
Synchronization
(Part 2)

1/56

Synchronization (Part 2)

Synchronization
(Part 2)

2/56

Learning Objectives

I Understand and apply the monitor concept to solve
synchronization problems in concurrent programs

I Understand and apply the concept of condition variables in
monitors

I Understand and use the readers-writers concurrency design
pattern

I Use synchronization constructs from Pthreads library and
Java packages

I Understand synchronization issues with respect to signals
I Learn about the client-server model using pipes and

named pipes

Synchronization
(Part 2)

3/56

Monitors

A monitor is designed to allow concurrency while retaining the
advantage of a structured construct.

I Each monitor is entrusted with a specific task and in turn
it will have its own privileged data and instructions.

I Entry to the monitor by one process excludes entry by any
other process.

I Since all processing is encapsulated inside the monitor, the
programmer cannot accidentally change the monitor
variables.

I A system would be more robust and efficient if we have a
monitor for each specific task that involves multiple
processes.

Synchronization
(Part 2)

4/56

Condition Variables

Monitors include condition variables to allow processes to signal
each other. A condition variable is a global structure inside the
monitor that supports three operations.

I wait(): Suspends the invoking process until it receives
another signal from another process.

I signal(): Resumes exactly one process if any processes
are waiting on the condition variable. If no process is
waiting, then the signal has no effect.

I queue(): Returns TRUE is there is at least one process
suspended on the condition variable, and FALSE otherwise.

Synchronization
(Part 2)

5/56

Queue Management in the Monitor

Signal takes effect immediately (Tony Hoare Semantics).
I The signal statement should always be the last statement before

a process leaves the monitor. This allows the signaled process to
be woken up immediately. So a process that gets past the
wait() can be guaranteed that the condition is true.

I In case we have processes waiting to enter the monitor as well as
processes waiting on a condition variable, then the next process
to be allowed in the monitor is taken from the queue of processes
waiting on the condition variable.

I The processes waiting in the queue on a condition variable can be
woken by the scheduler in either arbitrary, first-come-first-served,
or priority order. In the priority scheduling case we will modify the
wait() to have an argument wait(priority), where priority
is an integer with smaller integers implying higher priority.

Signal does not have effect immediately (Per Brinch Hansen
Semantics).
The signal is recorded and delivered after the signaling process leaves
the monitor. In this case a process on waking up has to test the
condition again before proceeding. This would lead to fewer context
switches.

http://dl.acm.org/citation.cfm?doid=355620.361161

Synchronization
(Part 2)

6/56

Bank Account Monitor (pseudocode)

monitor sharedBalance
{

int balance;
public:

credit(int amount) { balance = balance + amount ;}
debit(int amount) { balance = balance - amount ;}

}

Synchronization
(Part 2)

7/56

Simulation of a Binary Semaphore by a Monitor

monitor SemaphoreSimulation {
boolean busy = FALSE;
condition notbusy;

public:
down() {

if (busy) notbusy.wait ();
busy = TRUE;

}

up() {
busy = FALSE;
notbusy.signal ();

}
}

Synchronization
(Part 2)

8/56

Readers and Writers

Suppose a resource is to be shared among a community of processes
of two types: readers and writers.

I A reader process can share the resource with any other reader
process, but not with any writer process.

I A writer process requires exclusive access to the resource
whenever it acquires any access to the resource.

I Several different policies can be implemented for managing the
shared resource.

I Policy 1: Readers preference. As long as a reader holds the
resource and there are new readers arriving, any writer must wait
for the resource to become available. Writer can starve.

I Policy 2: Writers preference. When a writer process requests
access to the shared resource, any subsequent reader process must
wait for the writer to gain access to the shared resource and then
release it. Reader can starve.

I Policy 3: Give neither preference. Neither readers nor writers can
starve.

