
LIST OF FIGURES CONTENTS

Technical Note 1:
Porting Fortran Software to a Beowulf Cluster

Paul Michaels <pm@cgiss.boisestate.edu> 5th November 2004
Amit Jain <amit@cs.boisestate.edu>

Abstract

There are many ways to convert a serial Fortran language program to a parallel program needed for execution on
a Beowulf cluster. Here, we focus on a method which can be implemented in either Parallel Virtual Machine (PVM)
or Message Passing Interface (MPI). We step through the basic processes assuming that the Single Program Multiple
Data (SPMD) paradigm will be implemented in PVM. Translation into MPI is straight forward for this paradigm.
The steps are demonstrated on a trivial Fortran 77 program which has been inspired by the experience gained on
converting a more complicated code which measures body wave dispersion in a down-hole geophysical survey.

The trivial program, spmd_0.f, distills the essence of the problem without the burden of a highly detailed compu-
tation. The program computes the cube of a series of numbers (1 to npts, where npts is specified on the command line
as an argument). To maintain maximum portability, we avoid using special extensions which may be found on some
commercial compilers. Where special functions are needed, we demonstrate solutions using standard C-language
functions, linked to the Fortran 77 code.

Contents

1 Converting a Serial Program 2
1.1 Sketching the Architecture . 2
1.2 Instrumenting the Code . 2

1.2.1 How gettime() works . 4
1.2.2 The Fortran Makefile . 5
1.2.3 The SUBLIBC Makefile . 6
1.2.4 The output from the instrumented version . 7

1.3 Profile the Code . 7
1.3.1 Running gprof, and Examining the Output . 7

1.4 Dividing Up the Work . 8
1.5 Modifying the Code . 8

1.5.1 Calling System and C-language Functions . 8
1.5.2 Adding PVM calls to spawn Sibling Tasks . 11

1.6 Debug Code . 20
1.7 Adding Pre-processor Code . 22

1.7.1 Makefile.aimk for Pre-processor version . 22

2 Summary 22

3 Acknowledgments 22

List of Figures

1 Program Listing and Architecture . 3
2 Modified code with PVM calls . 14
3 Modified code PVM divides up the labor . 18
4 Pre-processor version spmd_3.fpp . 23
5 Slightly More Generalized SPMD Flow . 24

1

1 CONVERTING A SERIAL PROGRAM

1 Converting a Serial Program

A listing of the serial program, spmd_0.f, is given in Appendix A at the end of this note. The SPMD paradigm involves
only a single program which is concurrently spawned on many processing nodes, each node taking a portion of the
task. It is different from the other Master-Slave paradigms which can only be implemented on PVM. The steps can be
summarized as follows:

1. Sketch the program architecture. The sketch need not be as detailed as a flow chart, but should focus on the
major loops.

2. Instrument the Code. This involves adding timing calls to examine portions of the code which might be split
up among processing nodes. Portions of the code may execute slower, depending on the data being processed.
One looks for trends. For example, in our dispersion problem we asked the question, “do high frequencies
take longer than low frequencies?” In our case, it did not matter. This is very problem specific, and often data
specific. In this example problem, one might ask if large numbers take longer to cube than small numbers.

3. Profile the Code. This is done by compiling with the -pg option, and then running the gprof program on the
result of a test case.

4. Decide on how to divide up the work. Often, this involves identifying a major loop which can be split up
among the processing nodes which may be available. One looks for a large chunk of the program, since this will
minimize communications between tasks. The ideal case might be a major outer loop where no step in the loop
is dependent on any other step.

5. Modify the code. Here, one begins by adding commands which initialize and spawn copies of the program.
We will need to determine of how many instances are spawned, and identification of each process so that the
sibling tasks know who they are and what their share of the work is. One task is selected as the master, or zero
process. The zero process will have responsibility for sending any thing needed to siblings, and for receiving
each siblings contribution, followed by an assembly of the results. Scratch disk space can be used if needed on
each processing node, but the final results are assembled on the zero process node.

6. Debug the code modifications.

7. Add pre-processor code which creates a single code base. This is an optional step. The idea is to be able to
compile both the original serial and the modified parallel versions from a single file.

1.1 Sketching the Architecture

The source code for spmd_0.f and the corresponding architecture is given in Figure 1. One should stand back and
look at the big picture when sketching the program architecture. Try to block out large sections that do not depend on
results determined elsewhere in the program. This problem is of the embarrassingly parallel type, and one naturally
focuses on the main computational loop for the place to divide up the labor.

The next question would be how sensitive the main computational loop is to variations in the data. For example,
do large numbers take longer to cube than small numbers? To answer that question, we can instrument the main loop.

1.2 Instrumenting the Code

What we would like to do is a test which captures computation time within the loop. We will use the modulo function
to avoid printing every step (and hence obtain an averaged value which may be more representative and easier to look
at). The modified section of the Fortran code is as follows:

