
Scheduling

1/51

Scheduling

Scheduling

2/51

Learning Objectives

I To understand the role of a scheduler in an operating
system

I To understand the scheduling mechanism
I To understand scheduling strategies such as

non-preemptive versus preemptive.
I To be able to explain various scheduling algorithms like

first-come first-served, round robin, priority-based etc
I To examine commonly using schedulers on Linux and

Microsoft Windows.

Scheduling

3/51

Scheduler

I Scheduler allocates CPU(s) to threads and processes. This
action is known as scheduling.

I The scheduler is a part of the process manager code that
handles scheduling.

Scheduling

4/51

Scheduling Mechanisms

I The scheduling mechanism determines when it is time to
multiplex the CPU. It handles the removal of a running process
from the CPU and the selection of another process based on a
particular scheduling policy.

I The scheduling policy determines when it is time for a process to
be removed from the CPU and which ready process should be
allocated to the CPU next.

I A scheduler has three components: the enqueuer, the dispatcher,
and the context switcher. The context switcher is different for
voluntary versus involuntary process switching styles.

I The enqueuer places a pointer to a process descriptor of a process
that just got ready into the ready list.

I The context switcher saves the contents of all processor registers
for the process being removed from the CPU in its process
descriptor. Is invoked either by the process or by the interrupt
handler.

I The dispatcher selects one of the several ready processes enqueued
in the ready list and then allocates the CPU to the process by
performing another context switch from itself to the selected
process.

Scheduling

5/51

Non-preemptive Scheduling

I The process calls the yield() system call to relinquish the CPU.
The yield() system call saves the address of the next
instruction at some designated memory location and then
branches to an arbitrary location.
yield(r,s) {

memory[r] = PC;
PC = memory[s];

}
I The address r is usually a function of the process’s id. The

address s is similarly related to the id of the process to which the
first process yields.

I With several processes running, each could yield to the scheduler
which can then yield to one of the processes it selects. This
method of cooperative multiprogramming was used in some
earlier operating systems.

I Identify problems with voluntary context-switching.

Scheduling

6/51

Preemptive Scheduling (1)

I The interrupt system enforces periodic involuntary
interruption of any process using an interval timer.

I Examine context switches with /proc virtual filesystem.
(See example wcs.sh)

I An interrupt occurs every k clock ticks, thus causing the
hardware clock’s controller to execute the logical
equivalent of an yield() to invoke the interrupt handler.
The interrupt handler invokes the scheduler to reschedule
the CPU. Thus the scheduler is guaranteed to be invoked
every k clock ticks.

https://github.com/BoiseState/CS453-resources/blob/master/examples/scheduling/wcs.sh

Scheduling

7/51

Preemptive Scheduling (2)

I How to find out the clock interrupt frequency on your
Linux system?

I Start with include/linux/sched.h in the source code
for Linux kernel and look for the keyword HZ.

I Or try the following:
cat /boot/config -4.7.2. fc24. x86_64 | grep HZ

I In-class Exercise. Find the code for context switching in
the Linux source code for an architecture of your choice.
Hint: Search for switch_to using grep -r in the
architecture specific code. For example arch/x86 in the
kernel source tree.

Scheduling

8/51

Kernel Timer Interval

I In Linux, the interval timer tick rate is defined as a
constant HZ in <asm/param.h>. A generic value is 100
HZ that was used for a long time in various OSes. In
Linux, this value can be configured.

I In-class Exercise. What are the advantages and
disadvantages of a larger HZ?

I A Tickless OS! Most OSs have used regular timers for
the last forty years. But it is possible to not have regular
timers but have the kernel set the interval timer
dynamically in accordance with pending timers. (Added in
Linux kernel version 2.6.21)

I Read Documentation/timers/NO_HZ.txt in the Linux
source code for more details on the tickless Linux kernel.

Scheduling

9/51

Scheduling Strategies

I Scheduling strategy depends on the goals of the particular
operating system. Compare a real-time system versus a time
sharing system.

