
Process
Management

1/35

Process Management

Process
Management

2/35

Learning Objectives

I Understand how executables are structured, loaded and
run

I Understand the memory hierarchy as related to processes
I Explain the process abstraction and its implementation in

the Operating System
I Understand process state using state diagrams

Process
Management

3/35

System View of a Process

The process manager implements the process abstraction. It
covers the following areas:

I Scheduling of processes on the CPU(s)
I Synchronization mechanisms for processes
I Responsible for dealing with deadlocks among processes
I Partially responsible for protection and security

Process
Management

4/35

Process Manager Overview

Process
Management

5/35

Process Address Space

program & libraries
compile/link
−→ executable load−→ process

I A program is a set of source code modules that reference
each other and reference a collection of library object
modules

I The address space is a set of linearly ordered locations
used by the process to reference program text, data,
operating system services, resources etc

I A program image defines the set of all primary memory
addresses a process uses

Process
Management

6/35

Generating the Address Space

I Compiling and linking produces an absolute program
(a.out).

I The loader maps the address space to the allocated
primary memory addresses and sets the PC (program
counter) to the first executable instruction (a.k.a. main
entry point).

Process
Management

7/35

Process
Management

8/35

The Structure of Executable Files

I The structure of an executable file is dependent upon the
operating system

I The compiler/linker needs to produce a file in one of the
formats understood by the operating system to be
executable

I Older standard executable formats from Unix: COFF
(Common Object File Format) and a.out

I Linux and most modern Unixes use the ELF (Executable
and Linkable Format) format

I MS Windows uses the PE (Portable Executable, derived
from the COFF format) format

I MAC OS X uses the Mach-O format (derived from the
a.out format)

Process
Management

9/35

The ELF Executable format

I Flexible and extensible, not bound to any particular processor or
architecture

I Each ELF file is made up of one ELF header that describes the
layout of the file. Then follow physical (or program) headers that
describe the program segments. These include the text segment
(compiled code), read only data, data segment (initialized global
and static variables) and others.

I The executable image on the disk does not set aside space for
uninitialized data segment variables. The uninitialized part of the
data segment is set to zero after being loaded into memory. The
section that stores these types of variables is called the BSS
(Block Started by a Symbol) section.

I Example: test-bss.c

I What is the advantage of having a BSS section?
I ELF uses position independent code and a global offset table,

which trades off execution time against memory usage in favor of
the latter

https://github.com/BoiseState/CS453-resources/blob/master/examples/process-management/test-bss.c

Process
Management

10/35

e_ident
e_entry
e_phoff
e_phentsize
e_phnum
...
p_type
p_offset
p_vaddr
p_filesz
p_memsz
p_flags
p_type
p_offset
p_vaddr
p_filesz
p_memsz
p_flags

Code

Data

’E’ ’L’ ’F’
0x8048090
52
32
2
...
PT_LOAD
0
0x8048000
68532
68532
PF_R, PF_X
PT_LOAD
68536
0x8059BB8
2200
4248
PF_R, PF_W

ELF Executable Image (statically linked file)

Process
Management

11/35

ELF layout

I How to look at executables: one way is to use the dump
command od It has various options to examine the data in hex,
octal, ASCII etc. Under KDE there is a utility called okteta,
which is a nice GUI hex editor

I Use the utility readelf to peek into the structure of an ELF file.
I Look at the header file /usr/include/linux/elf.h for more

details of the ELF executable format.
I See example process-management/display-elf-headers.c

for a program that reads headers from an ELF executable file.
I Dynamically linked executables have more segments due to

linking with libraries.

Process
Management

12/35

Microsoft’s Portable Executable (PE) Format

I Based on the COFF (Common Object File Format from
Unix). Retains the old MZ header from MS-DOS to remain
backwards compatible. Works on all Windows operating
systems since NT 3.1

I Consists of an MS-DOS MZ header, followed by a real-mode
stub program, the PE file signature, the PE file header, the
PE optional header, all of the section headers, and finally, all
of the section bodies

I The PE file format has eleven predefined sections, as is
common to applications for Windows API, but each
application can define its own unique sections for code and
data

I The .debug predefined section also has the capability of
being stripped from the file into a separate debug file. If so, a
special debug header is used to parse the debug file, and a
flag is specified in the PE file header to indicate that the
debug data has been stripped

Process
Management

13/35

Microsoft’s Portable Executable Format Layout

Source for image: http://www.csn.ul.ie/˜caolan/publink/winresdump/winresdump/doc/pefile.html

Process
Management

14/35

Microsoft’s Portable Executable (PE) Format

I The .NET framework uses an extended PE file format. There is
another extension known as PE32+ (or PE+) for 64-bit systems
as well as one for the embedded Windows CE system

I PE files use a preferred base address and all addresses generated
by the compiler/linker are fixed ahead of time to speed up
execution. However, if the preferred base address isn’t available,
then an expensive “rebasing” operation must be done that can
result in having to copy shared libraries and causing a loss of
memory efficiency

Process
Management

15/35

Consistency in the Address Space

I Memory Hierarchy:
Registers ← Primary Memory ← Secondary Memory.