Synchronization
(Part 2)

9/56

Readers and Writers Monitor: Policy 1

monitor ReadersWriters {
int numberOfReaders = 0;
boolean busy = FALSE;
condition okToRead , okToWrite;

public:
void startRead () {

if (busy) okToRead.wait ();
numberOfReaders = numberOfReaders + 1;
okToRead.signal ();

}
void finishRead () {

numberOfReaders = numberOfReaders - 1;
if (numberOfReaders == 0) okToWrite.signal ();

}
void startWrite () {

if (numberOfReaders > 0 || busy) okToWrite.wait ();
busy = TRUE;

}
void finishWrite () {

busy = FALSE;
if (okToRead.queue ())

okToRead.signal ();
else

okToWrite.signal ();
}

}

Synchronization
(Part 2)

10/56

Readers and Writers Monitor: Policy 2

monitor ReadersWriters {
int numberOfReaders = 0;
boolean busy = FALSE;
condition okToRead , okToWrite;

public:
void startRead () {

if (busy || okToWrite.queue ()) okToRead.wait ();
numberOfReaders = numberOfReaders + 1;
okToRead.signal ();

}
void finishRead () {

numberOfReaders = numberOfReaders - 1;
if (numberOfReaders == 0) okToWrite.signal ();

}
void startWrite () {

if (numberOfReaders > 0 || busy) okToWrite.wait ();
busy = TRUE;

}
void finishWrite () {

busy = FALSE;
if (okToWrite.queue ())

okToWrite.signal ();
else

okToRead.signal ();
}

}

Synchronization
(Part 2)

11/56

A Resource Allocation Monitor

monitor ResourceAllocator {
boolean busy = FALSE;
condition resource;

public:
acquire(time: integer) {
// time = How long is the resource needed for

if (busy) resource.wait(time);
busy = TRUE;

}

release () {
busy = FALSE;
resource.signal ();

}
}

-We assume priority scheduling for the wait queue.

Synchronization
(Part 2)

12/56

Examples of using Monitors

Other monitor examples:
I solve the producer consumer problem using monitors.
I an alarm clock monitor.
I a monitor that allows access to a file by no more than n

processes.
I a monitor that allows access to a group of processes as

long as the sum total of their process ids doesn’t exceed a
certain integer, say n.

The idea is to use the weakest scheduling that we can get away
with.
(arbitrary < FIFO < Priority)

Synchronization
(Part 2)

13/56

An Alarm Monitor

Write a monitor that implements an alarm clock that enables a calling program
to delay itself for a specified number of time units (ticks). You may assume the
existence of a real hardware clock, which invokes a procedure tick in your
monitor at regular intervals.
monitor AlarmClock {

int now = 0;
condition TimeToWakeup;

public:
void SetAlarm (int period) {

(* fill in the details here ... *)
}
void tick() {

now++;
TimeToWakeup.signal ();

}
}

Synchronization
(Part 2)

14/56

An Alarm Monitor (solution)

monitor AlarmClock{
int now = 0;
condition TimeToWakeup;
public:
void SetAlarm(int period){

period = period + now; //at what time to wake up
while (now < period) TimeToWakeup.wait(period);
TimeToWakeup.signal ();//Wake up other processes due now

//A cascaded wake up like the one
//we used in the Readers and Writers problem

}
void tick(void) {

now = now + 1;
TimeToWakeup.signal ();

}
}

Note: The variable now and period may overflow (if your operating system is not
rebooted for many decades!).
See synchronization-part2/monitors/java/alarm.monitor for a Java solution.

https://github.com/BoiseState/CS453-resources/tree/master/examples/synchronization-part2/monitors/java/alarm-clock

Synchronization
(Part 2)

15/56

Writing Monitors with Pthreads library

I The POSIX threads (Pthreads) library provides locks, semaphores
and condition variables. Combining these concepts makes it
possible to write monitors in C/C++.

I The idea is to have a monitor class (or class like file in C). For
example, we may have monitor.c and
monitor.h. Associate a mutex lock with it. In each method of the
class, we acquire the lock upon entering the method. We unlock
the mutex before returning from each method.