2

1 CONVERTING A SERIAL PROGRAM 1.2 Instrumenting the Code

Figure 1: Program Listing and Architecture

spmd_0.f Fri Jul 02 13:40:31 2004 1
c P. Michaels <pm@cgiss.boisestate.edu> 27 June 2004
c Example program spmd_0.f: serial program for conversion
c to pvm, beowulf cluster
 program main
 parameter (NDIM=10000000)
c
 character*80 arg1
 integer*1 bz
 character*80 infil , outfil, outlst
 real*4 values(NDIM),results(NDIM)
c
c−−−get input parameter
 nargsx=iargc()
 if(nargsx.ge.1) then
 call getarg(1,arg1)
 read(arg1,’(i10)’) npts
 else
 write(*,*) ’USAGE: spmd_0 <npts>’
 stop
 endif
c
c−−−check for valid parameter
 if(npts.gt.NDIM) then
 write(*,*) ’ABORT: dimensions exceeded, NDIM’
 stop
 endif
c
c−−−generate some data
 bz=0
 do 50, j=1,npts
 values(j)=float(j)
 results(j)=0.0
 50 continue
c
c−−−define a scratch file
 write(outfil,’(80(1h))’)
 write(outfil,’(’’data.txt’’)’)
c−−−open it for I/O
 open(unit=3,file=outfil,access=’sequential’)
c
c−−−process the data−−−−−−−−−−−−−−−−−−−−−−−
 do 100, j=1,npts
 call comput(values(j),results(j))
c
c−−−perhaps write results to temporary file for additional
c processing or possibly debugging
 call outtmp(j,results(j))
c
 100 continue
c end of data processing loop−−−−−−−−−−−−−
c
c−−−close temporary file
 close(3)
c
c
c...save final results in file in working directory
 call finio(npts,results)
 stop
 end
c−−
 subroutine comput(valuex,resultx)
 real*4 valuex,resultx
 resultx=valuex*valuex*valuex
 end
c−−
 subroutine outtmp(j,resultx)
 integer*4 j
 real*4 results
 write(3,’(1x,i10,1x,e14.7)’) j,resultx
 end
c−−
 subroutine finio(npts,results)
 integer*4 npts
 real*4 results(*)
 character*80 outfil
c
 write(outfil,’(’’spmd_0−results.txt’’)’)
 open(unit=3,file=outfil,access=’sequential’)
 write(3,*) ’Final Results for spmd_0’
c
 do 620, j=1,npts
 write(3,’(1x,e14.7,1x)’) results(j)
 620 continue
 close(3)
 end

Main Program

Get Parameters from Command Line

Parameter Validity Check

Main Data Processing Loop

CALL COMPUT

CALL OUTTMP

Save Final Results to an Output File

END

Open a Scratch File

Read or Generate Data for Processing

Sketch of the Program Architecture
Program: spmd_0.f

3

1 CONVERTING A SERIAL PROGRAM 1.2 Instrumenting the Code

Code Listing 1.2: Instrumentation of the code with gettime()
c---process the data-----------------------

jdel=npts/5
tmr0=gettime()
do 100, j=1,npts
if (mod(j,jdel).eq.0) then
tmr=gettime()
tmr1=tmr-tmr0
tmr0=tmr
write(*,’(I10,” time=”,f18.4)’) j, tmr1
endif
call comput(values(j),results(j))

c
c---perhaps write results to temporary file for additional
c processing or possibly debugging

call outtmp(j,results(j))
c

100 continue
c end of data processing loop-------------

The function, gettime(), is defined in a C-language function which is then compiled as an object module, added to
a local static library, sublibc.a, and then linked to the Fortran code. There are a number of tricks required to make this
work. While the C-language function is gettime(), Fortran will add an underscore to the name, gettime_(). Thus, in
the C-language file, a line is added which defines the underscored function as returning the non-underscored version.
Another point is that the C-language has no concept of a subroutine, everything is a function. This is no problem
here, since we are treating it like a floating point function in the Fortran code. One can transfer arguments and call
C-functions as if they were subroutines, and we will show that later.

1.2.1 How gettime() works

This C-language function calls a C-library routine called gettimeofday(). The data structure returned by gettimeofday
has two parts, the number of seconds and the number of microseconds since 00:00:00 on January 1, 1970, Coordinated
Universal Time (UTC). This is a big number, so our function, gettime() computes an offset which reduces the result to
seconds measured from the beginning of the year. An additional offset subtracts a value to bring the result in the range
from 0 to 10,000 seconds. This second offset avoids an underflow, since we will be returning a single precision value
to the Fortran program. A single code base for our C-language timing routines is kept in timing.c. The relevant parts
are shown below:

4

1 CONVERTING A SERIAL PROGRAM 1.2 Instrumenting the Code

Code Listing 1.2.1: gettime() components of timing.c
/* Suitable for Fortran77 timing.c */
#include <stdio.h>
#include <sys/times.h> /* for times system call */
#include <sys/time.h> /* for gettimeofday system call */
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
float gettime();
float gettime_() { return gettime(); }
#define SECONDS_IN_A_YEAR 365*24*3600

float gettime()
{

struct timeval now;
double offset;
long years;
double valu;
float value;
gettimeofday(&now, (struct timezone *)0);
years = (long)now.tv_sec/(SECONDS_IN_A_YEAR);

/*offset to get seconds into the year*/
offset = years*SECONDS_IN_A_YEAR - 1;
valu = (double) (((double) now.tv_sec +

(double)now.tv_usec/1000000.0) - offset);
/*offset to avoid underflow when converting to float*/

offset = (double) floor((valu/10000.0))*10000.0;
value = (float) (valu-offset); return value;

}

1.2.2 The Fortran Makefile

The make file is show below. It builds the C-subroutine library (by calling a Makefile in that directory), compiles the
Fortran, and links the whole thing together. One only needs to type make from within the source directory where the
Fortran main program is located. The directory tree looks something like this:

Fort
include
sublibc

timing.c
Makefile
sublibc.a

fortran
spmd_0.f
spmd_0a.f
Makefile

Both the sublibc directory, and the fortran directory have their own make files. The program spmd_0a.f is the
instrumented version of the original serial program.

