
Synchronization
(Part 1)

1/55

Synchronization (Part 1)

Synchronization
(Part 1)

2/55

Learning Objectives

I Understand and solve synchronization problems in
multi-threaded and multi-process programs.

I Understand the concepts of race conditions, mutual
exclusion, critical section and deadlocks

I Explain and use synchronization primitives such as
mutexes and sempahores

I Understand the producer-consumer synchronization design
pattern

I Understand how to use basic synchronization primitives in
PThreads library and Windows API

https://www.youtube.com/watch?v=k2KMnpD46jI

Synchronization
(Part 1)

3/55

Interacting Processes/Threads

I Concurrent programs is an umbrella term for
multi-threaded programs and multi-process applications.

I Processes (Threads) can be contending or cooperating.
Either way, synchronization is needed.

I Parallel and Distributed computing is now in the
mainstream with multi-core and many-core systems and
clusters.

I Variety of parallel programming languages and systems are
available. Most operating systems provide native support
for multi-threaded programs and libraries are widely
available for parallel programming.

Synchronization
(Part 1)

4/55

Parallelizing mergesort using threads

I Consider the standard recursive mergesort. It divides the array
into two halves, sorts each half recursively and then merges them
to sort the entire array. See example code at:
mergesort/single-threaded

I void serial_mergesort (int A[], int p, int r)
{

if (r-p+1 <= INSERTION_SORT_CUTOFF) {
insertion_sort (A,p,r);

} else {
int q = (p+r)/2;
serial_mergesort (A, p, q);
serial_mergesort (A, q+1, r);
merge(A, p, q, r);

}
}

I How would you parallelize mergesort using multiple threads?

https://github.com/BoiseState/CS453-resources/tree/master/examples/synchronization-part1/mergesort/single-threaded

Synchronization
(Part 1)

5/55

Concurrent Processes

I A concurrent program consists of several sequential
processes whose execution sequences are interleaved. The
sequential processes communicate with each other in order
to synchronize or to exchange data.

I Suppose a concurrent process P consists of two processes
p1 and p2. Then we can imagine interleaving as if some
supernatural being were to execute the instructions one at
a time, each time flipping a coin to decide whether the
next one will be from p1 or p2. These execution sequences
exhaust the possible behaviors of P.

I Suppose p1 has m instructions and p2 has n instructions.
How many possible interleavings are there?(

m+n
m

)
(which is exponential!)

Synchronization
(Part 1)

6/55

Nondeterminism, Race conditions and Critical
Sections

I Race Condition. When two or more processes are reading
or writing shared data and the final result depends on the
order in which their instructions get scheduled.

I Critical Section. The section of a program where shared
data is accessed. We must ensure that of all the processes
accessing the same shared data only one process is in its
critical section at a time. This is called the mutual
exclusion problem.

I We want to solve mutual exclusion problem without
making any assumptions on the speed of the CPU, number
of CPUs and the scheduling order of the processes.

Synchronization
(Part 1)

7/55

An Example of a Race Condition

shared double balance; /* shared variable */
/* Code for process p1 */ /* Code schema for process p2 */
... ...
balance = balance + amount balance = balance - amount
... ...

/* Compiled code for p1 */ /* Compiled code for p2 */
load R1, balance load R1, balance
load R2, amount load R2, amount
add R1, R2 sub R1, R2
store R1, balance store R1, balance

I Given initial balance of $100, amount to credit to be $30 and amount to
debit to be $80, how many possible values can balance have after the two
processes access the shared variable?

I Code example: bad-bank-balance.c Illustrates race conditions when
multiple threads access the same global variable and the result depends on
the interleaving of threads.

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part1/bad-bank-balance.c

Synchronization
(Part 1)

8/55

A Model Concurrent Process

for (;;) {
/*pre - protocol */
...
/* critical section */
...
/*post - protocol */
...
/* remainder */
...

}

I We assume that the process never terminates in the code for
pre-protocol, critical section, post-protocol. A process can
terminate abnormally in the remainder section. If a process dies
in the remainder section, it should not affect other processes.

Synchronization
(Part 1)

9/55

Properties of Concurrent Processes

I Correctness. Comes in two flavors: safety and liveness.

I Safety. If the program terminates, the answer must be “correct.”
Safety can always be improved by giving up some concurrency.