I The condition variables in Pthreads library are the same as the
condition variables used in the monitor concept.

I How to protect a class where public functions can call each
other? Use a wrapper function for each public function. The
wrapper function locks the mutex, calls the real function and then
unlocks the mutex.

Synchronization
(Part 2)

16/56

Account: A Monitor Example

I Account.h
I Account.c
I TestAccount.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/pthreads/account/Account.h
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/pthreads/account/Account.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/pthreads/account/Account.h

Synchronization
(Part 2)

17/56

Monitors Support in POSIX threads

Mutexes and Semaphores have already been discussed previously. The
following are the functions provided in Pthreads library for supporting
condition variables.
pthread_cond_t condvar;
int pthread_cond_init(pthread_cond_t *restrict cond ,

const pthread_condattr_t *restrict attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *restrict cond ,

pthread_mutex_t *restrict mutex);
int pthread_cond_timedwait (...);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

See man pages for more information.
Notes on pthread_cond_wait and pthread_cond_timedwait:
These functions always have an associated mutex (the one that is
being used to enforce mutual exclusion in the monitor). These
functions atomically release the mutex and cause the calling thread to
block on the condition variable. Upon successful return, the mutex
shall have been locked and shall be owned by the calling thread.

Synchronization
(Part 2)

18/56

Alarm Monitor in Pthreads

I AlarmClock.h
I AlarmClock.c
I TestAlarm.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/pthreads/alarm-clock/AlarmClock.h
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/pthreads/alarm-clock/AlarmClock.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/pthreads/alarm-clock/TestAlarm.c

Synchronization
(Part 2)

19/56

Producers Consumers in Pthreads

I A simple procuder consumer example that uses an array of
buffers and conditional variables: producers-consumers.c

I How would you modify the producer-consumer example so
that it stops cleanly on receiving SIGTERM, SIGINT or
SIGHUP signals?

I SIGINT is generated by typing Ctrl-c on the keyboard.
SIGTERM or SIGHUP can generated via the kill command.
kill -s TERM pid
kill -s HUP pid

where the process can be found with the ps augx
command.

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/pthreads/producers-consumers/producers-consumers.c

Synchronization
(Part 2)

20/56

Java Synchronization (1)

I Java threads are preemptible and native. The programmer
should not make any timing assumptions.

I Threads have priorities that can be changed (increased or
decreased).

I This implies that multiple threads will have race conditions
(read/write conflicts based on time of access) when they
run. The programmer has to resolve these conflicts.

I Example of a race condition. See Account.java and
TestAccount.java files.

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/java/account/Account.java
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/java/account/TestAccount.java

Synchronization
(Part 2)

21/56

Java Synchronization (2)

I Java has synchronized keyword for guaranteeing mutually exclusive
access to a method or a block of code. Only one thread can be active
among all synchronized methods and synchronized blocks of code in a
class.
// Only one thread can execute the update method at
// a time in the class.
synchronized void update () { //... }

// Access to individual datum can also be synchronized.
// The object buffer can be used in several classes ,
// implying synchronization across classes.

synchronized(buffer) {
this.value = buffer.getValue ();
this.count = buffer.length ();

}

I Every Java object has an implicit monitor associated with it to
implement the synchronized keyword. Inner class has a separate
monitor than the containing outer class.

I Java allows Rentrant Synchronization, that is, a thread can reacquire
a lock it already owns. For example, a synchronized method can call
another synchronized method.

Synchronization
(Part 2)

22/56

Java Synchronization (3)

I The wait() and notify() methods (of the Object class)
allow a thread to give up its hold on a lock at an arbitrary
point, and then wait for another thread to give it back
before continuing.

I Another thread must call notify() for the waiting thread
to wakeup. If there are other threads around, then there is
no guarantee that the waiting thread gets the lock next.
Starvation is a possibility. We can use an overloaded
version of wait() that has a timeout.