5

1 CONVERTING A SERIAL PROGRAM 1.2 Instrumenting the Code

Code Listing 1.2.2: Makefile for Fortran programs
#Date: June 2004
<pm@cgiss.boisestate.edu>
BIN=$(HOME)/bin/
#
#compile flags
FLAGS=-Wall -pg -g
EXEC=spmd_0 spmd_0a
FC=g77
SUBLIBC=../sublibc/sublibc.a
MAKEC=../sublibc
INCL=../include
all: $(EXEC) $(SUBLIBC)

spmd_0: spmd_0.o $(SUBLIBC)
$(MAKE) -C $(MAKEC);
$(FC) $(FLAGS) -o spmd_0 spmd_0.o \
$(SUBLIBC)

spmd_0.o: spmd_0.f
$(FC) $(FLAGS) -c -o spmd_0.o \
spmd_0.f

spmd_0a: spmd_0a.o $(SUBLIBC)
$(MAKE) -C $(MAKEF);
$(MAKE) -C $(MAKEC);
$(FC) $(FLAGS) -o spmd_0a spmd_0a.o \
$(SUBLIBC)

spmd_0a.o: spmd_0a.f
$(FC) $(FLAGS) -c -o spmd_0a.o \
spmd_0a.f

$(SUBLIBC):
$(MAKE) -C $(MAKEC);

install: $(EXEC)
mkdir -p $(BIN)
install -m 775 spmd_0 $(BIN)spmd_0
install -m 775 spmd_0a $(BIN)spmd_0a
rm $(EXEC)

clean:
$(MAKE) -i -C $(MAKEC) clean;
rm *.o;
for i in $(EXEC) ; do rm $$i; done

1.2.3 The SUBLIBC Makefile

For completeness, the Makefile in the sublibc directory (called by the Fortran Makefile) is shown below. It is assumed
that the reader is familiar with the make program (which would include where tab’s are mandatory and the fact that
a continuation character, ’\’, must be the very last character on a line). This make file will build both timing.c and
runcmd.c. We will discuss runcmd.c a bit later (it is used to execute system commands from a running Fortran
program). It will also build an example test program, prog.f, to be discussed later. The program, prog.f illustrates how
to link a built in C-function to a Fortran executable.

6

1 CONVERTING A SERIAL PROGRAM 1.3 Profile the Code

Code Listing 1.2.3: Makefile for the local C-subroutine library
P. Michaels <pm@cgsiss.boisestate.edu>
July 2004
#SUBLIBC Makefile
CC=gcc
INCL=../include
CFLAGS=-Wall -g -c -pg
SUBC=sublibc.a
OBJC= timing.o runcmd.o
all: $(OBJSC) $(SUBC)
$(SUBC): $(OBJC)

rm sublibc.a ; \
ar ruv sublibc.a *.o ; \
ranlib sublibc.a ; \

%.o: %.c
$(CC) $(CFLAGS) -o $@ $< -I$(INCL)

clean:
rm *.o *.a

prog: prog.f
g77 -Wall prog.f sublibc.a -lc -o prog

1.2.4 The output from the instrumented version

The following standard output was observed on running the program spmd_0a.

[pm@penguin testing]$ spmd_0a 2000000
400000 time= 3.2695
800000 time= 3.3789
1200000 time= 3.4600
1600000 time= 3.5430
2000000 time= 3.4717

There is not enough of a change in execution times to make any additional program complexity necessary. Not
only is each step in the loop independent of any other step, the amount of time does not vary significantly with the
data. Had it varied, one could compensate in the step where we divide up the labor among the different spawned tasks.

1.3 Profile the Code

In a larger program, there may be many subroutines and function calls. One naturally wants to focus the improvements
on portions of the program that account for a significant portion of the computational and I/O time. Profiling the code
is done by compilation with the -pg option. This option should be included with the compilation flags. See code listing
1.2.2 for example, below the comment “#compile flags”.

1.3.1 Running gprof, and Examining the Output

After compiling spmd_0.f with the -pg option, one runs the program. In addition to the normal output, an additional
file, gmon.out, is created. This file contains profiling information required by the program gprof. From the directory
with the gmon.out file, one types something like the following:

gprof ~/bin/spmd_0 | less

Here, the program name, spmd_0, is only an example. In general, one would replace spmd_0 with the name of the
executable being profiled. You do not have to specify gmon.out for the profile file name, as this is the default. For our
example program, the top of the listing looks like this:

7

1 CONVERTING A SERIAL PROGRAM 1.4 Dividing Up the Work

Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
48.48 0.16 0.16 1 160.00 330.00 MAIN__
36.36 0.28 0.12 2000000 0.00 0.00 comput_
12.12 0.32 0.04 1 40.00 40.00 finio_
3.03 0.33 0.01 2000000 0.00 0.00 outtmp_

% the percentage of the total running time of the
time program used by this function.

From this portion of the listing, we see that 36.36% of the time is spent in the subroutine, comput. We also note
that the subroutine, comput, was called 2 million times.

1.4 Dividing Up the Work

After examining the gprof output and the source code for spmd_0.f, we identify the main do-loop, which includes calls
to both comput and outtmp subroutines, as being a place to divide the labor and temporary disk space usage. The two
subroutine calls within this loop account for nearly 40% of the execution time. The outtmp subroutine was included
here as an example of how to write to temporary disk space on sibling nodes, and is not really essential to this example
for any other reason.

1.5 Modifying the Code

There are two topics to be addressed at this point.