I Other criteria could be the priorities of processes, maximizing
throughput, minimizing turnaround time, minimizing response
time, resource utilization, fairness etc.

I The priority for a process determines the order in which the
dispatcher will select a ready process to execute when the CPU
becomes available.

I For systems with interval timers, each process gets to run in units
of time quantums or time slices. The time slice length may be
less than the interval time if the process yields a CPU early
because of blocking for I/O or for other reasons.

I Given a static set of processes, a preemptive scheduler, and a goal
for scheduling, an optimal schedule can be calculated by
considering various orderings. However there are several problems
with this method.

Scheduling

10/51

Scheduling Terminology

Service Time τ(pi) The amount of time a process needs to be
in the running state before it is completed.

Wait Time W (pi) (a.k.a. Response Time) The time a process
spends waiting in the ready state before its first
transition to the running state.

Turnaround Time Ttrnd(pi) The amount of time between a
process enters the ready state and the moment
the process exits the running state for the last
time.

The throughput rate (in jobs per some unit of time) is the
inverse of the average turnaround time.

Scheduling

11/51

Non-Preemptive Strategies

I First-Come First-Served (FCFS)
I Shortest Job Next (SJN) (a.k.a. Shortest Job First (SJF))
I Priority Scheduling
I Deadline Scheduling (for real-time systems)

Scheduling

12/51

First-Come-First-Served
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0

TTRnd(p0) = τ(p0) = 350 W(p0) = 0

0 350

Scheduling

13/51

First-Come-First-Served
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0 p1

TTRnd(p0) = τ(p0) = 350

TTRnd(p1) = (τ(p1) +TTRnd(p0)) = 125+350 = 475

W(p0) = 0

W(p1) = TTRnd(p0) = 350

475350

Scheduling

14/51

First-Come-First-Served
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0 p1 p2

TTRnd(p0) = τ(p0) = 350

TTRnd(p1) = (τ(p1) +TTRnd(p0)) = 125+350 = 475

TTRnd(p2) = (τ(p2) +TTRnd(p1)) = 475+475 = 950

W(p0) = 0

W(p1) = TTRnd(p0) = 350

W(p2) = TTRnd(p1) = 475

475 950

Scheduling

15/51

First-Come-First-Served
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0 p1 p2 p3

TTRnd(p0) = τ(p0) = 350

TTRnd(p1) = (τ(p1) +TTRnd(p0)) = 125+350 = 475

TTRnd(p2) = (τ(p2) +TTRnd(p1)) = 475+475 = 950

TTRnd(p3) = (τ(p3) +TTRnd(p2)) = 250+950 = 1200

W(p0) = 0

W(p1) = TTRnd(p0) = 350

W(p2) = TTRnd(p1) = 475

W(p3) = TTRnd(p2) = 950

1200950

Scheduling

16/51

First-Come-First-Served
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0 p1 p2 p3 p4

TTRnd(p0) = τ(p0) = 350

TTRnd(p1) = (τ(p1) +TTRnd(p0)) = 125+350 = 475

TTRnd(p2) = (τ(p2) +TTRnd(p1)) = 475+475 = 950

TTRnd(p3) = (τ(p3) +TTRnd(p2)) = 250+950 = 1200

TTRnd(p4) = (τ(p4) +TTRnd(p3)) = 75+1200 = 1275

W(p0) = 0

W(p1) = TTRnd(p0) = 350

W(p2) = TTRnd(p1) = 475

W(p3) = TTRnd(p2) = 950

W(p4) = TTRnd(p3) = 1200

1200 1275

Scheduling

17/51

FCFS Average Wait Time
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0 p1 p2 p3 p4