I The method notifyAll() wakes up all waiting threads
instead of just one waiting thread.

Synchronization
(Part 2)

23/56

Example with wait()/notify()

class MyThing {
synchronized void waiterMethod () {

// do something and then wait
// This gives up the lock and puts the calling
// thread to sleep
wait ();
// continue where we left off

}

synchronized void notifierMethod () {
// do something
// notifier the waiter that we've done it
notify ();
//do more things

}

synchronized void relatedMethod () {
// do some related stuff

}
}

Synchronization
(Part 2)

24/56

Writing Monitors with Java

I Java directly implements the notion of monitors with the
synchronized keyword. Any Java class can be made into a
monitor by following two rules.

I Add the synchronized keyword in front of each method
declaration.

I Make sure that there are no directly accessible class
variables. For example, make all class variables be private
(which is the recommended Object-Oriented practice
anyways).

I Every java object has a wait(), notify(), notifyAll()
methods that correspond to monitor concepts.

Synchronization
(Part 2)

25/56

Example 1: Bank Account

See examples in the folder: monitors/java/account
I Race conditions: Account.java, TestAccount.java
I Thread safe version using synchronized keyword:

ThreadsafeAccount.java

https://github.com/BoiseState/CS453-resources/tree/master/examples/synchronization-part2/monitors/java/account
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/java/account/Account.java
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/java/account/TestAccount.java
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/monitors/java/account/ThreadsafeAccount.java

Synchronization
(Part 2)

26/56

Example 2: Producer/Consumer Problem

I A producer thread creates messages and places them into
a queue, while a consumer thread reads them out and
displays them.

I The queue has a maximum depth.
I The producer and consumer don’t operate at the same

speed. In the example, the producer creates messages
every second but the consumer reads and displays only
every two seconds.
How long will it take for the queue to fill up? What will
happen when it does?

Synchronization
(Part 2)

27/56

Example 2 (contd.)

See examples in the folder:
monitors/java/producers-consumers

I Producer and Consumer sharing a synchronized queue.
I See examples: SharedQueue.java, Producer.java,

Consumer.java, PC.java

https://github.com/BoiseState/CS453-resources/tree/master/examples/synchronization-part2/monitors/java/producers-consumers

Synchronization
(Part 2)

28/56

Example 3: Alarm Monitor

I See example in the folder monitors/java/alarm.monitor

https://github.com/BoiseState/CS453-resources/tree/master/examples/synchronization-part2/monitors/java/alarm-clock

Synchronization
(Part 2)

29/56

Condition variables support in MS Windows API

Condition variables were introduced in Vista and Windows Server
2008. Condition variables aren’t supported in Windows Server 2003
and Windows XP/2000.
CONDITION_VARIABLE condvar;
InitializeConditionVariable: Initializes a condition variable.
SleepConditionVariableCS: Sleeps on the specified condition variable
and releases the specified critical section as an atomic operation.
SleepConditionVariableSRW: Sleeps on the specified condition variable
and releases the specified SRW lock as an atomic operation.
WakeAllConditionVariable: Wakes all threads waiting on the specified
condition variable.
WakeConditionVariable: Wakes a single thread waiting on the specified
condition variable.
CS stands for critical section. SRW stands for Slim Read Write locks.
From the MSDN Library documentation.

Synchronization
(Part 2)

30/56

Condition variables example in MS Windows API

CRITICAL_SECTION CritSection;
CONDITION_VARIABLE ConditionVar;
void PerformOperationOnSharedData ()
{

EnterCriticalSection (& CritSection);
// Wait until the predicate is TRUE
while(TestPredicate () == FALSE) {

SleepConditionVariableCS (& ConditionVar , &CritSection , INFINITE);
}
// The data can be changed safely because we own the
// critical section
ChangeSharedData ();
LeaveCriticalSection (& CritSection);
// If necessary , signal the condition variable by calling
// WakeConditionVariable or WakeAllConditionVariable
// so other threads can wake

}

From the MSDN Library documentation.

