DDDDDDDDD

Deadlocks

Learning Objectives

Deadlocks

» Understand what is a deadlock and what causes
deadlocks?

» How to deal with a deadlock: prevention, avoidance,
detection and recovery

» Understand the Banker's Algorithm for deadlock
avoidance.

Overview

Deadlocks

Deadlock is a state in which each process is waiting fron
another process to take action, such as sending a message or
releasing a lock. Thus no process is able to make any progress.

Necessary Conditions for a Deadlock

Deadlocks
Coffman conditions: A deadlock situation on a resource can

arise if and only if all of the following conditions hold
simultaneously in a system:

» Mutual exclusion: The resources involved must be
unshareable.

» Hold and wait: A process is currently holding at least one
resource and requesting additional resources which are
being held by other processes.

» No preemption: A resource can be released only
voluntarily by the process holding it.
» Circular wait: For a set of processes: P;,1<n, P; is

waiting for P,, which is waiting for P3 and so on up to
P,.which is waiting for P;.

Dealing with Deadlocks

Deadlocks

Deadlock is a global condition. An individual program generally
cannot detect a deadlock, which implies that the deadlocks
have to be handled by the operating system. The four basic
approaches are:

» Prevention.

» Avoidance.

v

Detection and Recovery.

v

Manual intervention by the operator.

Deadlocks

Banker's Algorithm

» We assume that each process declares its maximum claim

on each resource type at the time of creation.

The strategy is to keep the system in a safe state, that is,
if every process were to exercise its maximum claim, then
there would still be some sequence of allocations and
deallocations that would enable the system to satisfy every
process’'s requests. A system state in which this guarantee
cannot be made is an unsafe state.

A system can be in an unsafe state without deadlocking.

A safe state guarantees that there cannot be a deadlock,
but an unsafe state implies that the matter is out of the

hands of the resource allocator and will be determined by
the actions of the processes.

Banker's Algorithm (contd.)

Deadlocks A simple example with one resource. Total units available = 10.
Process | Current | Max
A 0 6
Initial state of system: B 0 5
C 0 4
D 0 7
Process | Current | Max
A 1 6
Is this a safe state? B 1 5
C 2 4
D 4 7
Process | Current | Max
A 1 6
Is this a safe state? B 2 5
C 2 4
D 4 7

Deadlocks

Banker's Algorithm (contd.)

v

A set of n processes using a set of m resources.

» Let alloc be a table in which row i represents process p;

(0 < i< n) and column j represents resources rj (0 < j < m). The
entry alloc[i,j] represents the number of units of resource r; held
by the process p;.

The table maxc represents the maximum claim on resource r; by
process p;.

» The table C represents the number of units in the system.
» Given the above data structures, the number of available

resources can be computed as:

availl] = ¢;—) allocli,j].

0<i<n

Deadlocks

Banker's Algorithm (contd.)

1. Copy the alloc]i, j] table to a table named alloc’.

. Given C, maxc, and alloc’, compute the avail vector. First

take the column sums for alloc’: alloc'[*,j]. Then compute:
avail[j] = ¢; - alloc'[*,]]

. Find p; such that maxc[i,j] - alloc’[i,j] < avail[j] for

0<j<mandO0<i<n. If nosuch p; exists, then the
state is unsafe—halt the algorithm. If alloc’[i,j] is O for all i
and j, the state is safe—halt the algorithm.

. Set alloc'[i,j] to O to indicate that p; could exercise its

maximum claim. Then deallocate all resources to
represent that p; is not permanently blocked in the state
that is being analyzed. Go back to Step 2.

The worst-case runtime: ©(mn?)

Deadlocks

Detection and Recovery

» Make a graph of resources and processes for use in detection. If

there is only one of each resource, then a cycle in the resource
graph represents a deadlock. Otherwise the conditions for
deadlock are more complicated. How do we detect a cycle in a
graph?

Use depth-first search and look for a back-edge in the depth-first
search tree. Can be done in time linear in the size of the graph.
See Chapter 22 of the CLRS Algorithms book!

Recovery will involve preempting processes or even destroying
processes until the deadlock is resolved. The brute force approach
is to destroy all processes by rebooting the machine.
Check-pointing can help in saving the computation done by
processes in case they are killed by the operating system.
Checkpoints are used extensively in database management
systems and other mission-critical applications.