1. Calling functions not included in Fortran77 which will permit us to make system calls and take advantage of the
wide range of C-language functions.

2. Adding the code to spawn sibling tasks on the cluster’s additional processing nodes and disks. For this example,
this will be done using the PVM subroutine calls in Fortran.

1.5.1 Calling System and C-language Functions

Our first example is a function, runcmd(string_argument). This is a local C-language function which executes the
the built in C-language function, system(string_argument). From the Fortran point of view, we just call a subroutine,
“call runcmd(string_argument)”, and the system executes the character string argument. Of course the
string argument must be a valid system command for Unix. We have chosen this example to illustrate some of the
tricks required in passing strings between Fortran and C-language programs. Further, it is essential to our problem,
since we will need to make a child directory under /tmp on each sibling node.

Example runcmd The source code for runcmd() is shown below. It provides an interface to map the underscore
assumption of the Fortran compiler (runcmd_() in Fortran link, as opposed to runcmd() as written in C). The other odd
thing is that an additional argument is passed to the C-function which is not included in the argument list of the Fortran
call statement. Do not put this argument in the Fortran call, it is done by magic, and is available to the C-function.
This argument is the length of the character array in the Fortran program. In this specific case, we only need to include
the argument in the C-function definition, even though we choose not to use it in this case.

The other odd thing to remember is that C-language expects a null (zero) as the byte which terminates any string
(Fortran has no such assumption). What we must do is write that zero byte at the end of the string on the Fortran
side, so it will help the C-function know where the command string stops. If you don’t do this, expect disaster. It is
very important! If you don’t do it, then a simple make directory command may make a bunch of directories all over

8

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

your system with weird binary and other non-printable names, depending on what is in the memory that has not been
initialized. We show how to add this zero byte in the listing of the main Fortran calling program which follows the
runcmd.c listing.

Code Listing 1.5.1a: runcmd.c
/* Suitable for Fortran77 */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <limits.h>
void runcmd(char *cmd, int n); /* prototype */

/* interface to map underscore */
void runcmd_(char *cmd, int n) { runcmd(cmd, n);}

/* the function runcmd() */
void runcmd(char *cmd, int n)
{

system(cmd);
}

The above function is is located in our sublibc directory, compiled with the Makefile in that directory, and then
added to the static subroutine library, sublibc.a. Note that the C-function runcmd.c has two arguments, but the For-
tran77 calling program below has only one. The extra integer argument, n, is created by the magic of the linker. The
main program which tests runcmd is:

Code Listing 1.5.1b: running a system command, prog.f
program main
integer*1 bz
character*1024 cmd

c
c assign zero to bz, terminates a character string for C

bz=0
write(cmd,’(” ls -al ”,a)’) bz
call runcmd(cmd)
stop
end

In this case, we have tested the program with a simple listing of the current directory. The one-byte integer, bz, is
zero (NULL in C), and is written with a Fortran “a” format at the end of the string in the write command. Later, we
will write a make directory command into the character string, cmd, and use this in our spmd_0.f example.

Bonus Example While it has nothing to do with our current needs, we include another example which calls a
standard C-function directly, and also passes a string argument back from C to Fortran. Calling a C-function directly
will require linking to the dynamic C-library. This amounts to a command line argument, “-lc” (lower case L before
the c). See the Makefile (code listing 1.2.3). The following code is needed in our timing.c code base:

9

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

Code Listing 1.5.1c: relevant code in timing.c for strlen() and timeofday()
#include <stdio.h>
#include <sys/times.h>
#include <sys/time.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
/* interface to map underscore link of strlen_ to standard
strlen()
and convert a C-function result to an argument in a subroutine
call */
void strlen_(const char *str, int *len1) { *len1=strlen(str);}

void timeofday(char *tod1)
{

time_t now;
struct tm *ptr;
static char *tt;

/* get current time and convert to string */
time(&now);
ptr=localtime(&now);
tt=asctime(ptr);
sprintf(tod1,"%s",tt);

}

The interface could be located in an include file that would act as a stub for other C-function calls needed by
Fortran. We have added it to timing.c for simplicity of presentation. The local function, timeofday(), was created
to generate a string that we could pass back (almost anything would do here). We thought this might be useful to
someone who wishes to capture the date and time in a Fortran program).

The calling Fortran program is shown below:

10

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

Code Listing 1.5.1d: testing program, prog.f for bonus example
program main
external strlen
integer*4 len1
character*120 tod

c
c zero out the character string (optional)

write(tod,’(120(1h0))’)
c
c call a function which generates a character string with date and
time

call timeofday(tod)
c
c call a standard c-library function (interface in timing.c)

call strlen(tod,len1)
c
c write out the string, len1 is the length of the string returned
from C

write(*,*) len1 write(*,’(a)’) tod(1:len1)
stop
end

1.5.2 Adding PVM calls to spawn Sibling Tasks

We assume that PVM has been installed and has reference material on PVM, or at a minimum, can view the man
pages. Our first step is to create spmd_1.f from our existing serial code. We will take a very minor step forward, and
demonstrate how to initiate PVM from inside your Fortran code, and then to spawn identical clones which run on the
separate processors. There is no computational advantage in this, since each clone will do all the work, and we are
merely concurrently running the same job on other processors. This will be followed by dividing the labor up among
the spawned tasks. But first, we will just try to get the same process running concurrently on several nodes.