Synchronization
(Part 2)

31/56

Producers Consumers in MS Windows API

I Code example: producers-consumers.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/ms-windows/synchronization-part2/producers-consumers.c

Synchronization
(Part 2)

32/56

Inter-Process Communication (IPC)

I Semaphores and Signals are useful for synchronization but
not for sending information among processes.

I Monitors allow communication using shared memory.
I Message passing allows communication without using

shared memory. The message passing mechanism copies
the information from the address space of one process to
the address space of another process.

I What’s a message? How do we send a message? Why is
the operating system needed as an intermediary to send
messages? (for independent processes, since for threads
we can always use shared memory).

Synchronization
(Part 2)

33/56

Message Passing Using Mailboxes

I Mailboxes in user space versus in system space.
I Message protocols. A message may contain an instance of

a C structure, may be a string of ASCII characters etc.
The format is between the sender and receiver to decide a
priori or negotiate.

I Message headers may contain information such as the
sending process id, the receiver process id, number of bytes
in the message, message type etc. Messages may not even
have a header depending on how they are implemented.

I Performance issues. Copy-on-write mechanism can be
used to improve the performance.

Synchronization
(Part 2)

34/56

Message Passing Primitives

I send().
I synchronous send . Blocks the sending process until the

message is received by the destination process. This
synchronization is an example of a producer-consumer
problem.

I asynchronous send . The message is delivered to the
receiver’s mailbox and then the sender is allowed to
continue without waiting for the receiver to read the
message. The receiver doesn’t even have to ever retrieve
the message.

I receive().
I blocking receive. If there is no message in the mailbox, the

process suspends until a message in placed in the mailbox.
A receive operation is analogous to a resource request.

I non-blocking receive. The process is allowed to query the
mailbox and then control is returned immediately either
with a message if there is one in the mailbox or with a
status that no message is available.

Synchronization
(Part 2)

35/56

Message passing and Semaphores

I How to simulate a semaphore using message passing?
I How to simulate a monitor using message passing?
I How to implement message passing using mailboxes (with

all processes having access to shared memory) and
semaphores?

I How to implement message passing using mailboxes (with
all processes having access to shared memory) and
monitors?

Synchronization
(Part 2)

36/56

Message Passing using Semaphores

I A mailbox area in shared memory will be used to hold the mailboxes. Each
mailbox contains an array of message slots, named mail. Each mailbox has
variables numSlots and nextSlot, to keep track of the number of slots and the
next available slot. It also has two queues for waiting threads.

I Each process has an associated semaphore si (initially zero) on which it will
block when a send/receive must block.

I A global mutex is used to ensure mutual exclusion in accessing the mailbox
area in shared memory to prevent race conditions.

.

.

.

n

1

0

n − 1

0

.

.

.

n

1

0

n − 1

0

recvQ

sendQ

numSlots

nextSlot

mail
.

.

.

mutex m

. . .

recvQ

sendQ

numSlots

nextSlot

Mailbox 0

mail

Mailbox 1 Mailbox m−1

n

1

0

n − 1

0

recvQ

sendQ

numSlots

nextSlot

mail

 s[m−1] s[1] s[0]

Based on the above, now sketch out the pesudo-code for send/receive.
How can we improve the performance of the above implementation?

Synchronization
(Part 2)

37/56

Message Passing using Monitors

I Each mailbox is managed by a monitor. Each mailbox contains an array of
message slots, named mail. Each mailbox has variables numSlots and
nextSlot, to keep track of the number of slots and the next available slot.
It also has two queues for waiting threads.

I Each process has a condition variable (say mboxCheck) on which it will
block when a send/receive must block.

.

.

.

n

1

0

n − 1

0

recvQ

sendQ

numSlots

nextSlot

mboxCheck

Mailbox 0

mail
.

.

