
Device
Management

1/44

Device Management

Device
Management

2/44

Learning Objectives

I Understand the concept of devices and their relationship
to the operating system

I Understand device I/O concepts such as direct,
memory-mapped and direct memory access (DMA),
polling and interrups

I Understand the concept of a compute-bound versus I/O
bound process

I Understand the concept of reloadable device drivers
I Develop simple Linux modules

Device
Management

3/44

Device Management

Application
Process

File
Manager

Device
Driver

Device Controller

Command Status Data

Hardware Interface

System Interface

Device
Management

4/44

Commonly Used Device Types

I Communication devices. Examples: Serial communication
devices using Universal Asynchronous Receiver Transmitter
(UART) with RS 232 serial communication protocol,
Universal Serial Bus (USB) (version 1 was 1.5 to 12 Mbps,
version 2 is up to 480 Mbps, version 3 is up to 5 Gbps and
10Gbps in future), IEEE 1394 Firewire (100/200/400
Mbps and up to 3.2 Gbps in future), Thunderbolt (10
Gbps per channel).

I Sequentially accessed storage devices. Examples: Digital
Audio Tapes (DAT) can store up to 40GB. Used for
backups.

I Randomly accessed storage devices. Examples: Magnetic
hard disks, Compact Disk-Read Only Memory (CD-ROM,
around 700MB), Digital Versatile Disk (DVD, 4.7GB to
17GB), Jump drives, Solid State Drives (SSD).

Device
Management

5/44

Types of Device I/O

I Direct I/O.
I with polling.
I interrupt driven.

I Memory-mapped I/O.
I with polling.
I interrupt driven.

I Direct Memory Access. (DMA)

Device
Management

6/44

I/O with Polling

Device
Management

7/44

I/O with Interrupts

Read Using Interrupts
read(device, …);

Data

Device Controller

Command Status Data

read driver

write driver

1

2

3

4

5Hardware Interface

System Interface

Device Status Table

Device
Handler

Interrupt
Handler

6

7

8a

8b

9

top-half bottom-half

Device
Management

8/44

Polling versus Interrupts

I With only one process at a time, polling-based I/O would
tend to be more efficient.

I With multiple processes, interrupt-based I/O would result
in smaller average time for the processes.

Device
Management

9/44

Memory Mapped I/O

I Registers in devices are associated with logical memory addresses
rather than having specialized device addresses.

I Memory-mapped I/O eliminates special I/O machine instructions
to read/write to device registers.

I Memory-mapping is accomplished at the bus level by the
decoding logic.

Device
Management

10/44

Memory Mapped I/O

Device
Management

11/44

Example of Interrupt Mappings

IRQ CPU0 Device
0: 223702571 XT-PIC timer
1: 358416 XT-PIC keyboard
2: 0 XT-PIC cascade <-- connected to 2nd XT-PIC
5: 0 XT-PIC usb-uhci
7: 13424 XT-PIC soundblaster
8: 1 XT-PIC rtc

11: 66502297 XT-PIC eth0
12: 9089768 XT-PIC PS/2 Mouse
14: 4513089 XT-PIC ide0

/proc/interrupts shows the interrupt mappings under Linux

Traditional Programmable Interrupt Controllers (XT-PIC) can handle 8
Interrupt Request (IRQ) lines. Two PICs are cascaded together, with the slave
PIC connected to line 2 of the controlling PIC, leaving 15 usable IRQs.

Device
Management

12/44

Interrupt Mappings on a Multi-processor System

CPU0 CPU1 CPU2 CPU3
0: 4948224 0 0 0 IO-APIC-edge timer
1: 2944 0 0 0 IO-APIC-edge keyboard
2: 0 0 0 0 XT-PIC cascade
8: 1 0 0 0 IO-APIC-edge rtc

12: 8551 0 0 0 IO-APIC-edge PS/2 Mouse
14: 396575 0 0 1 IO-APIC-edge ide0
15: 23 0 0 0 IO-APIC-edge ide1
16: 0 0 0 0 IO-APIC-level usb-uhci
17: 1191765 0 0 0 IO-APIC-level eth0, Intel ICH4
18: 24805 0 0 0 IO-APIC-level usb-uhci, eth1
19: 0 0 0 0 IO-APIC-level usb-uhci
23: 0 0 0 0 IO-APIC-level ehci-hcd

NMI: 0 0 0 0
LOC: 4948381 4948380 4948380 4948380
ERR: 0
MIS: 0

I On Multi-core/processor systems, the I/O Advanced Programmable Interrupt Controller
(APIC) is used. Each APIC can support 24 IRQs. On Intel CPUs, each CPU has a local
APIC and there is a global I/O APIC.