Tasks vs. Processors It should be noted that all of this can be done on a single desktop machine, you don’t need
a cluster to try this out. The reason is that a single processor can run multiple tasks. There need not be a 1 to 1
correspondence between tasks and processors. For example, consider the following PVM setup:

[pm@penguin testing]$ pvm
pvm> add node02
1 successful
HOST DTID node02 80000
pvm> conf
2 hosts, 1 data format

HOST DTID ARCH SPEED DSIG
penguin 40000 LINUXI386 1000 0x00408841
node02 80000 LINUXI386 1000 0x00408841

pvm>

Here we have two processors (each is a single processor machine, if they were dual processor machines, we would
have 4 processors). If we spawn a zero process and one sibling process (master and a slave), then each processor is
handling only one task. We could spawn 32 tasks, and each processor would handle 16 tasks simultaneously, or we
could specify that all 32 tasks run on a single machine of our own specification. Of course, the execution would be
much faster if we have 32 processors available, and spawn one task on each processor (compared to 32 tasks on two

11

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

processors). None of these decisions will impact our code modifications. With the SPMD paradigm, we write a single
code, and then execute it any way we like, using the cluster that happens to be available at the time.

Step 1. Clone the serial code, run concurrently as multiple tasks First we set up two Fortran subroutines which
will make the initialization process convenient. It is a good coding practice to write modular code, and we do that here
with two subroutines, startpvm.f and mypvmid.f. The first of these subroutines enrolls the task, and then determines
how many other siblings have been enrolled. All three arguments are returned, and they are the task id of the current
process, the number of tasks enrolled, and an array containing the task id’s. There are two very important points to
make:

1. The tids array must have a base of 0. That is, the subscript range needs to be forced to start from zero. This is
done in the integer*4 tids(0:1024) declaration.

2. Never use a dummy dimension in a subroutine for the tids array. Even though the main program specifies a zero
base, we must also do the same thing in this subroutine. DO NOT use a statement like integer*4 tids(*)
in this or any other subroutine which uses the tids array. Dummy dimensions always assume a base of 1.

The second subroutine, mypvmid.f, obtains an alternative ID for the current process. This can be used as a subscript
and in if block tests to direct each sibling’s activities. One usually chooses zero to be the zero process which acts
like a master, and often will assemble the results from the sibling processes. In point of fact, any sibling can be the
master, and the master does not need to be on the gateway machine, or the machine from which you are launching
pvm. This is facilitated by using NFS mounts of the pvm3 directory tree (a typical setup will actually cross-mount the
/home directories on all nodes). Thus, any process can be chosen as the master, writing output to the NFS mounted
directories.

We have located these subroutines in a directory, sublibf, and then archive them into a static library, sublibf.a. It is
a simple matter then to modify the make files to add this subroutine library to the others for building an executable.

Code Listing 1.5.2a: subroutine startpvm.f
c |--|
c | startpvm: enrolls process into pvm, gets task id’s |
c | <pm@cgiss.boisestate.edu> P. Michaels July 2004 |
c |--|
c

subroutine startpvm(mytid,ntids,tids)
include ’fpvm3.h’
integer*4 tids(0:1024), ntids, mytid, i, idum

c
c enroll in PVM

call pvmfmytid(mytid)
c
c find number of siblings

call pvmfsiblings(ntids,-1,idum)
c

do 10, i=0,ntids-1
call pvmfsiblings(ntids,i,tids(i))

10 continue
end

12

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

Code Listing 1.5.2b: subroutine mypvmid.f
c |--|
c | mypvmid: get my task id, defines who I am =me |
c | <pm@cgiss.boisestate.edu> P. Michaels July 2004 |
c |--|
c

subroutine mypvmid(mytid,ntids,tids,me)
integer*4 tids(0:1024), ntids, mytid, i, me

c
do 20, i=0,ntids-1
if(tids(i).eq.mytid) then
me=i
go to 30
endif

20 continue
30 continue

end

The modified version of spmd_0.f is show as spmd_1.f in the following listing. The PVM additions have been
circled to direct the reader’s attention to the changes.

Using Architecture Independent Make (aimk) A convenient wrapper for the make program, aimk, allows one to
build executables for different architectures with a single make file, Makefile.aimk.

13

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

Figure 2: Modified code with PVM calls

spmd_1.f Mon Jul 05 14:31:31 2004 1
c P. Michaels <pm@cgiss.boisestate.edu> 27 June 2004
c Example program spmd_1.f: serial program for conversion
c to pvm, beowulf cluster
c first step, clone the process and concurent execution
c (no computational advantage, just checking out pvm)
 program main
 parameter (NDIM=10000000)
c
c−−−PVM stuff
 include ’fpvm3.h’
 integer*4 tids(0:128), ntids, mytid, i, idum
 integer*4 me,info,who,zero
 integer*4 proczro,sibrslt,msgtype,ncmd
 real*4 buff(100)
c
 character*80 cmd
 character*4 mid