TTRnd(p0) = τ(p0) = 350

TTRnd(p1) = (τ(p1) +TTRnd(p0)) = 125+350 = 475

TTRnd(p2) = (τ(p2) +TTRnd(p1)) = 475+475 = 950

TTRnd(p3) = (τ(p3) +TTRnd(p2)) = 250+950 = 1200

TTRnd(p4) = (τ(p4) +TTRnd(p3)) = 75+1200 = 1275

W(p0) = 0

W(p1) = TTRnd(p0) = 350

W(p2) = TTRnd(p1) = 475

W(p3) = TTRnd(p2) = 950

W(p4) = TTRnd(p3) = 1200

Wavg = (0+350+475+950+1200)/5 = 2974/5 = 595

127512009004753500

¥Easy to implement

¥Ignores service time, etc

¥Not a great performer

Scheduling

18/51

Shortest Job Next
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p4

TTRnd(p4) = τ(p4) = 75 W(p4) = 0

750

Scheduling

19/51

Shortest Job Next
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p1p4

TTRnd(p1) = τ(p1)+τ(p4) = 125+75 = 200

TTRnd(p4) = τ(p4) = 75

W(p1) = 75

W(p4) = 0

200750

Scheduling

20/51

Shortest Job Next
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p1 p3p4

TTRnd(p1) = τ(p1)+τ(p4) = 125+75 = 200

TTRnd(p3) = τ(p3)+τ(p1)+τ(p4) = 250+125+75 = 450

TTRnd(p4) = τ(p4) = 75

W(p1) = 75

W(p3) = 200

W(p4) = 0

450200750

Scheduling

21/51

Shortest Job Next
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0p1 p3p4

TTRnd(p0) = τ(p0)+τ(p3)+τ(p1)+τ(p4) = 350+250+125+75 = 800

TTRnd(p1) = τ(p1)+τ(p4) = 125+75 = 200

TTRnd(p3) = τ(p3)+τ(p1)+τ(p4) = 250+125+75 = 450

TTRnd(p4) = τ(p4) = 75

W(p0) = 450

W(p1) = 75

W(p3) = 200

W(p4) = 0

800450200750

Scheduling

22/51

Shortest Job Next
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0p1 p2p3p4

TTRnd(p0) = τ(p0)+τ(p3)+τ(p1)+τ(p4) = 350+250+125+75 = 800

TTRnd(p1) = τ(p1)+τ(p4) = 125+75 = 200

TTRnd(p2) = τ(p2)+τ(p0)+τ(p3)+τ(p1)+τ(p4) = 475+350+250+125+75

 = 1275

TTRnd(p3) = τ(p3)+τ(p1)+τ(p4) = 250+125+75 = 450

TTRnd(p4) = τ(p4) = 75

W(p0) = 450

W(p1) = 75

W(p2) = 800

W(p3) = 200

W(p4) = 0

1275800450200750

Scheduling

23/51

Shortest Job Next
i τ(pi)