I The interrupt handling can be balanced by programming the APICs. Google “irqbalance" to
learn more about a utility that does load-balancing.

Device
Management

13/44

Example: Memory mapped I/O

0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
01f0-01f7 : ide0
0220-022f : soundblaster
02f8-02ff : serial(auto)
0330-0333 : MPU-401 UART
0378-037a : parport0
037b-037f : parport0
03c0-03df : vga+
03f6-03f6 : ide0
03f8-03ff : serial(auto)
0cf8-0cff : PCI conf1
d000-d03f : 3Com Corporation 3c905 100BaseTX [Boomerang]
d400-d41f : Intel Corp. 82371AB/EB/MB PIIX4 USB
d400-d41f : usb-uhci
d800-d80f : Intel Corp. 82371AB/EB/MB PIIX4 IDE
d800-d807 : ide0
d808-d80f : ide1
e400-e43f : Intel Corp. 82371AB/EB/MB PIIX4 ACPI
e800-e81f : Intel Corp. 82371AB/EB/MB PIIX4 ACPI

/proc/ioports shows the memory mapped I/O ports under Linux

Device
Management

14/44

Direct Memory Access (DMA)

I Once the driver has initiated an I/O operation, a DMA
controller can read/write to main memory without
software intervention.

I DMA frees up the CPU from copying of data from the
controller registers or buffer. This leads to better
performance.

I DMA controllers and the CPU may, however, compete for
the bus.

Device
Management

15/44

Direct Memory Access (DMA)

Device
Management

16/44

Buffering

I Buffering improves I/O performance by allowing device
managers to keep slower I/O devices busy when process do
not need I/O.

I Single buffering.
I Double buffering.
I Circular buffering.
I I/O-bound versus Compute-bound processes. The effect of

buffering depends a lot on the characteristics of the
process.

Device
Management

17/44

Compute versus I/O Bound processes

How do we measure compute bound versus i/o bound? Use
strace in Linux.

Device
Management

18/44

Examining Process Characteristics

I strace is a nifty utility for finding out more about the behavior of a process.
kohinoor:strace -c mycp test3.data tmp
execve("./mycp", ["mycp", "test3.data", "tt"], [/* 36 vars */]) = 0
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
56.13 0.367676 714 515 read
42.15 0.276133 538 513 write
1.52 0.009954 9954 1 creat
0.10 0.000636 127 5 2 open
0.04 0.000287 48 6 mmap
0.02 0.000114 29 4 mprotect
0.01 0.000080 80 1 stat
0.01 0.000067 67 1 munmap
0.01 0.000060 15 4 close
0.00 0.000014 14 1 personality
0.00 0.000013 13 1 geteuid
0.00 0.000012 12 1 getuid
0.00 0.000012 12 1 getgid
0.00 0.000012 12 1 getegid

------ ----------- ----------- --------- --------- ----------------
100.00 0.655070 1055 2 total

I Try strace -r -T mycp test3.data tmp and use the script in the examples
folder ch5/convert-strace-log to generate plotting data from the output of
the strace command.

I strace -r -T gives a time-stamp as the process enters a system call. It also
prints the amount of time spent in the system call after each call.

Device
Management

19/44

Device Drivers

I Application Programming Interface (API). Conflicting
goals of being able to control specific aspects of the device
versus having a consistent interface for all drivers.

I The operating system tries to hide the details of the
devices by using an interface common to all types of
devices. The interface provides an abstract I/O paradigm.
Typical operations include open, close, read, write and a
general way of doing device specific operations (ioctl in
Unix/Linux).

I Types of devices. Block-oriented versus Character-oriented
devices. E.g. Classify these devices: network interface,
keyboard, CD/DVD drive, USB key, disk drive, floppy disk
drive, mouse, tape drive, printer, sound card. Other types
of classifications: random-access versus sequential-access.