I Liveness. If something is supposed to happen, then eventually it
will happen. For example:

I If a process wishes to enter its critical section, then eventually it
will do so.

I If a producer produces data, then eventually the consumer will
consume it.

There are two types of violations of liveness: deadlock and lockout.
I deadlock. No process is able to make any progress. The absence

of deadlock can be shown by proving that there is at least one live
process.

I lockout or starvation. There is always some process that can make
progress but some identifiable process is being indefinitely delayed.
This is more difficult to discover and correct.

I Fairness. A process wishing to progress must get a fair deal relative to
all other processes. No precise definition is possible.

Synchronization
(Part 1)

10/55

Mutual Exclusion via Disabling Interrupts

shared double balance ; /* shared variables */

/* Process p1 */ /* Process p2 */

disableInterrupts (); disableInterrupts ();
balance = balance + amount ; balance = balance - amount ;
enableInterrupts (); enableInterrupts ();

Synchronization
(Part 1)

11/55

Mutual Exclusion via Disabling Interrupts

I A simple way to ensure mutual exclusion is to disable
interrupts. But disabling interrupts is fraught with pitfalls:

I User processes may cause havoc like not turning on the
interrupts again.

I What is we have more than one CPU? Doesn’t work if the
system has more than one CPUs.

I However, this technique could be useful within the kernel
in a limited context. In Linux, this is known as the Big
Kernel Lock (BKL).

I Note: the BKL was removed in Linux version 2.6.39 and
replaced with finer grained locking.

I The git commit that removed the last traces of the BKL is
here: http://git.kernel.org/cgit/linux/kernel/
git/torvalds/linux.git/commit/?id=
4ba8216cd90560bc402f52076f64d8546e8aefcb

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=4ba8216cd90560bc402f52076f64d8546e8aefcb
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=4ba8216cd90560bc402f52076f64d8546e8aefcb
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=4ba8216cd90560bc402f52076f64d8546e8aefcb

Synchronization
(Part 1)

12/55

Synchronization using Shared Memory

I Explicitly synchronize the processes through shared
variables. The processes co-operate to ensure mutual
exclusion in the critical section. But accessing the shared
variables would itself become a critical section.

I Deadlocks can also be created while trying to ensure
mutual exclusion.

Synchronization
(Part 1)

13/55

The Rules of the Game

1. A concurrent program will consist of two or more sequential programs
whose execution sequences are interleaved.

2. The processes must be loosely connected. In particular, the failure of
any process outside its critical section and protocols must not affect
other processes.

3. A concurrent program is correct if it does not suffer from violation of
safety properties such as mutual exclusion and of liveness properties
such as deadlock and lockout.

4. A concurrent program is incorrect if there exists an interleaved
execution sequence which violates a correctness requirement. Hence it
is sufficient to construct a scenario to show incorrectness; to show
correctness requires a mathematical argument that the program is
correct for all execution sequences.

5. No timing assumptions are made except that no process halts in its
critical section and that, if there are ready processes, one is eventually
scheduled for execution. We may impose other fairness requirements.

6. We shall assume some primitive synchronization instructions such as a
memory arbiter, which guarantees that each memory access is an
atomic (indivisible) operation.

Synchronization
(Part 1)

14/55

The Igloo Metaphor

Only one person can enter the igloo at a time. The small size of the
igloo is a metaphor for the memory arbiter. The Igloo example is
borrowed from the book “Principles of concurrent programming” by
M. Ben-Ari.

Synchronization
(Part 1)

15/55

First Attempt

int turn =1; /* shared variable turn */
void P1() {

for (;;) {
while (turn == 2); // do nothing
/* critical_section_1 */
turn = 2;
/* remainder_1 */

}
}
void P2() {

for (;;) {
while (turn == 1); // do nothing
/* critical_section_2 */
turn = 1;
/* remainder_2 */

}
}
void main ()
{

thread_t thread1 , thread2 ;

pthread_create (thread1 , NULL , P1 , NULL);
pthread_create (thread2 , NULL , P2 , NULL);
pthread_join (thread1 , NULL);
pthread_join (thread2 , NULL);

}

Synchronization
(Part 1)

16/55

First Attempt (contd.)

I Satisfies mutual exclusion, no deadlock or lockout, but not
loosely connected (think polar bears!)