0 350

1 125

2 475

3 250

4 75

p0p1 p2p3p4

TTRnd(p0) = τ(p0)+τ(p3)+τ(p1)+τ(p4) = 350+250+125+75 = 800

TTRnd(p1) = τ(p1)+τ(p4) = 125+75 = 200

TTRnd(p2) = τ(p2)+τ(p0)+τ(p3)+τ(p1)+τ(p4) = 475+350+250+125+75

 = 1275

TTRnd(p3) = τ(p3)+τ(p1)+τ(p4) = 250+125+75 = 450

TTRnd(p4) = τ(p4) = 75

W(p0) = 450

W(p1) = 75

W(p2) = 800

W(p3) = 200

W(p4) = 0

Wavg = (450+75+800+200+0)/5 = 1525/5 = 305

1275800450200750

¥Minimizes wait time

¥May starve large jobs

¥Must know service times

Scheduling

24/51

Priority Scheduling
i τ(pi) Pri

0 350 5

1 125 2

2 475 3

3 250 1

4 75 4

p0p1 p2p3 p4

TTRnd(p0) = τ(p0)+τ(p4)+τ(p2)+τ(p1))+τ(p3) = 350+75+475+125+250

 = 1275

TTRnd(p1) = τ(p1)+τ(p3) = 125+250 = 375

TTRnd(p2) = τ(p2)+τ(p1)+τ(p3) = 475+125+250 = 850

TTRnd(p3) = τ(p3) = 250

TTRnd(p4) = τ(p4)+ τ(p2)+ τ(p1)+τ(p3) = 75+475+125+250 = 925

W(p0) = 925

W(p1) = 250

W(p2) = 375

W(p3) = 0

W(p4) = 850

Wavg = (925+250+375+0+850)/5 = 2400/5 = 480

12759258503752500

¥Reflects importance of external use

¥May cause starvation

¥Can address starvation with aging

Scheduling

25/51

Deadline Scheduling
i τ(pi) Deadline

0 350 575

1 125 550

2 475 1050

3 250 (none)

4 75 200

p0p1 p2 p3p4

1275
1050550200

0

¥Must receive service by deadline

¥May not be feasible

p0p1 p2 p3p4

p0 p1 p2 p3p4

575

Scheduling

26/51

In-class Exercises

I Suppose you do your homework assignments in SJF-order.
After all, you feel like you are making a lot of progress!
What might go wrong?

I Devise a workload where FCFS is pessimal— it does the
worst possible scheduling choices— for average response
time.

Scheduling

27/51

Preemptive Strategies

I Preemptive strategies are useful to ensure quick response
times to higher priority processes or to ensure fair sharing
of the CPU.

I FCFS, SJN, Deadline scheduling have a corresponding
preemptive version.

I Priority Scheduling.
I Round Robin (RR).
I Multiple-level Queues.

I Cost of context-switching can be significant. If time for
context-switch is c and we have n processes in RR
scheduling, then each process gets q units of time every
n(q + c) units of real time.

I Timer interrupts go hand in hand with RR scheduling.

Scheduling

28/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

W(p0) = 0

0 50

Scheduling

29/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

W(p0) = 0

W(p1) = 50

1000

p1

Scheduling

30/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

W(p0) = 0

W(p1) = 50

W(p2) = 100

1000

p2p1

Scheduling

31/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

2001000

p3p2p1

Scheduling

32/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

W(p4) = 200

2001000

p4p3p2p1

Scheduling

33/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

W(p4) = 200

3002001000

p0p4p3p2p1

Scheduling

34/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

TTRnd(p4) = 475

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

W(p4) = 200

4754003002001000

p4p0p4p3p2p1 p1 p2 p3

Scheduling

35/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

TTRnd(p1) = 550

TTRnd(p4) = 475

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

W(p4) = 200

4754003002001000

p4 p1p0p4p3p2p1 p1 p2 p3 p0

550

Scheduling

36/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

TTRnd(p1) = 550

TTRnd(p3) = 950
TTRnd(p4) = 475

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

W(p4) = 200

4754003002001000

p4 p1p0p4p3p2p1 p1 p2 p3 p0 p3p2

p0 p3p2 p0 p3p2

550 650

650 750 850 950

Scheduling

37/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

TTRnd(p0) = 1100
TTRnd(p1) = 550

TTRnd(p3) = 950
TTRnd(p4) = 475

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

W(p4) = 200

4754003002001000

p4 p1p0p4p3p2p1 p1 p2 p3 p0 p3p2

p0 p3p2 p0 p3p2 p0 p2 p0

550 650

650 750 850 950 1050

Scheduling

38/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

TTRnd(p0) = 1100
TTRnd(p1) = 550
TTRnd(p2) = 1275
TTRnd(p3) = 950
TTRnd(p4) = 475