Device
Management

20/44

Kernel Interface for Device Drivers

I Kernel Interface. Device drivers are part of the operating system
because they need to execute privileged instructions. Two ways of
adding device drivers to an operating system.

I Built-in drivers. Add device driver code to the operating system
source code and recompile the operating system. The machine has
to be then rebooted with the new version of the operating system.

I Reconfigurable device drivers. Use dynamic binding of the
compiled driver to the operating system code. Allows device
drivers to be added on the fly without recompiling or rebooting the
operating system.

Device
Management

21/44

Device Drivers (cont’d.)

I Process—Driver—Controller coordination.
I Optimization of I/O performance. Buffering is one

common technique. Examples of where buffering is used:
character and sequential access devices, printers. For
random-access devices, the driver can attempt to optimize
by rearranging the order in which multiple requests are
performed.

Device
Management

22/44

Linux/Unix devices

I When the user program calls the driver, it performs a system call.
The kernel looks up the entry point for the device in the block or
character indirect reference table (the jump table) and then calls
the entry point. The logical contents of the jump table are kept
in the file system in the /dev directory. The files in the /dev
directory are special files (that can only be created with the
mknod command).

I Device drivers are uniquely identified by their major numbers. A
device driver may be controlling a number of physical and virtual
devices; the individual device is accessed via the minor number.

I Each entry point in the driver is registered at runtime by defining
a structure of type file_operations, with function pointers for the
defined routines. The structure is then passed to the kernel with
a call to either register_chrdev(...) or to register_blkdev(...) to
bind the links.

Device
Management

23/44

Device Files in Linux/Unix

$ ls -l /dev
crw------- 1 root root 5, 1 Aug 29 17:06 console
drwxr-xr-x 4 root root 100 Aug 29 17:06 cpu
brw-rw---- 1 root disk 7, 0 Aug 29 17:06 loop0
brw-rw---- 1 root disk 7, 1 Aug 29 17:06 loop1
crw-rw---- 1 root lp 6, 0 Aug 29 17:06 lp0
brw-rw---- 1 root disk 9, 0 Aug 29 17:06 md0
brw-rw---- 1 root disk 9, 1 Aug 29 17:06 md1
crw-r----- 1 root kmem 1, 1 Aug 29 17:06 mem
crw-rw-rw- 1 root root 1, 3 Aug 29 17:06 null
crw-rw-rw- 1 root root 195, 0 Aug 29 17:07 nvidia0
crw-rw-rw- 1 root root 195, 255 Aug 29 17:07 nvidiactl
crw-r----- 1 root kmem 10, 144 Aug 29 17:06 nvram
crw-rw---- 1 root lp 99, 0 Aug 29 17:06 parport0
crw-rw-rw- 1 root root 1, 8 Aug 29 17:06 random
crw-rw---- 1 root root 254, 0 Aug 29 17:06 rtc0
brw-rw---- 1 root disk 8, 0 Aug 29 17:06 sda
brw-rw---- 1 root disk 8, 1 Aug 29 17:06 sda1
brw-rw---- 1 root disk 8, 2 Aug 29 17:06 sda2
brw-rw---- 1 root disk 8, 3 Aug 29 17:06 sda3
brw-rw----+ 1 root cdrom 11, 0 Aug 29 17:06 sr0
lrwxrwxrwx 1 root root 15 Aug 29 17:06 stderr -> /proc/self/fd/2
lrwxrwxrwx 1 root root 15 Aug 29 17:06 stdin -> /proc/self/fd/0
lrwxrwxrwx 1 root root 15 Aug 29 17:06 stdout -> /proc/self/fd/1
lrwxrwxrwx 1 root root 4 Aug 29 17:06 systty -> tty0
crw-rw-rw- 1 root tty 5, 0 Sep 14 22:18 tty
crw--w---- 1 root root 4, 0 Aug 29 17:06 tty0
crw--w---- 1 root root 4, 1 Aug 29 17:07 tty1
crw-rw-rw- 1 root root 1, 9 Aug 29 17:06 urandom
crw-rw-rw- 1 root root 1, 5 Aug

Device
Management

24/44

Device Files in Linux/Unix (contd.)

