
Memory
Management

1/53

Memory Management

Memory
Management

2/53

Learning Objectives

I Understand the role and function of the memory manager
I Understand the operation of dynamic memory allocation

algorithms used in language runtime such as malloc
I Understand the operation of kernel-level memeory

allocators such as the buddy system

Memory
Management

3/53

Memory Management: Overview

I Primary role of memory manager:
I Allocates primary memory to processes
I Maps process address space to primary memory
I Minimizes access time using cost effective memory

configuration
I Memory management approaches range from primitive

bare-machine approach to sophisticated paging and
segmentation strategies for implementing virtual memory.

Memory
Management

4/53

Relocating Executables

I Compile, Link, and Load phases.
I Source program, relocatable object modules, absolute

program.
I Dynamic address relocation using relocation registers.
I Memory protection using limit registers. (violating the

limit generates an hardware interrupt, often called
segment violation, that results in a fatal execution error.)

Memory
Management

5/53

Building the address space

Process

Addresss

Space

Shared

Libraries

Linker

Static
Library

Code

Relocatable
Object
Code

Code

Source

Absolute Program

(executable)

secondary memory

Loader

primary

memory

Compiler

Memory
Management

6/53

Process Address Space model

0x00000000

Program Binary

Global/Static variables

Dynamically allocated variables

Local variables, function/method arguments
Stack

Heap

Text

Data

Initialized

Data

Unitialized

0xFFFFFFFF

Return values

Memory
Management

7/53

Dynamic Memory Allocation in Processes

I Using malloc in C or new in C/C++/Java and other
languages causes memory to be dynamically allocated.
Does malloc or new call the Operating system to get more
memory?

I The system creates heap and stack segment for processes
at the time of creation. So new/malloc already has some
memory to work with without having to call the operating
system for every memory request from the program.

I If more memory is needed (either due to malloc/new or
due to stack growing), then a system call (sbrk() in
Linux/Unix) is made to add more space to the area
between the heap and the stack in the process address
space.

See examples: malloc-and-OS.c, sbrk-test.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/memory-management/malloc-and-OS.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/memory-management/sbrk-test.c

Memory
Management

8/53

Fixed Partition versus Variable Partition Memory
Strategies

Strategies for memory management by the operating system.
I Fixed Partitions: Simple but inflexible. Leads to internal

fragmentation.
I Variable partitions: Flexible but more complex. Can lead

to external fragmentation (which can be solved using
memory compaction)

Memory
Management

9/53

Free List Management

I Maintain separate lists for free blocks and reserved blocks to
speed up allocation but that would make the merging of free
blocks more complicated.

I Keep the free blocks sorted by size.
I Instead of a separate data structure, the first word in a free block

could be its size and the second word could be the pointer to the
next free block.

I Strategies for finding the memory chunk requested:
I First Fit.
I Best Fit.
I Next Fit.
I Worst Fit.

Memory
Management

10/53

Comparison of Allocation Strategies

An example where first fit does better than best fit.

Two segments: 1300, 1200.
Requests: 1000, 1100, 250.

First fit does OK but best fit gets stuck.

Similarly, we can come up with examples where best fit does
better than first fit. Similarly for worst fit and next fit.

Memory
Management

11/53

How does dynamic memory allocation work in a
program

The memory model is a one-dimensional array. That implies
that multi-dimensional arrays, pointers and objects all have to
map to one-dimensional array that represents the memory.
References:

1. Introduction to Algorithms by Cormen, Leiserson, Rivest and
Stein. Section 10.4 (Implementing Pointers and Objects)

2. The C Programming Language by Kernighan and Ritchie.
Section 5.4 (Address Arithmetic) and Section 8.7 (A Storage
Allocator)

Memory
Management

12/53

Simple Memory Allocator

I Let’s design a simple allocator for a double-linked list that
has a prev, data and next fields.

I We will represent the three fields with three separate
one-dimensional arrays.