I Fairness: One process is forced to work at the pace of the
other process.

This technique of passing control explicitly from one process to
another is known as coroutines.

Synchronization
(Part 1)

17/55

The Igloo Metaphor (contd.)

Synchronization
(Part 1)

18/55

int c1= FALSE ; /* shared variable c1 */
int c2= FALSE ; /* shared variable c2 */

void P1() {
for (;;) {

while (c2); //do nothing
c1 = TRUE;
/* critical_section_1 */
c1 = FALSE ;
/* remainder_1 */

}
}

void P2() {
for (;;) {

while (c1); //do nothing
c2 = TRUE;
/* critical_section_2 */
c2 = FALSE ;
/* remainder_2 */

}
}
void main () { /* same as before */}

Synchronization
(Part 1)

19/55

Second Attempt (contd.)

I Does not satisfy mutual exclusion.
I Give an example interleaving that shows both processes in

the critical section.

Synchronization
(Part 1)

20/55

Third Attempt

int c1= FALSE ; /* shared variable c1 */
int c2= FALSE ; /* shared variable c2 */

void P1() {
for (;;) {

c1 = TRUE;
while (c2); //do nothing
/* critical_section_1 */
c1 = FALSE ;
/* remainder_1 */

}
}

void P2 () {
for (;;) {

c2 = TRUE;
while (c1); // do nothing
/* critical_section_2 */
c2 = FALSE ;
/* remainder_2 */

}
}

void main () { /* same as before */}

Synchronization
(Part 1)

21/55

Third Attempt (contd.)

I This solution satisfies mutual exclusion but deadlocks.
I However, it is still instructive to prove that the solution

satisfies mutual exclusion.

Synchronization
(Part 1)

22/55

Fourth Attempt

int c1=FALSE; /* shared variable c1 */
int c2=FALSE; /* shared variable c2 */

void P1() {
for (;;) {

c1 = TRUE;
while (c2) {

c1 = FALSE;
//do nothing for
//a few moments
c1 = TRUE;

}
/* critical_section_1 */
c1 = FALSE ;
/* remainder_1 */

}
}

void P2() {
for (;;) {

c2 = TRUE;
while (c1) {

c2 = FALSE;
// do nothing for a few moments
c2 = TRUE;

}
/* critical_section_2 */
c2 = FALSE ;
/* remainder_2 */

}
}

Synchronization
(Part 1)

23/55

Fourth Attempt (contd.)

I Does satisfy mutual exclusion.
I Makes the processes more polite (or chivalrous). However,

there can be such a thing as too much chivalry. This
creates a potential lockout situation.

I Come up with an example where the two processes lockout
due to too much chivalry!

Synchronization
(Part 1)

24/55

The Igloo Metaphor (contd.)

Synchronization
(Part 1)

25/55

Petersen’s Solution

int flag1=FALSE; /* shared variable flag1 */
int flag2=FALSE; /* shared variable flag2 */
int turn =1; /* shared variable turn */

void P1() {
for (;;) {

flag1 = TRUE;
turn = 2;
while (flag2 && (turn == 2)); // do nothing
/* critical_section_1 */
flag1 = FALSE;
/* remainder_1 */

}
}
void P2() {

for (;;) {
flag2 = TRUE;
turn = 1;
while (flag1 && (turn == 1)); // do nothing
/* critical_section_2 */
flag2 = FALSE;
/* remainder_2 */

}
}
void main () { /* same as before */}

Synchronization
(Part 1)

26/55

Proof for Mutual Exclusion:
The following proof is symmetric and we show the arguments only for one case,
i.e., for P1 in its critical section. We have substituted flag1 and flag2 by an
array flag [1..2] for notational convenience.

1. (When P1 entered its critical section) then ((flag [2] = false) or (turn = 1))
This is due to the test in the while loop.

2. (When P1 entered its critical section) then (flag [1] = true) This is true
since the critical section is bracketed between assignments to flag [1].

3. ((turn = 1) and (flag [1] = true)) implies (P2 cannot enter its critical
section) This follows from the test in the while loop for P2.

4. (flag [2] = false) implies (P2 is out of its critical section) flag [2] is set to
false when P2 leaves its critical section or in the initialization. Thus flag [2]
being false implies that P2 is out of its critical section and is not intending
to enter. If it intends to enter it will set flag [2] to true.