Some things to note in the listing of device special files in the
/dev directory.

I The first character in the permissions, b or c, represents
whether the device is block or character oriented.

I The major and minor numbers (5th and 6th column in the
listing) are reserved for certain device types. Some major
numbers are free to new devices. For example: major
number 3 is for the IDE driver. See the file
Documentation/devices.txt in the Linux kenel source
for the mapping of major/minor numbers to device types.

I The console device is the same as the tty device.

Device
Management

25/44

A simplified device driver framework
Assumptions:

1. getBlock(device, buffer) and putBlock(device, buffer) are system calls that
may be called by an application program.

2. A block is 1024 contiguous bytes pointed to by the buffer argument.
3. DMA controller can transfer block from device buffer directly to memory

pointed to by buffer provided by calling application with memcpy call.
4. Device identified by kernel with major and minor integer values according

to typical Unix systems.
5. Device controller command register, status register, and block buffer are

memory mapped (i.e. they can be read and written with an address). The
device controller has BUSY and DONE flags with the following
interpretation.
busy done state
false false device is idle and ready for a new command
true false device is busy with command
false true command is done but data has not been transferred
true true invalid state

Device
Management

26/44

/*
This solution was prepared by Sam Siewert and provided
by Gary Nutt. Modified by Amit Jain.
*/
/* Device Identification */
struct dev_spec {

unsigned short major;
unsigned short minor;

}

#define BUSYFLAG 1
#define DONEFLAG 2
#define BLKSIZE 1024

struct dev_status {
unsigned short status;
void *apl_return_addr;
void *apl_buffer_addr;

}

struct dev_param {
void *data_addr;
void *status_addr;
void *cmd_addr;

}

struct dev_status dev_status_table[NUM_MAJOR_DEV];
struct dev_param dev_param_table[NUM_MAJOR_DEV];

Device
Management

27/44

int getBlock(struct dev_spec *device, void *buffer)
{

char cmd;
switch(device->major) {
case 0: ... break;
case 1: ... break;
case 2: ... break;
/* e.g. IDE hard-disk in Linux */
case 3:

switch(device->minor) {
/* minor device is particular drive and partition */
case 0:
cmd = GETBLK;
/* need to check if the device is free to execute a new command */
while (dev_status_table[3].status != 0); /* busy wait */

memcpy(dev_param_table[3].cmd_addr, &cmd, 1);
dev_status_table[3].status =

(dev_status_table[3].status)|BUSYFLAG;
dev_status_table[3].apl_return_addr = get_return_from_stack();
dev_status_table[3].apl_buffer_addr = buffer;
/* yield the CPU, blocked for IO */
sched_yield(); /* supported in Posix */
break;

}
break;
/* ... */

}
}

Device
Management

28/44

int putBlock(struct dev_spec *device, void *buffer)
{

char cmd;
switch(device->major) {

case 0: ... break;
case 1: ... break;
case 2: ... break;
/* e.g. IDE hard-disk in Linux */
case 3:

switch(device->minor) {
/* minor device is particular drive and partition */
case 0:
cmd = PUTBLK;
/* need to check if the device is free to execute a new command */
while (dev_status_table[3].status != 0); /* busy wait */
memcpy(dev_param_table[3].cmd_addr, &cmd, 1);
dev_status_table[3].status =

(dev_status_table[3].status)|BUSYFLAG;
dev_status_table[3].apl_return_addr=get_return_from_stack();
dev_status_table[3].apl_buffer_addr = buffer;
/* yield the CPU, get blocked for I/O */
sched_yield(); /* supported in Posix */
break;

}
break;

/* ... */
}

}

Device
Management

29/44

void interrupt_handler(void)
{

int i;
unsigned short status;

saveProcessorState();
for(i=0;i<=LASTDEVICE;i++) {

/* Assume that the busy flag is false and done flag is true
after the completion of an I/O operation and before the
data is transferred from the device controller to the buffer
in the user space.