Registers ← on-chip Cache ← off-chip Cache ← Primary Memory ←
Secondary Memory

I The memory hierarchy is consistent for locations that contain
instructions (since programs are not allowed to be self-modifying).
But the data values are not consistent unless the programmer
explicitly makes them consistent

I For a given variable, we have its value in a register (MRi), its
value in the primary memory (Mpj), and its value in secondary
memory (Msk)

I What happens when a CPU is switched to another process?
What happens when memory manager deallocates some of the
space used by a process?

I Linux system calls to synchronize memory images with disk images:
fdatasync - synchronize a file’s in-core data with that on disk
sync - synchronize a file’s complete in-core state with that on disk

Process
Management

16/35

The Process Descriptor

The process descriptor is the primary data structure used to
keep track of the status of a process and the specific
environment that is associated with a process. It contains the
following types of information:

I process state (whether it is blocked or ready)
I memory state
I current processor register contents
I pointer to the stack for the process
I resources (those allocated and those waiting for)
I other information

Process
Management

17/35

Process Descriptor

I A process descriptor is allocated when process is created
and deallocated when a process dies. Usually there is a
limit on the number of process descriptors in an operating
system.

I Even though the process manager is the one primarily
interacting with the process descriptor it is also queried
and some fields are modified by other parts of the
operating system

I How to find the process descriptor in Linux source code?
Start with the source code for fork() system call (in the file
kernel/fork.c) The obvious candidate is the structure
task_struct, which is found in the header file
include/linux/sched.h in the kernel source.
(Use grep "task_struct {" *.h in the directory
include/linux in the kernel source code)

Process
Management

18/35

Linux Processes

In Linux terminology, they are called tasks. Linux has a list of process
descriptors (which are of type task_struct defined in sched.h in your
Linux kernel source tree)

I The maximum number of threads/processes allowed is dependent
upon the amount of memory in the system. Check
/proc/sys/kernel/threads-max for the current limit.

I By writing to that file, the limit can be changed on the fly (by the
superuser). Or set it in /etc/sysctl.conf to set it at bootup time.

I There is also a limit on max pid to be 32768 (215) to make 2.6 and
newer kernels compatible with programs written for the older kernels.
This limit can be seen in /proc/sys/kernel/pid_max

I This can be overwritten to any value up to 222 (about 4 million). For
example:
echo 1000000 > /proc/sys/kernel/pid_max
To do it permanently, add
kernel.pid_max = 1000000
to the /etc/sysctl.conf file so it gets set at bootup time.

I Look at include/linux/threads.h in kernel source code to see the
limits.

Process
Management

19/35

Linux Process Descriptor

Browse live in the file include/linux/sched.h in the kernel source...some
snippets given below.

struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;
atomic_t usage;
unsigned int flags; /* per process flags, defined below */
unsigned int ptrace;
...
int prio, static_prio, normal_prio;
unsigned int rt_priority;
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
...
struct mm_struct *mm, *active_mm;
int exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
...
pid_t pid;
pid_t tgid;

Process
Management

20/35

Linux Process Descriptor (contd.)

/* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with p->real_parent->pid)
*/

struct task_struct *real_parent; /* real parent process */
struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
/* children/sibling forms the list of my natural children */
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */
...
/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
struct list_head thread_group;
...
cputime_t utime, stime, utimescaled, stimescaled;
cputime_t gtime;
...

/* CPU-specific state of this task */
struct thread_struct thread;

/* filesystem information */
struct fs_struct *fs;

/* open file information */
struct files_struct *files;

/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand;
sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
struct sigpending pending;
...

};

Process
Management

21/35

Data Structures for Processes (1)

What data structure(s) are used to keep track of the processes?
I Linux kernel: The process descriptors are kept in circular

linked lists, a binarization of a general tree data structure
and a hash table simultaneously!

I In-class Exercise. Sketch a sample declaration of a
general tree using an array of child pointers (with MAX, say
100, children per node).

I In-class Exercise. Sketch a sample declaration of
binarization of a general tree with the
leftmost-child-right-sibling representation.

I In-class Exercise. How much space is wasted (as null
pointers) in a n node tree represented in the above two
layouts?

Process
Management

22/35

Data Structures for Processes (2)

I The linked list implementation in the kernel uses the
following node (check include/linux/types.h and
include/linux/list.h):

struct list_head {
struct list_head *next, *prev;

};

I The linked lists are circular, so there is no head or tail
node. We can traverse the whole list starting from any
node.