5. (When P1 entered its critical section) then (P2 is not in its critical section)
Follows from (3) and (4).

6. (As long as P1 is in its critical section) then (P2 does not enter its critical
section) This follows from (5). Since (5) refers to an arbitrary instant of
time, then as long as its antecedent (P1 in critical_section) remains true,
so will its consequent (P2 does not enter critical_section).

Synchronization
(Part 1)

27/55

Proof for no deadlock

A deadlock can occur only if the processes are stuck in their while
loops.
A process Pi is prevented from entering its critical section only if the
condition flag [j] = true and turn = j where j is 1 if i is 2 and vice
versa. If Pj has set flag [j] = true and is also executing in its while
loop, then either turn = 1 or turn = 2, but cannot be both. Thus
either P1 or P2 will be able to enter its critical section and there is no
deadlock.

Synchronization
(Part 1)

28/55

Proof for no starvation

As noted in the previous proof, either P1 or P2 is able to enter the critical
section if both attempt to enter at about the same time. To show that there is
no starvation, we must show the following two things:

1. Once P1 gets in to the critical section then it can’t prevent P2 from
getting its chance and vice versa.

Proof: Once P1 exits its critical section, it will reset flag [1] = false
allowing P2 a chance to enter its critical section. If P1 resets flag [1] = true
in an attempt to quickly re-enter its critical section, it must also set
turn = 2 (the politeness clause). Thus since P2 does not change the value
of the variable turn in the execution of the while statement, P2 will enter
its critical section after at most one entry by P1. The same argument
applies if the role of P1 and P2 are interchanged.

2. If P1 terminates in its remainder section (that is, out of its critical section)
then that does not prevent P2 from entering its critical section (and vice
versa).

Proof: Follows from the fact that after leaving the critical section the
process P1 must set flag [1] = false allowing P2 to enter its critical section.
Note that we assume that processes do not terminate during the critical
section as well as during the pre-protocol and post-protocol where they are
entering or leaving the critical section but they can die in the remainder
section.

Synchronization
(Part 1)

29/55

The Bakery Problem

unsigned int choosing [n];
unsigned int number [n];
// initial values :
// choosing [i] = FALSE; 0 <= i <= n -1
// number [i] = 0; 0 <= i <= n-1

void p(int i)
{

for (;;) {
choosing [i] = TRUE;
number [i] = MAX(number [0], number [1] , ... , number [n -1])+1;
choosing [i] = FALSE;

for (j=0; j<n; j++) {
while (choosing [j]); //do nothing
// (a,b) < (c,d) if a < c or if a==c and b < d
while ((number [j] != 0) && ((number [j],j) < (number [i],i)));

}
/* critical section */
...
number [i] = 0;
/* remainder */

}
}

Does the above satisfy mutual exclusion? Does it prevent deadlock or lockout?
Can the numbers overflow? Check the example counting.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part1/counting.c

Synchronization
(Part 1)

30/55

Semaphores

A semaphore s is a non-negative integer variable. Once s has
been given its initial value, the only permissible operations are:

P(s) (or wait(s) or down(s)). [if (s > 0) then s = s-1;
else {(wait until s > 0)}] If s > 0, it is tested and
decremented as an atomic operation. However, if
s is zero, the process executing P can be
interrupted when it executes the wait command.

V(s) (or signal(s) or up(s) or post(s)). [s = s+1].
Increment s as an indivisible operation. The
effect is to signal some process that is blocked on
the semaphore.

Synchronization
(Part 1)

31/55

Semaphores (contd.)

I Semaphores can be binary, that is, taking only values 0 or
1. A binary semaphores is often referred to as a Mutex.

I Or they can be counting or general semaphores, which can
take on any value greater than or equal to zero.

I If more than one process is blocked on a semaphore s,
than an arbitrary one of these process is woken up by the
V(s) operation.

I P stands for proberen (to probe) and V stands for
verhogen (to increment) in Dutch. Semaphores were
introduced by E.W. Dijkstra.

The igloo metaphor: Now the igloo not only has a blackboard but
also a deep-freezer.