*/
memcpy(&status, dev_param_table[i].status_addr, 1);
/* Can drop the second part of the and clause below */
if ((status&DONEFLAG) && !(status&BUSYFLAG)) {

dev_status_table[i].status=status;
device_handler(i);

}
}
/* error if we get here */

}

Device
Management

30/44

void device_handler(int i)
{

switch(i) {
case 0: ...
break;
case 1: ...
break;
case 2: ...
break;
/* e.g. IDE hard-disk in Linux */
case 3:
/* The DMA transfer of the block happens below */
// The following is for a getBlock, what's needed for a putBlock
memcpy(dev_status_table[i].apl_buffer_addr,

dev_param_table[i].data_addr, BLKSIZE);
/* The controller clears the done flag to indicate that

the device is again ready for the next command */
dev_status_table[i].status = 0;
returntoaddr();
break;
.
.
.

}
}

Device
Management

31/44

Linux Modules

I Linux modules are pieces of code that be loaded into or
unloaded from the kernel upon demand without having to
reboot the system. Device drivers are a type of module
that deals with hardware devices.

I Other examples of plugin use: Web browsers, Windows
Media Player, Amarok etc.

I Since the kernel is written in C, you may ask how can a C
program load/unload code on the fly? See examples in the
plugins folder in the class examples: plugins

I ex1: plugin1.c, plugin2.c, runplug.c
I ex2: Hello.c, Goodbye.c, Loader.h, Loader.c
I Also checkout examples in the folders ex3 and ex4.

https://github.com/BoiseState/CS453-resources/tree/master/examples/plugins
https://github.com/BoiseState/CS453-resources/tree/master/examples/plugins/ex1
https://github.com/BoiseState/CS453-resources/tree/master/examples/plugins/ex2

Device
Management

32/44

Linux Modules

I The command modinfo gives you info on the specified given
module file.

I The command lsmod lists all currently loaded modules. (Or we
can look at /proc/devices and /proc/modules)

I The command insmod allows the superuser to add a new module.
I The command rmmod allows the superuser to remove a module

that is no longer in use.
I The utilities modprobe and depmod automate loading/unloading

of modules under Linux.
I You may need to add /sbin to your PATH environment variable

or prefix the commands with /sbin before your shell will find
them.

I You will need to install the kernel-devel package on Fedora to
be able to build a kernel module.
dnf install kernel-devel

Device
Management

33/44

Linux Module Programming

I The standard C library is not available to modules in kernel space.
So a module can only use the functions that are already in the
kernel.

I A list of all functions available in the kernel is in /proc/kallsyms
I Some basic string and other functions have been re-implemented

in the kernel. Google for Linux kernel API.
I Name space pollution is a big concern since any module code

becomes part of the kernel. A good strategy to use is to declare
everything static that you can.

I If module code (or any kernel space code) dereferences a bad
pointer, the results can range from annoying (having to reboot to
get rid of the module) to disastrous. Memory violations in the
kernel result in an oops, which is a major kernel error.

I There is no (easy) way to use floating point instructions in the
kernel. Just Don’t Do It.

Device
Management

34/44

The “Hello, World” Module

/* device - management / linux_device_drivers /hello /hello.c */
include <linux/ module .h>
include <linux/init.h>
include <linux/ kernel .h>

/* MODULE_LICENSE (" Proprietary ");*/
MODULE_LICENSE ("GPL");

static int __init hello_init (void) { printk (" <1>Hello , world\n");
return 0;}

static void __exit hello_cleanup (void) { printk (" <1> Goodbye cruel
world\n");}

module_init (hello_init);
module_exit (hello_cleanup);

All device driver usually implement an init and exit function. In older style code,
these functions had a fixed name: init_module and cleanup_module. But now
the init/exit functions can be named anything by using the module_init and
module_exit macros. In addition, it may implement one or more of the functions
listed in the file_operations structure, which is discussed later in this chapter.

Device
Management

35/44

The __init and __exit macros

I The __init macro causes the init function to be discarded
and its memory freed once the init function finishes for
built-in drivers, but not loadable modules.

I The __exit macro causes the omission of the function
when the module is built into the kernel, and like __init,
has no effect for loadable modules.

I Note that built-in drivers don’t need a cleanup function,
while loadable modules do. These macros are defined in
linux/init.h and serve to free up kernel memory.