.

n

1

0

n − 1

0

recvQ

sendQ

numSlots

nextSlot

mboxCheck

mail

Mailbox 1

.

.

.

n

1

0

n − 1

0

recvQ

sendQ

numSlots

nextSlot

mail

mboxCheck

Mailbox m−1

. . .

Based on the above, sketch out the pesudo-code for send/receive methods.

Synchronization
(Part 2)

38/56

More on Signals

I Two main system calls that deal with signals: signal()
and sigaction(). The sigaction() call is consistent
across various systems whereas signal() is not
necessarily consistent across systems but is simpler to use.
See man page for details on both.

I Examples:
I signal-ex1.c
I signal-ex2.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/signals/signal-ex1.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/signals/signal-ex2.c

Synchronization
(Part 2)

39/56

Signal Handling after Exec

When a program is exec’d the status of all signals is either default or
ignore. The exec functions changes the disposition of any signals that are
being caught to their default action (why?) and leaves the status of all
other signals alone.
For example:
if (fork ()==0) { // the child process

if (signal(SIGINT , SIG_IGN) == SIG_ERR)
err_ret("failed␣to␣set␣SIGINT␣behavior");

if (signal(SIGTSTP , SIG_IGN) == SIG_ERR)
err_ret("failed␣to␣set␣SIGTSTP␣behavior");

execvp(program , argv);
// the exec'd program will ignore the
// signals SIGINT and SIGTSTP

Synchronization
(Part 2)

40/56

Signal Handling for an Application

How an application ought to set its signal handling:
An application process should catch the signal only if the signal is not
currently being ignored.
int sig_int(), sig_quit ();

if (signal(SIGINT , SIG_IGN) != SIG_IGN)
signal(SIGINT , sig_int);

if (signal(SIGQUIT , SIG_IGN) != SIG_IGN)
signal(SIGQUIT , sig_quit);

See code example: signal-ex3.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/signals/signal-ex3.c

Synchronization
(Part 2)

41/56

Other Signal Issues

I Signals are set to their default after being caught (under Linux and System
V UNIX semantics). This can be changed by using sigaction() instead
of the signal() system call.

I What if the program was updating some complicated data structures...
then exit or siglongjmp() is not a good solution. We can set a flag to
indicate the interrupt and continue processing. The program can deal with
the interrupt later.

I Under the POSIX semantics a process can also block signals so that they
are delivered later when it is ready to deal with the signals. (See man
pages for sigaction() and sigprocmask() under Linux).

I What if the parent and the child are both trying to catch an interrupt?
They both might then try to read from standard input. That would be
confusing, to say the least. The solution is to have the parent program
ignore interrupts until the child is done.

Synchronization
(Part 2)

42/56

Random Rogue and Blocking Signals

I Random rogue: shows how to catch and avoid
segmentation faults: signal-ex4.c

I Shows how to block a signal and receive later at a time of
our choosing: signal-ex5.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/signals/signal-ex4.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/signals/signal-ex5.c

Synchronization
(Part 2)

43/56

Signal Handling in the Shell

I How to handle Ctrl-c or SIGINT?
I The shell ignores it on startup.
I The shell catches it on startup and sends appropriate

signal to foreground jobs when it catches the signal.
I The shell catches it on startup, then ignores it when

starting a foreground job and catches it again afterwards.
I How to handle Ctrl-z or SIGTSTP?

I The shell ignores it on startup.
I The shell catches it on startup and send appropriate signal

to foreground jobs when it catches the signal.
I The shell catches it on startup, then ignores it when

starting a foreground job and catches it again afterwards.
I How do we prevent background jobs from getting affected

by Ctrl-c and Ctrl-z?
I How to implement fg and bg built-in commands?

Synchronization
(Part 2)

44/56

Pipes in Unix

I A pipe allows communication between two processes that have a
common ancestor.

