2.6.2 Cluster Monitoring

Use LM SENSORS to monitor cluster node hardware. There are several commercial packages
that provide an integrated view of the state of the cluster. See Section 2.1 for more details.

We are developing a web-based cluster monitoring system, named clusmon. Check its web
page at: http://tux.boisestate.edu/clusmon/chopshop.php.

2.6.3 Workload Management

A workload management software is essential for a larger Beowulf installation. The most
popular software is the Portable Batch System (PBS). A open-source version is available for
clusters of size up to 32 nodes and a commercial version is available for larger clusters. An
improved open source version of PBS is available from the Ohio State Supercomputer Center
(website for PBS: http://www.osc.edu/ pw/pbs/). Please consult the guide at
http://cs.boisestate.edu/ amit/research/beowulf/pbs.pdf

for nuances on installing and using PBS.

A highly scalable and completely open source solution is the SLURM software from Lawrence
Livermore National Labs [21]. Other solution includes Condor [13], and LSF [14].

43

2.7 Integrated Solutions

Some interesting solutions for a integrated single system image for Beowulf clusters are bproc
(http://bproc.sourceforge.net), scyld [9] and MOSIX (http;//www.mosix.org).

44

References

[1] http://www.beowulf.org.

[2] http://www.beowulf-underground.org.

[3] Becker D., Savarese, D. F., Sterling, T., Dorband, J. E., U. A. Ranawake and C. V.
Packer, “Beowulf: A Parallel Workstation for Scientific Computation, Proceedings of
the 24th International Conference on Parallel Processing, I:11–14, 1995.

[4] Sterling, T., Salmon, J., Becker, D. and D. Savarese, “How to Build a Beowulf,” The
MIT press, 1999.

[5] Geist, A., Beguelin, A., Dongarra, J,, Jiang, W., Manchek, R., and V. Sunderam.
“PVM: Parallel Virtual Machine: A User’s Guide and Tutorial for Networked Parallel
Computing,” The MIT Press, 1994.

[6] “PVM: Parallel Virtual Machine,” main website: http://www.csm.ornal.gov/pvm.

[7] “The Message Passing Interface (MPI) Standard,” Grop W., and E. Lusk, website:
http://www-unix.mcs.anl.gov/mpi.

[8] Ganglia Project, http://ganglia.sourceforge.net.

[9] Scyld Computing Corporation, Document #3720-2-1, http://www.scyld.com.

[10] ClusterWorX by Linux NetworX, http://www.LinuxNetworX.com.

[11] ClusterEdge by Scali High Performance Clustering, http://www.scali.com.

[12] MSCLinux, http://www.mscLinux.com.

[13] Condor, http://www.cs.wisc.edu/condor.

[14] LSF/ClusterWare by Platform Computing, http://www.platform.com.

[15] PBS (Portable Batch System), http://www.openpbs.org.

[16] HPF, http://www.crpc.rice.edu/HPFF.

[17] The ZPL Project, http://www.cs.washington.edu/research/projects/zpl/.

[18] TAU: Tuning and Analysis Utilities, http://www.cs.uoregon.edu/research/paracomp/tau.

[19] OSCAR: Open Source Cluster Application Resources,
http://www.openclustergroup.org.

[20] LUI: Linux Utility for Cluster Installation,
http://oss.software.ibm.com/developerworks/projects/lui.

45

[21] SLURM: Simple Linux Utility for Resource Management,
http://www.llnl.gov/linux/slurm/slurm.html.

[22] Distributed Production Control System, http://www.llnl.gov/icc/lc/dpcs/.

[23] Globus, http://www.globus.org.

[24] YACI: Yet Another Cluster Installer, http://www.llnl.gov/linux/yaci/yaci.html.

[25] PDSH: Parallel Distributed Shell, http://www.llnl.gov/linux/pdsh/pdsh.html.

[26] OSCAR: Open Source Cluster Application Resources,
http://oscar.sourceforge.net.

[27] Rocks Cluster Distribution, http://www.rocksclusters.org/Rocks/.

46