Device
Management

36/44

Building and Loading the “Hello, World” Module

[amit@localhost hello]$ ls
hello.c Makefile

[amit@localhost hello]$ make
make -C /lib/modules/`uname -r`/build M=`pwd` modules
make[1]: Entering directory '/usr/src/kernels/4.2.3-200.fc22.x86_64'

CC [M] /home/amit/Documents/work/courses/cs453/lab/device-management/linux-\
device-drivers/hello/hello.o

Building modules, stage 2.
MODPOST 1 modules
CC /home/amit/Documents/work/courses/cs453/lab/device-management/linux-\

device-drivers/hello/hello.mod.o
LD [M] /home/amit/Documents/work/courses/cs453/lab/device-management/linux-\

device-drivers/hello/hello.ko
make[1]: Leaving directory '/usr/src/kernels/4.2.3-200.fc22.x86_64'

[amit@localhost hello]$ sudo /sbin/insmod hello.ko
[amit@localhost hello]$ /sbin/lsmod | grep hello
hello 16384 0
[amit@localhost hello]$ sudo /sbin/rmmod hello.ko
[amit@localhost hello]$ /sbin/lsmod | grep hello
[amit@localhost hello]$

Device
Management

37/44

Loading and Unloading the “Hello, World” Module

[root@kohinoor hello]# tail /var/log/messages
Sep 23 07:28:49 kohinoor sshd(pam_unix)[18098]: session closed for user amit
Sep 23 07:31:34 kohinoor sshd(pam_unix)[18310]: session opened for user amit by (uid=999)
Sep 23 08:12:17 kohinoor su(pam_unix)[18566]: session opened for user root by amit(uid=999)
Sep 23 08:12:40 kohinoor kernel: Hello, world

[root@kohinoor hello]# /sbin/rmmod hello

[root@kohinoor hello]# tail /var/log/messages
Sep 23 07:31:34 kohinoor sshd(pam_unix)[18310]: session opened for user amit by (uid=999)
Sep 23 08:12:17 kohinoor su(pam_unix)[18566]: session opened for user root by amit(uid=999)
Sep 23 08:12:40 kohinoor kernel: Hello, world
Sep 23 08:15:49 kohinoor kernel: Goodbye cruel world
[root@kohinoor hello]#

On some systems, syslogd has been replaced by journald. So change the above command to

journalctl -f

or

dmesg --follow

Device
Management

38/44

Module Licenses

/* From include / linux/ module .h header file in the kernel source
* The following license idents are currently accepted as indicating
* free software modules
*
* "GPL" [GNU Public License v2 or later]
* "GPL v2" [GNU Public License v2]
* "GPL and additional rights " [GNU Public License v2 rights and more]
* "Dual BSD/GPL" [GNU Public License v2 or BSD license choice]
* "Dual MPL/GPL" [GNU Public License v2 or Mozilla license choice]
*
* The following other idents are available
* " Proprietary " [Non free products]
*
* There are dual licensed components , but when running with Linux
* it is the GPL that is relevant so this is a non issue. Similarly
* LGPL linked with GPL is a GPL combined work.
*
* This exists for several reasons
* 1. So modinfo can show license info for users wanting to vet
* their setup is free
* 2. So the community can ignore bug reports including
* proprietary modules
* 3. So vendors can do likewise based on their own policies
*/

Device
Management

39/44

The file_operations structure in Linux kernel

From the file <kernel source>/include/linux/fs.h for version 4.2.3.
Compare with your kernel source!

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*mremap)(struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **, void **);
long (*fallocate)(struct file *file, int mode, loff_t offset,

loff_t len);
void (*show_fdinfo)(struct seq_file *m, struct file *f);

#ifndef CONFIG_MMU
unsigned (*mmap_capabilities)(struct file *);

#endif
};

Device
Management

40/44

The file structure in Linux kernel

From the file <kernel source>/include/linux/fs.h (for version 4.2.3)

struct file {
union {

struct llist_node fu_llist;
struct rcu_head fu_rcuhead;

} f_u;
struct path f_path;
struct inode *f_inode; /* cached value */
const struct file_operations *f_op;