 character*80 arg1
 integer*1 bz
 character*80 outfil
 real*4 values(NDIM),results(NDIM)
c
c−−−− enroll in PVM
 call startpvm(mytid,ntids,tids)
c
c−−−define zero process (master)
 zero=0
 call mypvmid(mytid,ntids,tids,me)
c
 write(*,’(’’ me=’’,i5)’) me
 write(*,*) (tids(k),k=0,ntids−1)
c
c−−−get input parameter
 nargsx=iargc()
 if(nargsx.ge.1) then
 call getarg(1,arg1)
 read(arg1,’(i10)’) npts
 else
 write(*,*) ’USAGE: spmd_1 <npts>’
 stop
 endif
c
c−−−check for valid parameter
 if(npts.gt.NDIM) then
 write(*,*) ’ABORT: dimensions exceeded, NDIM’
 stop
 endif
c
c−−−generate some data
 bz=0
 do 50, j=1,npts
 values(j)=float(j)
 results(j)=0.0
 50 continue
c
c−−−define a scratch file
 write(mid,’(i3.3)’) me
 write(cmd,’(40(1h))’)
 write(cmd,’(’’mkdir −p /tmp/spmd_2−’’,a3,a)’) mid,bz
 call runcmd(cmd)
c
 write(outfil,’(40(1h))’)
 write(outfil,’(’’/tmp/spmd_2−’’,a3,’’/data.txt’’)’) mid
 write(*,’(i3.3,1x,a)’) me,outfil
c
 open(unit=3,file=outfil,access=’sequential’)
c
c−−−process the data−−−−−−−−−−−−−−−−−−−−−−−
 do 100, j=1,npts
 call comput(values(j),results(j))
c
c−−−perhaps write results to temporary file for additional
c processing or possibly debugging
 call outtmp(j,results(j))
c
 100 continue
c end of data processing loop−−−−−−−−−−−−−
c
c−−−close temporary file
 close(3)
c...save final results in file in working directory
cz−−−−only zero process writes out final results
 if (me.eq.zero) then
c
c...save total results in file in working directory
 call finio(npts,results)
 endif
c
c−−−shut down pvm
 call pvmfexit(info)
 stop
 end
c−−
 subroutine comput(valuex,resultx)
 real*4 valuex,resultx
 resultx=valuex*valuex*valuex
 end
c−−
 subroutine outtmp(j,resultx)
 integer*4 j
 real*4 results
 write(3,’(1x,i10,1x,e14.7)’) j,resultx

 end
c−−
 subroutine finio(npts,results)
 integer*4 npts
 real*4 results(*)
 character*80 outfil
c
 write(outfil,’(’’/home/pm/pvm3/testing/spmd_1−results.txt’’)’)
 open(unit=3,file=outfil,access=’sequential’)
 write(3,*) ’Final Results for spmd_1’
c
 do 620, j=1,npts
 write(3,’(1x,e14.7,1x)’) results(j)
 620 continue
 close(3)
 end

���
�

New PVM statements

14

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

Code Listing 1.5.2c: Makefile.aimk
$Id: Makefile.aimk.1,v 1.1 2004/07/04 19:57:06 pm Exp $
SHELL = /bin/sh
PVMDIR = $(HOME)/pvm3
SDIR = $(PWD)/..
BDIR = $(HOME)/pvm3/bin
XDIR = $(BDIR)/$(PVM_ARCH)
SEQ_XDIR = $(HOME)/bin/
SUBLIBF=../../sublibf/sublibf.a
SUBLIBC=../../sublibc/sublibc.a
MAKEF=../../sublibf
MAKEC=../../sublibc
INCL=../../include
CC = g++
F77 = g77
FFLAGS = -g -I$(PVM_ROOT)/include -I$(INCL)
CFLOPTS = -g -gstabs+ -Wall
CFLAGS = $(CFLOPTS) -I$(PVM_ROOT)/include $(ARCHCFLAGS)
PVMLIB = -lpvm3
FPVMLIB = -lfpvm3
PVMHLIB = -lpvm3
FLIBS = $(SUBLIBC) $(SUBLIBF) $(FPVMLIB) $(ARCHLIB) $(PVMLIB)
LIBS = $(PVMLIB) $(ARCHLIB)
HLIBS = $(PVMHLIB) $(ARCHLIB)
GLIBS = -lgpvm3
LFLAGS = $(LOPT) -L$(PVM_ROOT)/lib/$(PVM_ARCH) -L$(PLPLOT)
CPROGS =
FPROGS = spmd_0$(EXESFX) \
spmd_1$(EXESFX) spmd_2a$(EXESFX) spmd_2$(EXESFX)
default: spmd_0$(EXESFX) spmd_1$(EXESFX) spmd_2$(EXESFX)
all: f-all
f-all: $(FPROGS)
c-all: $(CPROGS)
hostprogs: $(HOSTCRPROGS) $(HOSTFPROGS)
clean:

/bin/rm -f *.o $(CPROGS)
/bin/rm -f *.o $(FPROGS)

$(XDIR):
- mkdir $(BDIR)
- mkdir $(XDIR)

$(SUBLIBF):
$(MAKE) -C $(MAKEF);

$(SUBLIBC):
$(MAKE) -C $(MAKEC);

spmd_0$(EXESFX): $(SDIR)/spmd_0.f $(XDIR) $(SUBLIBF) $(SUBLIBC)
$(F77) $(FFLAGS) -o $@ $(SDIR)/spmd_0.f $(LFLAGS) $(FLIBS)
mv $@ $(XDIR)

spmd_1$(EXESFX): $(SDIR)/spmd_1.f $(XDIR) $(SUBLIBF) $(SUBLIBC)
$(F77) $(FFLAGS) -o $@ $(SDIR)/spmd_1.f $(LFLAGS) $(FLIBS)
mv $@ $(XDIR)

Running spmd_1 in PVM The details of running a program under PVM will vary from one cluster to the next.
At Boise State University, we use a batch scheduler, PBS. At other sites, one might run PVM directly, either from a
console or with the graphical TK interface, xpvm. The following examples will be done using a PVM console. The
following transcript is for execution on 2 nodes.