Synchronization
(Part 1)

32/55

A Train Semaphore

Synchronization
(Part 1)

33/55

Critical Section Using a Semaphore

semaphore mutex = 1; // must be created and initialized in main ()

process0 ()
{

while (TRUE) {
<compute section >
wait(mutex);

<critical section >
signal (mutex);

}
}

process1 ()
{

while (TRUE) {
<compute section >
wait(mutex);

<critical section >
signal (mutex);

}
}

Synchronization
(Part 1)

34/55

Bank Account example using a semaphore

semaphore mutex = 1; // must be created and initialized in main ()
pthread_create (thread1 , 0);
pthread_create (thread2 , 0);
...
/* thread1 and thread2 call credit / debit multiple times */
...

credit () {
/* Enter critical section */
wait(mutex);

balance = balance + amount ;
/* Exit critical section */
signal (mutex);

}

debit () {
/* Enter critical section */

wait(mutex);
balance = balance - amount ;

/* Exit critical section */
signal (mutex);

}

Synchronization
(Part 1)

35/55

Interacting Parallel Processes

Shared double x,y; // must be created and setup in main ()

processA ()
{

while (TRUE) {
<compute A1 >;
write(x); /* produce x */
<compute A2 >;
read(y); /* consume y */

}
}

processB ()
{

while (TRUE) {
read(x); /* consume x */
<compute B1 >;
write (y); /* produce y */
<compute B2 >;

}
}

Synchronization
(Part 1)

36/55

Synchronizing Processes

Shared double x,y; // must be created and setup in main ()
semaphore s_x = 0, s_y = 0;

processA ()
{

while (TRUE) {
<compute A1 >;
write(x); /* produce x */
signal (s_x); /* signal B */
<compute A2 >;
/* Wait for signal from B */
wait(s_y);
read(y); /* consume y */

}
}

processB ()
{

while (TRUE) {
/* Wait for signal from A */
wait(s_x);
read(x); /* consume x */
<compute B1 >;
write (y); /* produce y */
signal (s_y); /* signal A */
<compute B2 >;

}
}

Synchronization
(Part 1)

37/55

Producers and Consumers

Consumer

Consumer

Consumer Producer

Producer

ProducerFull Pool

Empty Pool

Synchronization
(Part 1)

38/55

Producers and Consumers

producer () {
buf_type *next , *here;
while(TRUE) {

produce_item (next);
/* Claim an empty buffer */
wait(empty);
wait(mutex);
here = obtain (empty);
signal (mutex);
copy_buffer (next , here);
wait(mutex);
release (here , fullPool);
signal (mutex);
/* Signal a full buffer */
signal (full);

}
}

semaphore mutex = 1;
/* counting semaphores */
semaphore full = 0;
semaphore empty = N;
buf_type buffer [N];
pthread_create (producer , 0);
pthread_create (consumer , 0);

consumer () {
buf_type *next , *here;
while(TRUE) {

/* Claim full buffer */
wait(full);
/* Manipulate the pool */
wait(mutex);
here = obtain (full);
signal (mutex);
copy_buffer (here , next);
/* Manipulate the pool */
wait(mutex);
release (here , emptyPool);
signal (mutex);
/* Signal an empty buffer */
signal (empty);
consume_item (next);

}
}

Synchronization
(Part 1)

39/55

More on Producers and Consumers

I What happens if we interchange the wait(full) and
wait(mutex) operations? (in the consumer)

I What happens if we interchange the signal(full) and
signal(mutex) operations? (in the consumer)

I How to improve the performance while retaining
correctness?

I Separate semaphores for full/empty pools?
I Multiple queues?
I For multiple queues, should we let producers and

consumers access a queue at random or should there be a
systematic pattern of access?

Synchronization
(Part 1)

40/55

Synchronization in POSIX Threads (PThreads)

Mutexes are simple lock primitives that can be used to control access to a shared
resource.
#include < pthread .h>
pthread_mutex_t <variable >;
pthread_mutex_init (pthread_mutex_t *, pthread_mutexattr_t *)
pthread_mutex_lock (pthread_mutex_t *)
pthread_mutex_trylock (pthread_mutex_t *)
pthread_mutex_unlock (pthread_mutex_t *)
pthread_mutex_destroy (pthread_mutex_t *)

semaphores in POSIX threads support the following operations.
#include < pthread .h>
include <semaphore .h>
sem_t <variable >;
int sem_init (sem_t *sem , int pshared , unsigned int value);
int sem_wait (sem_t *sem);
int sem_trywait (sem_t *sem);
int sem_post (sem_t *sem);
int sem_getvalue (sem_t *sem , int *sval);
int sem_destroy (sem_t *sem);

Synchronization
(Part 1)

41/55

PThreads Synchronization

I Mutex - A construct used to protect access to a shared bit
of memory.