I Pointers will simply be indices into the arrays. We will use
-1 as the null pointer.

Memory
Management

13/53

Simple Memory Allocator example

node0 node3node1 node2L

next

data

prev −1 6 1 5

node0 node3 node1 node2

36−15

1 2 3 4 5 6 7 80

L free1 7

Memory
Management

14/53

Simple Allocator Code

int prev[MAX], data[MAX], next[MAX];
int free;

void init_allocator() {
for (int i=0; i < MAX - 1 ; i++)

next[i] = i + 1;
next[MAX - 1] = -1;
free = 0;

}

int allocate_object() {
int ptr = -1;
if (free != -1) {

ptr = free;
free = next[free];

}
return ptr;

}

void free_object(int ptr) {
next[ptr] = free;
free = ptr;

}

Memory
Management

15/53

Simple Memory Allocator Exercises

1. Why don’t we need to set or reset prev fields of the objects
in the allocate_object or free_object methods.

2. How would we compact the memory in-place? (that is, we
can only use a constant number of extra variables). By
compaction, we mean move the nodes in use to the start
of the arrays and collect the free nodes at the end. (Hint:
Use a permutation).

3. Generalize to use a single one-dimensional array.
4. Write pseudocode for a homogeneous collection of objects

implemented by a single array representation.

Memory
Management

16/53

Malloc: Storage Allocator

free, owned by malloc not owned by mallocin use, owned by malloc

free list

Memory layout for malloc

address returned to the user

pointer to next free block

A block returned by malloc

size

Memory
Management

17/53

Malloc Algorithms

I The free storage is kept as a list of free blocks. Each block contains a
pointer to the next free block, a size, and the space itself. The blocks are
kept in increasing order of addresses and the last block points to the first.

I To allocate memory, the free list is scanned until a big enough block is
found (“first-fit” algorithm). One optimization done is to leave the free list
pointer where the last block was found (“next-fit” algorithm). Then one of
the following three steps is taken.

I If the block is exactly the right size, it is unlinked from the list and returned
to the user.

I If the block is too big, it is split, and the proper amount is returned to the
user while the residue remains on the free list.

I If no big-enough chunk is found, then another large chunk is obtained from
the operating system and linked into the free list. Then a part of this new
free block is split and returned to the user.

I To free an allocated block, we search the free list to find the proper place
to insert it. If the block being freed is adjacent to a free block on either
side, they are coalesced into a single bigger block, so the storage does not
become fragmented.

Memory
Management

18/53

Malloc Block Layout and Allocation

typedef double Align; /* for alignment to double boundary */
union header { /* block header */

struct {
union header *ptr; /* next block if on free list */
unsigned size; /* size of this block */

} s;
Align x; /* force alignment of blocks */

};
typedef union header Header;

I The requested size in bytes is rounded up to proper number of
header-sized units; the block that will be allocated contains one more
unit, for the header itself, and this is the value recorded in the size
field.

I The pointer returned by malloc points at the free space, not at the
header itself.

Memory
Management

19/53

Simple Malloc Implementation

I See examples simple-malloc.h, simple-malloc.c and
related test files in the folder:

I memory-management/simple-malloc/
I These are based directly from the K&R C book, Section

8.7.

https://github.com/BoiseState/CS453-resources/tree/master/examples/memory-management/simple-malloc

Memory
Management

20/53

Getting the source for the Standard C library

I Add some package management tools:
sudo dnf rpm-devel rpm-build

I Download the source rpm for gcc C library named glibc:
sudo dnf –source glibc

I Download dependencies for glibc:
sudo dnf builddep glibc

I Install the source package:
rpm -ivh glibc-*src.rpm

I Finally prep the source code.
rpmbuild -bp ~/rpmbuild/SPECS/glibc.spec

I Now you can look at the source for the glibc (replace
with the version that you downloaded)
cd ∼/rpmbuild/BUILD/glibc-2.23-85-g422facf

I You can also build it and install it if you wish!