15

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

01 [pm@penguin testing]$ pvm
02 pvm> add node02
03 1 successful
04 HOST DTID
05 node02 80000
06 pvm> conf
07 2 hosts, 1 data format
08 HOST DTID ARCH SPEED DSIG
09 penguin 40000 LINUXI386 1000 0x00408841
10 node02 80000 LINUXI386 1000 0x00408841
11 pvm> spawn -2 -> spmd_1 10
12 [1]
13 2 successful
14 t80001
15 t40002
16 pvm> [1:t40002]me= 1
17 [1:t40002] 524289 262146
18 [1:t40002] 001 /tmp/spmd_2-001/data.txt
19 [1:t40002] EOF
20 [1:t80001] me= 0
21 [1:t80001] 524289 262146
22 [1:t80001] 000 /tmp/spmd_2-000/data.txt
23 [1:t80001] EOF [1]
24 finished pvm> halt
25 Terminated

On line 06, the PVM command, conf, displays the configuration of the cluster, in this case just two nodes, penguin
and node02. The job is started on line 11 with the PVM spawn command. With the spawn command, we instruct
PVM to start two instances (-2 argument) of the program spmd_1 and to redirect standard output to the console (->
argument). The display rapidly responds down to line 16. Then one waits for the spawned processes to complete.
As they complete, lines 16 through 24 display to the console. We verify that two instances were spawned (me=0 and
me=1 with task id’s 524289 262146 respectively). We see that two temporary scratch files have been written (line
18 and line 22).

To confirm that the scratch files were written on the two different computers, we can use the parallel shell (pdsh).
A transcript is as follows:

[pm@penguin testing]$ pdsh -w penguin,node02
pdsh> date
penguin: Mon Jul 5 11:37:21 MDT 2004
node02: Mon Jul 5 11:37:21 MDT 2004
pdsh> cat /tmp/spmd*/data.txt
penguin: 1 0.1000000E+01
penguin: 2 0.8000000E+01
penguin: 3 0.2700000E+02
penguin: 4 0.6400000E+02
penguin: 5 0.1250000E+03
penguin: 6 0.2160000E+03
penguin: 7 0.3430000E+03
penguin: 8 0.5120000E+03
penguin: 9 0.7290000E+03
penguin: 10 0.1000000E+04
node02: 1 0.1000000E+01

16

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

node02: 2 0.8000000E+01
node02: 3 0.2700000E+02
node02: 4 0.6400000E+02
node02: 5 0.1250000E+03
node02: 6 0.2160000E+03
node02: 7 0.3430000E+03
node02: 8 0.5120000E+03
node02: 9 0.7290000E+03
node02: 10 0.1000000E+04
pdsh> quit
[pm@penguin testing]$ cat spmd_1-results.txt
Final Results for spmd_1
0.1000000E+01
0.8000000E+01
0.2700000E+02
0.6400000E+02
0.1250000E+03
0.2160000E+03
0.3430000E+03
0.5120000E+03
0.7290000E+03
0.1000000E+04

First we give the Unix date command, and this is executed on all the mounted nodes. Then we give the Unix listing
command (cat), using a wild card to focus on the spmd_1 output. The scratch files (data.txt) are identical, since all we
have done is clone the job, running two identical, concurrent instances. Exiting the pdsh shell, we check to see if the
final output contains the cubes of the first 10 integers, and note that it is correct. This is a good check, since it confirms
that we have done what we intended. We are now ready to divide the labor among the spawned tasks, and do some
real parallel processing.

Dividing the Labor Among Tasks Up to this point, we have only spawned concurrent executions of a single pro-
gram on the same data, and gained nothing but confirmation that we can spawn concurrent executions. Now, we
modify the main loop which has been identified as being the major opportunity. We could do this in contiguous blocks
(task 00 does j=1 to 1000, task 01 does j=1001 to 2000, etc.). However, we have chosen to inter-finger the work using
the loop increment. For example, in a 2 task run, this amounts to one task taking the even j’s, the other the odd j’s.

In a more general case, let ntids=number of tasks which have been spawned by the PVM spawn command. In our
example program, this value is returned by our subroutine, startpvm.f. The do-loop changes from

do 100, j=1,npts

to

do 100, j=me+1,npts,ntids

Note that both the starting point and the increment have changed. Each task is identified by the integer, me (where���������	��

�������������
). Each spawned task has full access to the command line arguments of the program, as well as

any data files that might be read. The only major requirement is that each step of the loop be completely independent
of the results from any other step. The modifications have been applied to spmd_1.f, and Figure 3 shows the code,
spmd_2.f

17

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

Figure 3: Modified code PVM divides up the labor

spmd_2.f Mon Jul 05 14:31:24 2004 1
c P. Michaels <pm@cgiss.boisestate.edu> 27 June 2004
c Example program spmd_2.f: serial program for conversion
c to pvm, beowulf cluster
c second step, sending messages, divide the work, assemble
c with process zero
 program main
 parameter (NDIM=10000000)
c
c−−−PVM stuff
 include ’fpvm3.h’
 integer*4 tids(0:128), ntids, mytid, i, idum
 integer*4 me,info,who,zero
 integer*4 proczro,sibrslt,msgtype,ncmd
 real*4 buff(100)
c
 character*80 cmd
 character*4 mid