I Think of a lock that only has one key. If you want to open
the lock you must get the key. If you don’t have the key
you must wait until it becomes available.

I A Mutex, short for Mutual exclusion object, is an object
that allows multiple program threads to share the same
resource, such as a data structure or file access, but not
simultaneously. Each thread locks the mutex to gain
access to the shared resource and then unlocks when it is
done. We can use mutexes to prevent race conditions.

Synchronization
(Part 1)

42/55

Mutual Exclusion Using Locks

pthread_mutex_t mutex;
void P1() {

for (;;) {
pthread_mutex_lock (& mutex);
/* critical_section_1 */
pthread_mutex_unlock (& mutex);
/* remainder_1 */

}
}
void P2() {

for (;;) {
pthread_mutex_lock (& mutex);
/* critical_section_2 */
pthread_mutex_unlock (& mutex);
/* remainder_2 */

}
}
void main ()
{

thread_t thread1 , thread2 ;
pthread_mutex_init (& mutex , NULL);
pthread_create (thread1 , NULL , P1 , NULL);
pthread_create (thread2 , NULL , P2 , NULL);
pause (); // let the threads play forever

}

Synchronization
(Part 1)

43/55

Semaphores in Pthreads

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value); Initializes the
semaphore object pointed to by sem. The count associated with the
semaphore is set initially to value. The flag pshared should be set to zero.
Non-zero value allows semaphores to be shared across processes.

int sem_wait(sem_t *sem); Suspends the calling thread until the semaphore
pointed to by sem has non-zero count. It then atomically decreases the
semaphore count.

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

int sem_trywait(sem_t *sem); A non-blocking variant of sem_wait

int sem_post(sem_t *sem); Atomically increases the count of the semaphore
pointed to by sem. This function never blocks and can safely be used in
asynchronous signal handlers.

int sem_getvalue(sem_t *sem, int *sval);

int sem_destroy(sem_t *sem);

Synchronization
(Part 1)

44/55

PThread Synchronization Examples

I See the example safe-bank-balance.c for a solution to the
race condition using a Mutex lock.

I Sychronized hello world: threads-hello-synchronized.c
I File copy using two threads (reader and writer):

threads-sem-cp.c
I File copy using double buffering: threads-dbl-buf.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part1/safe-bank-balance.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part1/threads-hello-synchronized.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part1/threads-sem-cp.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part1/threads-dbl-buf.c

Synchronization
(Part 1)

45/55

In-class Exercise (1)
Dining Philosophers? Dining Semaphores? We have 5 philosophers
that sit around a table. There are 5 bowls of rather entangled spaghetti
that they can eat if they get hungry. There are five forks on the table as
well. However, each philosopher needs two forks to eat the tangled
spaghetti. No two philosophers can grab the same fork at the same time.
We want the philosophers to be able to eat amicably. Consider the
following solution to this problem.

/* dining_philosophers */
sem_t fork[5]; // array of binary semaphores
sem_t table; // general semaphore

void philosopher(void *arg)
{

i = *(int *) arg;
for (;;) {

think();
sem_wait(&table);
sem_wait(&fork[i]);
sem_wait(&fork[(i+1) % 5];
eat();
sem_post(&fork[i]);
sem_post(&fork[(i+1) % 5];
sem_post(&table);

}
}

Synchronization
(Part 1)

46/55

In-class Exercise (2)

. . .
int main()
{

int i;
for (i = 0; i< 5; i++) {

sem_init(&fork[i], 0, 1); //initialize to 1
}
sem_init(&table, 0, 4); //initialize to 4
for (i = 0; i< 5; i++) {

pthread_create(&tid[i], NULL, philosopher, (void *)&i);
}
for (i = 0; i< 5; i++) {

pthread_join(tid[i], NULL);
}
exit(0);

}

I Argue why it is not possible for more than one philosopher to grab the same
fork?

I Can the philosophers ever deadlock. Explain.
I Can a philosopher starve?
I What may happen if we initialize the table semaphore to 5 (instead of 4)?