Memory
Management

21/53

Buddy System Memory Management

The Walrus and the Coder
‘‘The time has come,” the Walrus said,
“To talk of many things:
Of shells–and system calls–and sealing-stacks–
Of threads–and pointers–
And why the C code is pointing over–
And whether buddies have wings.”
Modified from the original “The Walrus and the Carpenter” by by
Lewis Carroll in “Through the Looking-Glass and What Alice Found
There, 1872”
“The time has come," the Walrus said,
“To talk of many things:
Of shoes–and ships–and sealing-wax–
Of cabbages–and kings–
And why the sea is boiling hot–
And whether pigs have wings."

Memory
Management

22/53

Buddy System

I Assume that the memory pool is of size 2m, with
addresses 0 through 2m−1.

I Block sizes are of powers of two, 2k , 0≤ k ≤m. There are
m+1 different lists: avail[0], avail[1], . . . , avail[m]. The
ith list keeps track of blocks of size 2i . At the beginning
there is one block of size 2m.

I All memory allocations are always done in sizes that are
powers of two. Each block has a tag field which denotes if
the block is free or reserved. Each block also has the usual
links next, prev to maintain each list as a doubly-linked
list. Finally each block also has a kval field that stores the
size of the block (the value k is stored for a block of size
2k .)

Memory
Management

23/53

Buddy System (contd.)

I Address of a block of size 2k is a multiple of 2k (that is, at least
k zeroes on the right). For example, a block of size 32 has an
address of the form xxx . . .xx00000. After splitting the addresses
of the two buddy blocks of size 16 are xxx . . .xx00000 and
xxx . . .xx10000.

I Whenever a block is split into two halves, the two new blocks are
called buddies. If we know the address of a block and its size,
then we also know the address of its buddy.

buddyk(x) =
{

x +2k if x mod 2k+1 = 0
x −2k if x mod 2k+1 = 2k

I The address of the buddy can be computed using an exclusive-or
operation. In Java and C, the exclusive-or operator is ^. So the
buddy calculation can be written as follows:

x^(1<< k)

Memory
Management

24/53

Buddy System Allocation

I Step A1: Find block. To allocate a block of size 2k ,
search the kth list and return the first free block. If the
kth list is empty, then search the next higher list and so on
until we find a free block. If no such list is found, then the
allocation was unsuccessful and returns a null value.
Otherwise, let the block be found in the jth list.

I Step A2: Remove from list. Remove first block from the
jth list.

I Step A3: Split required? If j equals k, we have found a
block of the right size. Return the appropriate address and
exit.

I Step A4: Split. Split the first block in the jth list and add
the unused half to the (j−1)th list. Set j ← j−1. Go
back to Step A3.

Memory
Management

25/53

Buddy System Free

Free a block of size 2k at address L.
I Step F1: Is buddy available? Check for a buddy of size 2k

for block at address L. Go to Step F3 if the buddy isn’t
available.

I Step F2: Merge with buddy. Merge freed block with
buddy in kth list. Set k ← k +1. Go back to Step F1.

I Step F3: Put on list. Add freed block to the front of the
kth list.

Memory
Management

26/53

Buddy System–Examples

Memory pool size n = 2m = 220 = 1MB.
I The first example shows the initial lists.
I The second example shows what happens when we

allocate 1 byte. Note that the minimum block size is 32 in
the system so that’s why the allocation stops at 25.

I The third example shows that the blocks merge back up
when we free the memory allocated.

I The fourth example shows a series of alloc/free calls.

Memory
Management

27/53

Buddy System–Example 1

Buddy system initialized.
Buddy system lists after initialization.