I A pipe is a half-duplex (data flows in only one direction) FIFO buffer
with an API similar to file I/O.
#include <unistd.h>

int pipe(int filedes [2]);
// returns filedes [0] for reading , filedes [1] for writing

I Reading from a pipe whose write end has been closed causes an End
Of File to be returned. Writing to a pipe whose read end has been
closed causes the signal SIGPIPE to be generated. The write returns
with errno set to EPIPE.

I The size of pipe is limited to PIPE_BUF. A write of PIPE_BUF or less
will not interleave with the writes from other processes. The constant
PIPE_BUF is defined in the file /usr/include/linux/limits.h

I Examples: hello-pipe1.c, hello-pipe2.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/pipes/pipe2.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/pipes/pipe2.c

Synchronization
(Part 2)

45/56

The Power Of Pipelines

Find the 10 most frequent words in a given text file (and their respective
counts).
cat Shakespeare.txt | tr -cs "[A-Z][a-z][']" "[\012*]" | tr A-Z a-z |
sort | uniq -c | sort -rn | sed 10q

Synchronization
(Part 2)

46/56

Generate all anagrams from a given dictionary.
sign < $2 | sort | squash | awk '{if (NF > 1) print $0}'

---squash---
#!/bin/sh
/usr/bin/awk '
$2 != prev { prev = $2; if (NR > 1) printf "\n"}

{ printf " %s ", $2 }
END { printf "\n" }'

---sign.c---
#include <stdio.h>
#include <string.h>
#define WORDMAX 101
int compchar(char *x, char *y) { return ((*x) - (*y));}
void main(void)
{

char thisword[WORDMAX], sign[WORDMAX];

while (scanf("%s", thisword) != EOF) {
strcpy(sign, thisword);
qsort(sign, strlen(sign), 1, compchar);
printf("%s %s\n", sign, thisword);

}
}

Synchronization
(Part 2)

47/56

Pipes and I/O redirection

I See I/O redirection example 1: dup1.c
I See I/O redirection example 2: dup2.c
I We can combine I/O redirection with pipes to create pipelines of

commands. See code examples
I pipe2.c
I pipe3.c
I pipe4.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/pipes/dup1.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/pipes/dup2.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/pipes/pipe2.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/pipes/pipe2.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/pipes/pipe2.c

Synchronization
(Part 2)

48/56

Process Groups

I A process group is a collection of one or more processes. Each process
group has a unique process group ID.

I Each process under Unix belongs to a process group. Each process
group may have a process group leader. The leader is identified by
having its process group ID equal to its process ID.

I The two related systems calls allow a process to find out its process
group’s ID and to change its process group.
#include <sys/types.h>
#include <unistd.h>

pid_t getpgrp(void);
int set setpgid(pid_t pid , pid_t pgid);

I A process can set the process group ID of itself or its children.
Furthermore it cannot change the process group ID of its child after the
child calls the exec() system call.

I Only processes in the foreground group can perform I/O from the
terminal. A process that is not in the foreground group will receive a
SIGTTIN or SIGTTOU signal when it tries to perform I/O on the
terminal, which will stop the process.

See several examples in the folder process-groups under
synchronization-part2 lab folder.

https://github.com/BoiseState/CS453-resources/tree/master/examples/synchronization-part2/process-groups

Synchronization
(Part 2)

49/56

Named Pipes (FIFOs)

I Named Pipes (FIFOs) allow arbitrary processes to communicate.
#include <sys/types.h>
#include <sys/stat.h>

int mkfifo (const char *pathname , mode_t mode);

mkfifo pathname

I If we write to a FIFO that no process has open for reading, the
signal SIGPIPE is generated. When the last writer for a FIFO
closes the FIFO, an end of file is generated for the reader of the
FIFO.

I The reads/writes can be made blocking or non-blocking.
I If we have multiple writers for a FIFO, atomicity is guaranteed

only for writes of size no more than PIPE_BUF.