Synchronization
(Part 1)

47/55

Other Useful Thread Functions

I pthread_yield() Informs the scheduler that the thread is willing to
yield its quantum, requires no arguments.

I pthread_t me = pthread_self() Allows a pthread to obtain its own
identifier

I pthread_detach(thread) Informs the library that the threads exit status
will not be needed by subsequent pthread_join calls resulting in
better threads performance.

I Barriers (Not available in Mac OS X)
pthread_barrier_t barrier ;
pthread_barrier_init (& barrier , NULL , count);
result = pthread_barrier_wait (& barrier);
/* One thread gets PTHREAD_BARRIER_SERIAL_THREAD back

while others get a zero */
pthread_barrier_destroy (& barrier);

See the example threads-barrier.c.

https://github.com/BoiseState/CS453-resources/blob/master/examples/synchronization-part1/threads-barrier.c

Synchronization
(Part 1)

48/55

Further Information on POSIX Threads

I Where can I find out more about Threads? On Linux, try
man -k pthread
to see the man pages for Pthreads (pthreads) package.

I Check out the following books:
I Lewis and Berg: Multithreaded Programming with

Pthreads (Prentice Hall)

Synchronization
(Part 1)

49/55

Synchronization in MS Windows API

MS Windows API supports Mutex and semaphore objects.
I The methods for Mutexes include CreateMutex(..),

WaitForSingleObject(...) to wait for it and
ReleaseMutex(...) to release the Mutex.

I The methods for semaphores include
CreateSemaphore(..),
WaitForSingleObject(...) to wait for it and
ReleaseSemaphore(...) to release the semaphore.

I A WaitForMultipleObjects(..) call is also provided.

Synchronization
(Part 1)

50/55

Threads in MS Windows API

Get detailed information from http://msdn.microsoft.com/library/.
HANDLE WINAPI CreateThread (

LPSECURITY_ATTRIBUTES lpThreadAttributes ,
SIZE_T dwStackSize ,
LPTHREAD_START_ROUTINE lpStartAddress ,
LPVOID lpParameter ,
DWORD dwCreationFlags ,
LPDWORD lpThreadId

);

DWORD WINAPI ThreadProc (
LPVOID lpParameter

);

Synchronization
(Part 1)

51/55

Semaphores and Mutexes in MS Windows API

HANDLE WINAPI CreateSemaphore (
LPSECURITY_ATTRIBUTES lpSemaphoreAttributes ,
LONG lInitialCount ,
LONG lMaximumCount ,
LPCTSTR lpName

);

BOOL WINAPI ReleaseSemaphore (
HANDLE hSemaphore ,
LONG lReleaseCount ,
LPLONG lpPreviousCount

);

HANDLE WINAPI CreateMutex (
LPSECURITY_ATTRIBUTES lpMutexAttributes ,
BOOL bInitialOwner ,
LPCTSTR lpName

);

BOOL WINAPI ReleaseMutex (HANDLE hMutex);

Synchronization
(Part 1)

52/55

Wait calls in MS Windows API

DWORD WINAPI WaitForSingleObject (
HANDLE hHandle ,
DWORD dwMilliseconds

);

DWORD WINAPI WaitForMultipleObjects (
DWORD nCount ,
const HANDLE * lpHandles ,
BOOL bWaitAll ,
DWORD dwMilliseconds

);

Synchronization
(Part 1)

53/55

Critical Section call in MS Windows API

CRITICAL_SECTION cs;
InitializeCriticalSection (&cs);
EnterCriticalSection (&cs);
LeaveCriticalSection (&cs);

Synchronization
(Part 1)

54/55

Multithreaded Example in MS Windows API

I Code Example: thread-sem-cp.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/ms-windows/synchronization-part1/thread-sem-cp.c

Synchronization
(Part 1)

55/55

Synchronization in Java

I Java has the synchronized keyword for guaranteeing
mutually exclusive access to a method or a block of code.
Only one thread can be active among all synchronized
methods and synchronized blocks of code in a class.

I Java provides a mutex/lock implementation via the class
ReentrantLock in the java.util.concurrent.lock
package.

I Java provides sempahore implementation via the class
Semaphore in the java.util.concurrent package.

I Java synchronization will be covered in the next chapter as
it is based on the concept of a Monitor, which is covered
in the next chapter.