List 0: head = 0x7f344e6500b8 --> <null>
List 1: head = 0x7f344e6500d0 --> <null>
List 2: head = 0x7f344e6500e8 --> <null>
List 3: head = 0x7f344e650100 --> <null>
List 4: head = 0x7f344e650118 --> <null>
List 5: head = 0x7f344e650130 --> <null>
List 6: head = 0x7f344e650148 --> <null>
List 7: head = 0x7f344e650160 --> <null>
List 8: head = 0x7f344e650178 --> <null>
List 9: head = 0x7f344e650190 --> <null>
List 10: head = 0x7f344e6501a8 --> <null>
List 11: head = 0x7f344e6501c0 --> <null>
List 12: head = 0x7f344e6501d8 --> <null>
List 13: head = 0x7f344e6501f0 --> <null>
List 14: head = 0x7f344e650208 --> <null>
List 15: head = 0x7f344e650220 --> <null>
List 16: head = 0x7f344e650238 --> <null>
List 17: head = 0x7f344e650250 --> <null>
List 18: head = 0x7f344e650268 --> <null>
List 19: head = 0x7f344e650280 --> <null>
List 20: head = 0x7f344e650298 --> [tag=1,kval=20,addr=0xf98000] --> <null>

Number of available blocks = 1

Memory
Management

28/53

Buddy System–Example 2

Buddy system succeeding in allocating 1 byte.
Buddy system lists after malloc'ing 1 byte.

List 0: head = 0x7f344e6500b8 --> <null>
List 1: head = 0x7f344e6500d0 --> <null>
List 2: head = 0x7f344e6500e8 --> <null>
List 3: head = 0x7f344e650100 --> <null>
List 4: head = 0x7f344e650118 --> <null>
List 5: head = 0x7f344e650130 --> [tag=1,kval=5,addr=0xf98020] --> <null>
List 6: head = 0x7f344e650148 --> [tag=1,kval=6,addr=0xf98040] --> <null>
List 7: head = 0x7f344e650160 --> [tag=1,kval=7,addr=0xf98080] --> <null>
List 8: head = 0x7f344e650178 --> [tag=1,kval=8,addr=0xf98100] --> <null>
List 9: head = 0x7f344e650190 --> [tag=1,kval=9,addr=0xf98200] --> <null>
List 10: head = 0x7f344e6501a8 --> [tag=1,kval=10,addr=0xf98400] --> <null>
List 11: head = 0x7f344e6501c0 --> [tag=1,kval=11,addr=0xf98800] --> <null>
List 12: head = 0x7f344e6501d8 --> [tag=1,kval=12,addr=0xf99000] --> <null>
List 13: head = 0x7f344e6501f0 --> [tag=1,kval=13,addr=0xf9a000] --> <null>
List 14: head = 0x7f344e650208 --> [tag=1,kval=14,addr=0xf9c000] --> <null>
List 15: head = 0x7f344e650220 --> [tag=1,kval=15,addr=0xfa0000] --> <null>
List 16: head = 0x7f344e650238 --> [tag=1,kval=16,addr=0xfa8000] --> <null>
List 17: head = 0x7f344e650250 --> [tag=1,kval=17,addr=0xfb8000] --> <null>
List 18: head = 0x7f344e650268 --> [tag=1,kval=18,addr=0xfd8000] --> <null>
List 19: head = 0x7f344e650280 --> [tag=1,kval=19,addr=0x1018000] --> <null>
List 20: head = 0x7f344e650298 --> <null>

Number of available blocks = 15

Memory
Management

29/53

Buddy System–Example 3

Buddy system succeeding in free'ing 1 byte.
Buddy system lists after free'ing the block .