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

W(p4) = 200

4754003002001000

p4 p1p0p4p3p2p1 p1 p2 p3 p0 p3p2

p0 p3p2 p0 p3p2 p0 p2 p0 p2 p2 p2 p2

550 650

650 750 850 950 1050 1150 1250 1275

Scheduling

39/51

Round Robin (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

TTRnd(p0) = 1100
TTRnd(p1) = 550
TTRnd(p2) = 1275
TTRnd(p3) = 950
TTRnd(p4) = 475

W(p0) = 0

W(p1) = 50

W(p2) = 100

W(p3) = 150

W(p4) = 200

Wavg = (0+50+100+150+200)/5 = 500/5 = 100

4754003002001000

¥Equitable

¥Most widely-used

¥Fits naturally with interval timer

p4 p1p0p4p3p2p1 p1 p2 p3 p0 p3p2

p0 p3p2 p0 p3p2 p0 p2 p0 p2 p2 p2 p2

550 650

650 750 850 950 1050 1150 1250 1275

TTRnd_avg = (1100+550+1275+950+475)/5 = 4350/5 = 870

Scheduling

40/51

RR with Overhead=10 (TQ=50)
i τ(pi)

0 350

1 125

2 475

3 250

4 75
p0

TTRnd(p0) = 1320
TTRnd(p1) = 660
TTRnd(p2) = 1535
TTRnd(p3) = 1140
TTRnd(p4) = 565

W(p0) = 0

W(p1) = 60

W(p2) = 120

W(p3) = 180

W(p4) = 240

Wavg = (0+60+120+180+240)/5 = 600/5 = 120

5404803602401200

¥Overhead must be considered

p4 p1p0p4p3p2p1 p1 p2 p3 p0 p3p2

p0 p3p2 p0 p3p2 p0 p2 p0 p2 p2 p2 p2

575 790

910 1030 1150 1270 1390 1510 1535

TTRnd_avg = (1320+660+1535+1140+565)/5 = 5220/5 = 1044

635 670

790

Scheduling

41/51

In-class Exercises

I Round Robin scheduling algorithm can be implemented without
using any timer interrupts. TRUE FALSE

I Many CPU scheduling algorithms are parameterized. For
example, the RR algorithm requires a parameter to indicate the
time slice. Some of these algorithms are related to one another
(for example, FCFS is RR with infinite time quantum). What (if
any) relation holds among the following pairs of algorithms?
Please provide a concise (but complete) answer.
1. Priority and SJF
2. Priority and FCFS
3. RR and SJF

Scheduling

42/51

In-class Exercises

I Five processes arrived at the same time with the following burst times
(that is the CPU time for which they will run before blocking for I/O).

Process Burst
Name Time
P1 10
P2 7
P3 5
P4 1
P5 3

Show how the processes are scheduled by filling in the following Gantt
chart and calculate the average response and average turnaround time if
the scheduling policy is round-robin with time quantum of 3 time units.

0 265 10 15 20 25
Average Response Time =
Average Turnaround Time =

Scheduling

43/51

Multiple-level Feedback Queues

I One queue for higher priority foreground jobs and another
for lower priority background jobs.

I Interrupt handler runs at priority 1, device drivers at
priority 2, interactive compute jobs at priority 3, interactive
editing jobs at priority 4, normal batch jobs at priority 5,
and “long” batch jobs at priority 6. We have one queue
for each priority. Processes can move up or down the
multiple-level ready queues if they change their behavior.

Scheduling

44/51

BSD Unix Scheduling

I BSD Unix scheduling: Uses 32 queues for priorities from 0
through 31. System processes use run queues 0 through 7,
and user processes use run queues from 8 through 31.

I Each process has an external nice priority used to
influence (but not solely) which run queue it ends up in
whenever it becomes ready.

I The default nice value is 0 and the range is from -20 (the
highest) to 20 (the lowest).

I Once every time quantum, the scheduler recomputes the
priorities for all processes depending on the nice value and
recent demand on the CPU.