Synchronization
(Part 2)

50/56

Uses of FIFOs

I Can be used by shell commands to pass data from one shell
pipeline to another, without creating intermediate temporary files.
mkfifo fifo1
prog3 < fifo1 &
prog1 < infile | tee fifo1 | prog2

A real example of a nonlinear pipeline:
wc < fifo1 &
cat /usr/share/dict/words | tee fifo1 | wc -l

I Look at the following simple example using one fifo: hello-fifo.c
I Look at the following example for a two-way communication

using two fifos: fifo-talk.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/fifos/hello-fifo.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/fifos/fifo-talk.c

Synchronization
(Part 2)

51/56

Client Server Communication Using FIFOs

I The server creates a FIFO using a pathname known to the
clients. Clients write requests into this FIFO.

I The requests must be atomic and of size less than
PIPE_BUF, which is defined in limits.h standard header
file.

I The server replies by writing to a client-specific FIFO. For
example, the client specific FIFO could be
/tmp/serv1.xxxxx where xxxxx is the process id of the
client.

See wikipedia: client server model for more information on the
client-server model.

http://en.wikipedia.org/wiki/Client%E2%80%93server_model

Synchronization
(Part 2)

52/56

Fifo Server Client Example

I Shows a simple server that listens on a fifo to any client
that connects to it and chats with the client.

I Server code: fifo-server.c
I Client code: fifo-client.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/fifos/fifo-server.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part2/fifos/fifo-ienterver.c

Synchronization
(Part 2)

53/56

Daemons and Servers

I A Daemon is a process that lives for a long time.
Daemons are often started when the system is
bootstrapped and terminate only when the system is
shutdown. They run in the background because they don’t
have a controlling terminal.

I A Server is a process that waits for a client to contact it,
requesting some type of service. Typically, the server then
sends some reply back to the client.

I A common use for a daemon process is as a server process.

Synchronization
(Part 2)

54/56

Writing a Daemon

Coding rules for a daemon.
1. Call fork() and have the parent exit.
2. Call setsid to create a new session. Then the process

becomes a session leader of a new session, becomes the
process group leader of a new process group and has no
controlling terminal.

3. Change the current working directory to the root directory.
Alternately, some daemons might change the working
directory to some specific location.

4. Set the file creation mask to 0, so it does not use anything
inherited from its parent process.

5. Unneeded file descriptors should be closed.
6. Use the syslog system call to log messages to the syslogd

daemon, which is a central facility for all daemons to log
messages. See man page for syslog (man 3 syslog) for
more details.

Synchronization
(Part 2)

55/56

#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int daemon_init(void)
{

pid_t pid;

if ((pid = fork ()) < 0)
return (-1);

else if (pid != 0)
exit (0); /* parent goes bye -bye */

/* child continues */
setsid (); /* become session leader */

chdir("/"); /* change working directory */

umask (0); /* clear our file mode creation mask */

return (0);
}

Synchronization
(Part 2)

56/56

Synchronization in the Linux kernel

I Atomic operations on bits, 32-bit and 64-bit integers. See
include/asm-generic/atomic.h and
arch/x86/include/asm/atomic.h for architecture specific
implementation. See arch/x86/include/asm/bitops/atomic.h for
test-and-set related bit operations.

I Spinlocks. Threads do not sleep if waiting for a lock. Suitable
only for short duration locks.

I Reader-Writer spinlocks. Gives preference to readers over writers.
Multiple readers can hold the lock but only one writer..

I Semaphores. See include/linux/semaphore.h and
kernel/locking/semaphore.c. Uses wait queues and sleep.

I Reader-Writer Semaphores.
I Mutexes. Similar to a binary semaphore but with a simpler

interface, more efficient performance, and additional constraints
on its use.

I Completion variables. Similar to condition variables.
I Sequential locks. Reader and writers with preference given to

writers.
I Read-Write barriers and ordering.
I BKL: Big Kernel Lock. Removed in kernel version 2.6.39.
I Preemption disabling. Bad thing :-(