List 0: head = 0x7f344e6500b8 --> <null>
List 1: head = 0x7f344e6500d0 --> <null>
List 2: head = 0x7f344e6500e8 --> <null>
List 3: head = 0x7f344e650100 --> <null>
List 4: head = 0x7f344e650118 --> <null>
List 5: head = 0x7f344e650130 --> <null>
List 6: head = 0x7f344e650148 --> <null>
List 7: head = 0x7f344e650160 --> <null>
List 8: head = 0x7f344e650178 --> <null>
List 9: head = 0x7f344e650190 --> <null>
List 10: head = 0x7f344e6501a8 --> <null>
List 11: head = 0x7f344e6501c0 --> <null>
List 12: head = 0x7f344e6501d8 --> <null>
List 13: head = 0x7f344e6501f0 --> <null>
List 14: head = 0x7f344e650208 --> <null>
List 15: head = 0x7f344e650220 --> <null>
List 16: head = 0x7f344e650238 --> <null>
List 17: head = 0x7f344e650250 --> <null>
List 18: head = 0x7f344e650268 --> <null>
List 19: head = 0x7f344e650280 --> <null>
List 20: head = 0x7f344e650298 --> [tag=1,kval=20,addr=0xf98000] --> <null>

Number of available blocks = 1

Memory
Management

30/53

Buddy System–Example 4

Memory pool size n = 2m = 220 = 1MB.
Work out what happens with the following example.
Requests: 70KB (Process A), 35KB (Process B), 80KB
(Process C), free A, 60KB (Process D), free B, free D, free C.
Each request is rounded up to the next power of two.

Memory
Management

31/53

Buddy System–Example 4 (contd.)

Buddy system initialized.
Buddy system lists after initialization.

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> <null>
List 17: head = 0x7f272c533390 --> <null>
List 18: head = 0x7f272c5333a8 --> <null>
List 19: head = 0x7f272c5333c0 --> <null>
List 20: head = 0x7f272c5333d8 --> [tag=1,kval=20,addr=0x1123000] --> <null>

Number of available blocks = 1

Memory
Management

32/53

Buddy System–Example 4 (contd.)

Buddy system lists after malloc'ing 70KB.

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> <null>
List 17: head = 0x7f272c533390 --> [tag=1,kval=17,addr=0x1143000] --> <null>
List 18: head = 0x7f272c5333a8 --> [tag=1,kval=18,addr=0x1163000] --> <null>
List 19: head = 0x7f272c5333c0 --> [tag=1,kval=19,addr=0x11a3000] --> <null>
List 20: head = 0x7f272c5333d8 --> <null>

Number of available blocks = 3

Memory
Management

33/53

Buddy System–Example 4 (contd.)

Buddy system lists after malloc'ing 35KB.

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> [tag=1,kval=16,addr=0x1153000] --> <null>
List 17: head = 0x7f272c533390 --> <null>
List 18: head = 0x7f272c5333a8 --> [tag=1,kval=18,addr=0x1163000] --> <null>
List 19: head = 0x7f272c5333c0 --> [tag=1,kval=19,addr=0x11a3000] --> <null>
List 20: head = 0x7f272c5333d8 --> <null>

Number of available blocks = 3

Memory
Management

34/53

Buddy System–Example 4 (contd.)

Buddy system lists after malloc'ing 80KB.

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> [tag=1,kval=16,addr=0x1153000] --> <null>
List 17: head = 0x7f272c533390 --> [tag=1,kval=17,addr=0x1183000] --> <null>
List 18: head = 0x7f272c5333a8 --> <null>
List 19: head = 0x7f272c5333c0 --> [tag=1,kval=19,addr=0x11a3000] --> <null>
List 20: head = 0x7f272c5333d8 --> <null>

Number of available blocks = 3

Memory
Management

35/53

Buddy System–Example 4 (contd.)

Buddy system lists after free'ing the 70KB block .

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> [tag=1,kval=16,addr=0x1153000] --> <null>
List 17: head = 0x7f272c533390 --> [tag=1,kval=17,addr=0x1123000] -->

[tag=1,kval=17,addr=0x1183000] --> <null>
List 18: head = 0x7f272c5333a8 --> <null>
List 19: head = 0x7f272c5333c0 --> [tag=1,kval=19,addr=0x11a3000] --> <null>
List 20: head = 0x7f272c5333d8 --> <null>

Number of available blocks = 4

Memory
Management

36/53

Buddy System–Example 4 (contd.)