Scheduling

45/51

Example using nice values

I The command nice allows a user to run a program with
modified scheduling priority. Normal users can only set
positive nice values, thus lowering the priority from the
default value. Super-users can set any value from -20
(highest priority) to +19 (lowest priority).
nice -10 program arguments
where the program will run with nice value of 10 more
than the default.

I The command renice alters the priority of a running
process.
renice priority [[-p] pid ...] [[-g] pgrp
...] [[-u] user ...]
renice +15 4751
where 4751 is the process id of a process.

Scheduling

46/51

Real Time Scheduling

I A real-time system has expectations of response time as well as
correctness. A hard real-time system requires a guaranteed worst-case
response time, whereas a soft real-time requires expectations on
response time but it isn’t as critical.

I Traditional real time operating systems (RTOses) include LynxOS and
QNX.

I Linux is being reworked to be more real time in response to demand
from developers. One way to get soft real-time performance is to run
an application under a FIFO (FCFS) scheduler. This does require
superuser privileges. See example scheduling/soft-realtime-example.c.

I MS Windows also has added support for soft real-time. Try the
command start /realtime notepad under MS Windows and
check its priority in the Task Explorer versus other applications. Note
that you may have to start the command console in Administrator
mode for this example to work.

I Systems like RTLinux and RTAI (RealTime Application Interface)
provide multi-microsecond worst case response time by piggy-backing
onto Linux.

https://github.com/BoiseState/CS453-resources/blob/master/examples/scheduling/soft-realtime-example.c

Scheduling

47/51

MS Windows Scheduler

I The scheduler is priority-driven, preemptive scheduling
system modeled after the BSD scheduling system.

I The scheduler schedules at the thread granularity.
I The quantum on professional version is 2 times the clock

(typically 20 msecs) and 12 times the clock (typically 120
msecs) on uniprocessor servers and various values on
multiprocessor servers.

Scheduling

48/51

MS Windows Scheduler

zero page thread

Scheduling

49/51

MS Windows Scheduler

Scheduling

50/51

O(1) Linux 2.6 Scheduler

I O(1) average-time scheduler. Default quantum is 1ms.
I There are 140 queues per processor (one for each possible level of

priority). The individual queues are FIFO lists.
I A bitmap indicates which queues are empty or not. Thus we can

execute an efficient find-first-bit instruction over a set of 32-bit
bitmaps and then take the first task off the indicated queue each
time.

I Load Balancing. Every 200ms a processor checks to see if any
other processor is out of balance and tries to balance the
workload. If a processor is idle, it checks every 1ms so as to get
started on a real task as soon as possible.

Used with modifications until version 2.6.23. Worked well on large
servers but not as well on desktops with interactive processes.
Developers added the Rotating Staircase Deadline scheduler, which
used the concept of fair scheduling, which further led to the current
scheduler in use (on next slide).

Scheduling

51/51

CFS: Completely Fair Scheduler for Linux 2.6.23+

I CFS does not directly assign a timeslice to a process. Instead CFS
assigns a proportion of the processor. This is further affected by the
nice value for the process.

I The scheduler uses scheduler classes, which enables different
pluggable algorithms to coexist, scheduling their own type of
processes. CFS is the registered scheduler for the class
SCHED_NORMAL. CFS is defined in the file kernel/sched/fair.c

I Older style schedulers use constant timeslices that give a constant
switching rate but variable fairness.

I Nice values are geometric instead of additive. Nice values are mapped
to timeslices using a measurement decoupled from the timer. Going
further, CFS does away with timeslices completely. CFS thus yields
constant fairness but a variable switching rate. It does have a lower
granularity limit of 1 ms for how long a process will run.

I Virtual runtime is the actual runtime normalized by the number of
runnable processes. It is measured in nanoseconds. CFS always picks
the process with the smallest virtual runtime to run next.

I CFS uses a red-black tree (self-balancing binary tree) to manage the
list of runnable processes. It is referred to as restorer in Linux. See
include/linux/rbtree.h and
include/linux/rbtree_augmented.h in the kernel source code.