/*
* Protects f_ep_links, f_flags.
* Must not be taken from IRQ context.
*/

spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
struct mutex f_pos_lock;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;

u64 f_version;
#ifdef CONFIG_SECURITY

void *f_security;
#endif

/* needed for tty driver, and maybe others */
void *private_data;

#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hooks to this file */
struct list_head f_ep_links;
struct list_head f_tfile_llink;

#endif /* #ifdef CONFIG_EPOLL */
struct address_space *f_mapping;

} __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */

Device
Management

41/44

Linux Device Driver Examples

The following examples are in the linux_device_drivers
directory in the examples. They are based on examples from
the book Linux Device Drivers by Rubini, Corbet and
Kroah-Hartman (O’Reilly publishers). You can find them in the
class examples repository under the
device-management/linux-device-drivers folder.

I example1
I example2
I example3
I example4

https://github.com/BoiseState/CS453-resources/tree/master/examples/device-management/linux-device-drivers/example1
https://github.com/BoiseState/CS453-resources/tree/master/examples/device-management/linux-device-drivers/example2
https://github.com/BoiseState/CS453-resources/tree/master/examples/device-management/linux-device-drivers/example3
https://github.com/BoiseState/CS453-resources/tree/master/examples/device-management/linux-device-drivers/example4

Device
Management

42/44

Linux Module Programming Summary (1)

/proc/kallsyms Names and addresses of all visible functions in the kernel.
/proc/ioports Memory mapped I/O device addresses.
/proc/devices Major numbers and names corresponding to device drivers loaded
currently.
#include <linux/module.h>

Required headers. It must be included by a module source.
MODULE_AUTHOR("author");
MODULE_DESCRIPTION("description");
MODULE_SUPPORTED_DEVICE("device");

Place documentation on the module in the object file.
MODULE_LICENSE("license");

Set a license for the module. Use “GPL” (or compatible open source
licenses) to avoid tainting the kernel. Use “Proprietary” for non-free
modules. If you use “Proprietary” license then other kernel developers
will ignore errors in your driver since it is not open source. Recommended
to use “GPL” or seek legal advice!

#include <linux/init.h>
module_init(init_function);
module_exit(exit_function);

Newer mechanism for marking a module’s initialization and cleanup
functions.

Device
Management

43/44

Linux Module Programming Summary (2)

try_module_get(THIS_MODULE)
put_module(THIS_MODULE)

Macros that act on the usage count for a module.
#include <linux/sched.h>

One of the most important header files. Contains definitions of much of
the kernel API used by drivers. Contains the process descriptor structure:
struct task_struct.

#include <linux/fs.h>
The file system header is required for writing device drivers. This con-
tains the file_operations and the file structure declarations.

struct task_struct *current;
current->pid
current->comm

The current process. Its process id and its command name.
#include <linux/kernel.h>
int printk(const char *fmt, ...);

The analogue of printf for kernel code.
#include <linux/slab.h>
void *kmalloc(unsigned int size, int priority);
void kfree(void *object);

Analogue of malloc and f ree for kernel code. Typical value of priority is
GFP_KERNEL (General Free Page in the kernel space).

Device
Management

44/44

Linux Module Programming Summary (3)

kdev_t inode->i_rdev
The device “number” for the current device is available from the inode
structure.

int MAJOR(kdev_t dev);
int MINOR(kdev_t dev);

These macros extract the major and minor from a device item.
int register_chrdev(unsigned int major, const char *name,
struct file_operations *fops);

Registers a character device driver. If the major number is not 0, it is
used. Otherwise a dynamic number is assigned for this device.

int unregister_chrdev(unsigned int major, const char *name,
Unregisters the driver at unload time. Both the major number and the
name string must match what was used to register the device.

#include <asm/segment.h>
#include <asm/uaccess.h>
unsigned long __copy_from_user(void *to, const void *from, unsigned long
count);
unsigned long __copy_to_user(void *to, const void *from, unsigned long count);

Copy data between user space and kernel space. Always use this instead
of assigning or memcpy for transfers between user and kernel space.

#include <asm/semaphore.h>
void sema_init(struct semaphore *sem, int val);
int down_interruptible(struct semaphore *sem);
int up(struct semaphore *sem);

The semaphore data structure for preventing race conditions.