Buddy system lists after malloc'ing 60KB.

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> <null>
List 17: head = 0x7f272c533390 --> [tag=1,kval=17,addr=0x1123000] -->

[tag=1,kval=17,addr=0x1183000] --> <null>
List 18: head = 0x7f272c5333a8 --> <null>
List 19: head = 0x7f272c5333c0 --> [tag=1,kval=19,addr=0x11a3000] --> <null>
List 20: head = 0x7f272c5333d8 --> <null>

Number of available blocks = 3

Memory
Management

37/53

Buddy System–Example 4 (contd.)

Buddy system lists after free'ing the 35KB block .

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> [tag=1,kval=16,addr=0x1143000] --> <null>
List 17: head = 0x7f272c533390 --> [tag=1,kval=17,addr=0x1123000] -->

[tag=1,kval=17,addr=0x1183000] --> <null>
List 18: head = 0x7f272c5333a8 --> <null>
List 19: head = 0x7f272c5333c0 --> [tag=1,kval=19,addr=0x11a3000] --> <null>
List 20: head = 0x7f272c5333d8 --> <null>

Number of available blocks = 4

Memory
Management

38/53

Buddy System–Example 4 (contd.)

Buddy system lists after free'ing the 60KB block .

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> <null>
List 17: head = 0x7f272c533390 --> [tag=1,kval=17,addr=0x1183000] --> <null>
List 18: head = 0x7f272c5333a8 --> [tag=1,kval=18,addr=0x1123000] --> <null>
List 19: head = 0x7f272c5333c0 --> [tag=1,kval=19,addr=0x11a3000] --> <null>
List 20: head = 0x7f272c5333d8 --> <null>

Number of available blocks = 3

Memory
Management

39/53

Buddy System–Example 4 (contd.)

Buddy system lists after free'ing the 80KB block .

List 0: head = 0x7f272c5331f8 --> <null>
List 1: head = 0x7f272c533210 --> <null>
List 2: head = 0x7f272c533228 --> <null>
List 3: head = 0x7f272c533240 --> <null>
List 4: head = 0x7f272c533258 --> <null>
List 5: head = 0x7f272c533270 --> <null>
List 6: head = 0x7f272c533288 --> <null>
List 7: head = 0x7f272c5332a0 --> <null>
List 8: head = 0x7f272c5332b8 --> <null>
List 9: head = 0x7f272c5332d0 --> <null>
List 10: head = 0x7f272c5332e8 --> <null>
List 11: head = 0x7f272c533300 --> <null>
List 12: head = 0x7f272c533318 --> <null>
List 13: head = 0x7f272c533330 --> <null>
List 14: head = 0x7f272c533348 --> <null>
List 15: head = 0x7f272c533360 --> <null>
List 16: head = 0x7f272c533378 --> <null>
List 17: head = 0x7f272c533390 --> <null>
List 18: head = 0x7f272c5333a8 --> <null>
List 19: head = 0x7f272c5333c0 --> <null>
List 20: head = 0x7f272c5333d8 --> [tag=1,kval=20,addr=0x1123000] --> <null>

Number of available blocks = 1

Memory
Management

40/53

Buddy System–Analysis

Advantages:
I Searching a block of size k requires searching only one list

of free blocks of size k instead of all the free blocks.
I Merging free blocks is much faster by design.

Disadvantages:
I All memory requests have to be rounded up to the nearest

power of two, which may cause significant internal
fragmentation.

A modified version of the buddy system is used in Linux.

Memory
Management

41/53

Buddy System References

I Kenneth C. Knowlton. A Fast storage allocator.
Communications of the ACM 8(10):623-625, Oct 1965.
also Kenneth C Knowlton. A programmer’s description of
L6. Communications of the ACM, 9(8):616-625, Aug.
1966.