Process
Management

23/35

MS Windows Processes

I Processes and Threads are kept track of in separate data
structures.

I Each windows process is represented by a executive
process block. It contains pointers to other structures,
including executive thread blocks. Part of the information
is stored in the process environment block so it can be
accessed in user space

I The windows subsystem process (Csrss: client/server run
time subsystem) maintains a parallel data structure for
each process that is executing a Windows program.The
kernel-mode part of the Windows subsystem (Win32k.sys)
also maintains a per-process data structure

I Compare with the Linux approach of representing
processes and threads both with a task structure

Process
Management

24/35

MS Windows process/thread data structures

Executive

Thread

environment

block

Executive

block

block

process
Windows process block

Handle table

System address space

Process address space

thread

environment

Process

...

Process
Management

25/35

MS Windows process tree

Screenshot of procexp program from Sysinternals tools.

Process
Management

26/35

Process State Diagram

I A process state diagram is used to characterize the
behavior of a process

I A process may be ready, running or blocked. How does the
process state change?

I The ready and blocked states can be refined to Active and
Suspended

Process
Management

27/35

Simple Process State Diagram

request schedule

request

ReadyBlocked

Start

Running

Done

Process
Management

28/35

In-class Exercise

Consider the following process state transition diagram:

ReadyBlocked

Start

Done

Running

4

3
21

5

For each of the transitions give an example of a specific event that can
cause that transition.
(1)

(2)

(3)

(4)

Process
Management

29/35

Extended Process State Diagram

request

suspend

suspend

activate

request

allocate
allocate

activate

suspend

yield
schedule

readySuspended

blockedSuspendedblockedActive

readyActive

Done

Running

Start

Process
Management

30/35

In-class Exercise

I Give two specific examples of how a process could be
involuntarily removed from the CPU.

I Give two specific examples of how a process could
voluntarily give up the CPU.

I Give a specific example of how a process could move from
a running state to the readySuspended state.

Process
Management

31/35

Linux Process State Diagram

waiting

done

stopped

exit

sleep/down sleep/down

wakeup

wakeup

 signal

exit

wait

waiting

wait

zombie

running ready to run

start

schedule

yield/clock interrupt

wakeup

TASK_UNINTERRUPTIBLE

TASK_STOPPED

TASK_INTERRUPTIBLE

EXIT_ZOMBIE

TASK_RUNNING TASK_RUNNING

See the file include/linux/sched.h for the Linux process states.

Process
Management

32/35

MS Windows Thread/Process State Diagram

Waiting (5)

Gate waiting (8)
Terminate(4)

ready(7)

Deferred

Standby (3)
Running (2)

Ready (1)Init (0)

switch
voluntary

quantum end
preemption

Transition(6)

preempt

Process
Management

33/35

MS Windows process states

I Init (0): Used internally while the thread is being created
I Ready (1): A thread in the ready state is waiting to

execute
I Running (2): Running on a processor until the quantum

ends, it is preempted, it terminates, it yields or it
voluntarily enters the wait state

I Standby(3): A thread in the standby state has been
selected to run on a particular processor. Only one thread
can be in a standby state for each processor on the
system. Threads can be preempted from this state

I Terminated (4): In the terminated state, the executive
thread block might or might not be deallocated depending
on the policy that is set

Process
Management

34/35

MS Windows process states (contd.)

I Waiting (5): A thread can enter the waiting state in several
ways: it can voluntarily wait for an object to synchronize its
execution, the operating system can wait on its behalf (such as
for paging I/O), or it can be suspended by an external entity

I Transition (6): A thread is ready for execution but its kernel
stack is paged out of memory

I Deferred Ready (7): Threads that have been selected to run on
a specific processor but have not yet been scheduled. This is so
that the kernel can minimize the amount of time the system wide
lock on the scheduling database is held

I Gate Waiting (8): When thread does a wait on a gate
dispatcher object (separate from the waiting state). Because
gates don’t use the dispatcher lock, but a per object lock, the
kernel needs to be able to distinguish it if it has to break the lock

Process
Management

35/35

Resources

A process manager also manages resources used by processes.
I A resource is anything that can block a process from

executing. Examples include: memory, messages, input
data, disks, tapes, files etc

I A resource that can be allocated and must be returned
after the process has finished are called reusable resources.
These kind of resources are fixed in number. What if a
process does not release reusable resources?

I A resource that is never released is called a consumable
resource. These kind of resources are unbounded

I Different resource allocation strategies. Give more
responsibilities to client processes. E.g. user level threads,
IBM virtual machine operating system, virtual machine
servers, client-server operating systems and microkernels