I Donald Knuth. Fundamental Algorithms. The Art of
Computer Programming 1 (Second ed.) pp. 435-455.
Addison-Wesley.

I Wikipedia:
http://en.wikipedia.org/wiki/Buddy_memory_system

Memory
Management

42/53

So what is used in modern operating systems?

Modern operating systems all use some form of variable partitioning.
However, memory is allocated in fixed-size blocks (called “pages”),
which greatly simplifies free list management.

I The Linux kernel also uses the buddy system, with further
modifications to minimize external fragmentation, along with
various slab allocators to manage the memory within blocks.
These are listed below:

I SLAB is a complex allocator that performs well on a variety of
workloads. See article at
http://en.wikipedia.org/wiki/Slab_allocation

I SLUB, the kernel’s default, has a much simpler design and superior
debugging features. However it has significant regressions on some
benchmarks.

I SLOB (Simple List of Blocks) allocator for embedded devices and
machines that require a very small kernel footprint.

I BSD-based systems like Mac OS X also use a slab-based
allocation system.

I jemalloc is a modern memory allocator that is a replacement for
malloc that employs, among others, the buddy technique.

http://en.wikipedia.org/wiki/Slab_allocation

Memory
Management

43/53

So what is used in modern operating systems?
(contd)

Microsoft Windows memory management:
I Multiple memory pools of two types: Nonpaged pool and Paged

pool. System starts with four paged pools and one non-paged
pool and can grow up to 64 pools to support multicore
architecture.

I On 64-bit systems, nonpaged pool has a maximum size of 75% of
the physical memory or 128GB, whichever is smaller. Paged pool
has a maximum size of 128GB.

I Use process explorer (Sysinternals tools) to see pool information.
Click on View and then System Information.

I Look-aside Lists for faster allocation of fixed-size blocks. These
lists will automatically grow or shrink depending upon usage.

I Heap Manager manages memory inside smaller chunks. It has a
granularity of 8/16 bytes on 32-bit/64-bit systems.

Memory
Management

44/53

Program and Data Locality

I Program locality...most programs spend 90% of the time
in 10% of the code.

I How good is the data locality for the following data
structures?

I stacks,
I queues,
I linked lists,
I heap data-structure,
I binary search trees.

Memory
Management

45/53

Swapping

I Swapping relies on dynamic relocation hardware. The
decision as to when to swap is made by the memory
manager.

I The memory manager can deallocate the memory for a
blocked process and allocate the memory to other
processes.

I In a time sharing system, a process could be swapped out
even if it is not blocked to equitably share memory and the
CPU (for example, swapping can be activated when the
number of active users exceeds a certain threshold).

I When a swapped out process returns to ready state, the
process manager informs the memory manager to swap it
back in.

I Swapping takes considerable time. Hence the memory
manager should swap only when it is needed.

Memory
Management

46/53

Introduction to Virtual Memory

I Allows a process to use more memory than present
physically.

I Also allows only part of the address space of a process to
be present in the primary memory. This makes
multiprogramming more effective.

I Relies on spatial reference locality of program text and
data.

I Relies on dynamic relocation hardware as well as other
specialized hardware support.

Memory
Management

47/53

Shared Memory Multiprocessors

I Processes (potentially running on different CPUs)
communicate using shared memory.

I The simplest way to set up shared memory is to let
processes share parts of their address space.

I If each CPU has its own cache, then we have the problem
of cache coherence. Caches could be strongly consistent or
weakly consistent.

I Shared memory can also be set up among unrelated
processes on a single processor system as an efficient
means of communication. (example on next few frames).

Memory
Management

48/53

Shared Memory Segments

I Older style shared memory calls: shmget(...), shmat(...),
shmdt(...), shmdtl(...)
Check the shared memory segments with the command:
ipcs

I POSIX standard shared memory calls. (supported under
Linux and Mac OS X) shm_open(...), ftruncate(...),
mmap(...), shm_unlink(...) Under Linux, check the shared
memory segments with the command:
ls -l /dev/shm

I Under MS Windows use CreateFileMapping(...),
MapViewOfFile(...), UnmapViewOfFile(...). See examples
in ms-windows/memory-management/

Memory
Management

49/53

Memory Mapping

I Under Linux/Mac OS X. Use mmap(...) and munmap(...).
//.. appropriate header files
void *mmap(void *start, size_t length, int prot, int flags,

int fd, off_t offset);
int munmap(void *start, size_t length);

I Under MS Windows. Use VirtualAlloc(...) and VirtualFree(...)
LPVOID WINAPI VirtualAlloc(

__in_opt LPVOID lpAddress,
__in SIZE_T dwSize,
__in DWORD flAllocationType,
__in DWORD flProtect

);
BOOL WINAPI VirtualFree(

__in LPVOID lpAddress,
__in SIZE_T dwSize,
__in DWORD dwFreeType

);

Memory
Management

50/53

(POSIX) Shared Memory Examples

I create_posix_shmem.c
I access_posix_shmem.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/memory-management/create_posix_shmem.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/memory-management/access_posix_shmem.c

Memory
Management

51/53

Observing POSIX Shared Memory Segments

The kernel keeps the POSIX shared memory segments in a virtual file system
/dev/shm. By default, it is usually equal to half the installed memory size on the
system (but can be altered in /etc/fstab). Use ls on that folder to see the shared
memory segments.

[amit@kohinoor memory-management]: ls -l /dev/shm
total 5784
-rw-rw-r-- 1 amit amit 100000 Nov 7 13:58 amit
-r-------- 1 amit amit 67108904 Oct 19 09:47 pulse-shm-1210480228
-r-------- 1 amit amit 67108904 Oct 19 11:20 pulse-shm-1469689579
-r-------- 1 gdm gdm 67108904 Oct 19 09:47 pulse-shm-2908712043
-r-------- 1 amit amit 67108904 Oct 26 14:24 pulse-shm-3200708632
-r-------- 1 amit amit 67108904 Oct 19 09:47 pulse-shm-3973641630
-r-------- 1 amit amit 67108904 Nov 4 03:27 pulse-shm-722623938
-rw-rw-rw- 1 amit amit 16 Oct 20 09:45 sem.ADBE_ReadPrefs_amit
-rw-rw-rw- 1 amit amit 16 Oct 20 09:45 sem.ADBE_REL_amit
-rw-rw-rw- 1 amit amit 16 Oct 20 09:45 sem.ADBE_WritePrefs_amit
[amit@kohinoor memory-management]:

Memory
Management

52/53

Observing Shared Memory Segments (older style)

The utility ipcs lets us find out about active older (non-POSIX) style shared
memory segments in the system (as well as message queues and semaphores).
Here is a sample output from the ipcs command.

[amit@kohinoor]: ipcs
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x73727372 0 root 666 44172 0
0x7b01333d 1 amit 600 1024 3
0x00000000 1486850 amit 777 196608 2 dest
------ Semaphore Arrays --------
key semid owner perms nsems status
0x6c737372 0 root 666 3
------ Message Queues --------
key msqid owner perms used-bytes messages

A corresponding command ipcrm lets a user remove shared memory segments
etc. (if they have the right permissions).

Memory
Management

53/53

Synchronization and Shared Segments

I If multiple processes are modifying data structures stored
in a shared memory segment, then we need to synchronize
them (similar to global variables in a multi-threaded
program).

I Note that the mutexes, semaphores built in with Pthreads
library are not shared among processes (by default). They
can be made shared by setting the appropriate flag and
putting them into a shared memory segment.

I We can also use global semaphores provided via system
calls in Linux. See examples
memory-management/semdemo.c and
memory-management/semrm.c.

I In the MS Windows API, sempahores and mutexes can be
assigned a string handle and shared between processes.