 character*80 arg1
 integer*1 bz
 character*80 outfil
 real*4 values(NDIM),results(NDIM)
c
c−−−− enroll in PVM
 call startpvm(mytid,ntids,tids)
c
c−−−define zero process (master)
 zero=0
 call mypvmid(mytid,ntids,tids,me)
c
 write(*,’(’’ me=’’,i5)’) me
 write(*,*) (tids(k),k=0,ntids−1)
c
c−−−get input parameter
 nargsx=iargc()
 if(nargsx.ge.1) then
 call getarg(1,arg1)
 read(arg1,’(i10)’) npts
 else
 write(*,*) ’USAGE: spmd_2 <npts>’
 stop
 endif
c
c−−−check for valid parameter
 if(npts.gt.NDIM) then
 write(*,*) ’ABORT: dimensions exceeded, NDIM’
 stop
 endif
c
c−−−generate some data
 bz=0
 do 50, j=1,npts
 values(j)=float(j)
 results(j)=0.0
 50 continue
c
c−−−define a scratch file
 write(mid,’(i3.3)’) me
 write(cmd,’(40(1h))’)
 write(cmd,’(’’mkdir −p /tmp/spmd_2−’’,a3,a)’) mid,bz
 call runcmd(cmd)
c
 write(outfil,’(40(1h))’)
 write(outfil,’(’’/tmp/spmd_2−’’,a3,’’/data.txt’’)’) mid
 write(*,’(i3.3,1x,a)’) me,outfil
c
 open(unit=3,file=outfil,access=’sequential’)
c
c−−−process the data−−−−−−−−−−−−−−−−−−−−−−−
c do 100, j=1,npts
 do 100, j=me+1,npts,ntids
 call comput(values(j),results(j))
c
c−−−perhaps write results to temporary file for additional
c processing or possibly debugging
 call outtmp(j,results(j))
c
 100 continue
c end of data processing loop−−−−−−−−−−−−−
c
c−−−close temporary file
 close(3)
cz−−−−Assemble Results PVM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
cz Siblings send results to process zero
 sibrslt=5
 if (me.ne.zero) then
cz pack results in vectors to message pass
cz (drop skipped values)
 icount=0
 do 600, j=me+1,npts,ntids
 icount=icount+1
 results(icount)=results(j)
 600 continue
c
 call pvmfinitsend(PVMDEFAULT,bufid)
 call pvmfpack(INTEGER4,me,1,1,info)
 call pvmfpack(INTEGER4,icount,1,1,info)
 call pvmfpack(REAL4,results,icount,1,info)
 msgtype=sibrslt
 proczro=tids(zero)
 call pvmfsend(proczro,msgtype,info)
 endif
cz−−−−Wait for results from siblings

 if (me.eq.zero) then
 msgtype=sibrslt
 do 610, i=0,ntids−2
 call pvmfrecv(−1,msgtype,bufid)
 call pvmfunpack(INTEGER4,who,1,1,info)
 call pvmfunpack(INTEGER4,icount,1,1,info)
 call pvmfunpack(REAL4,buff,icount,1,info)
 call rsltld(who,icount,npts,ntids,results,buff)
 write(*,’(’’Received Sibling Results from process ’’,i3.3)’) who
 610 continue
 endif
c
c−−−−−zero process writes out final results
 if (me.eq.zero) then
c
c...save total results in file in working directory
 call finio(npts,results)
 endif
c
c−−−shut down pvm
 call pvmfexit(info)
 stop
 end
c−−
 subroutine comput(valuex,resultx)
 real*4 valuex,resultx
 resultx=valuex*valuex*valuex
 end
c−−
 subroutine outtmp(j,resultx)
 integer*4 j
 real*4 results
 write(3,’(1x,i10,1x,e14.7)’) j,resultx
 end
c−−
 subroutine finio(npts,results)
 integer*4 npts
 real*4 results(*)
 character*80 outfil
c
 write(outfil,’(’’/home/pm/pvm3/testing/spmd_2−results.txt’’)’)
 open(unit=3,file=outfil,access=’sequential’)
 write(3,*) ’Final Results for spmd_2’
c
 do 620, j=1,npts
 write(3,’(1x,e14.7,1x)’) results(j)
 620 continue
 close(3)
 end
c |−−|
c | Author: P. Michaels 21 June 2004|
c | rsltld: Results load |
c | Transfers each siblings results from a temporary buffer |
c | to the appropriate, sorted position in a parameter vector|
c | |
c | who = process number (not process zero) |
c | icount = number of values sent from sibling |
c | buff = real values from sibling (icount of them) |
c | parm = parameter to return |
c | hldtvr) |
c | npts = number of values |
c | ntids = number of processes spawned |
c | |
c |−−|
 subroutine rsltld(who,icount,npts,ntids,parm,buff)
 real*4 buff(*),parm(*)
 integer*4 who, icount, npts, ntids
 ic=0
 do 20, j=who+1,npts,ntids
 ic=ic+1
 parm(j)=buff(ic)
 20 continue
 if (ic.ne.icount) then
 write(*,50) ic, icount, who
 50 format(’Count Error in rsltld:’/
 #’ Number of values expected = ’,i5/
 #’ Number of values packed = ’,i5/
 #2x,i5,’=process number’)
 endif
 end

New Do−Loop splits up labor

If zero process, receive and unpack from siblings

Pack and send results to zero process
If a sibling (not zero process)

Sorts results back into sequence

18

1 CONVERTING A SERIAL PROGRAM 1.5 Modifying the Code

Running spmd_2 in PVM and dividing up the labor A transcript of the PVM run for spmd_2.f is similar to that of
spmd_1.f above, except that now we have an additional message indicating that process zero has received some partial
results from process 001. Again, to make viewing the results easy, this is a small job (only the first 10 integers are
cubed).

pvm> spawn -2 -> spmd_2 10
[1]
2 successful
t80001
t40002
pvm> [1:t40002] me= 1
[1:t40002] 524289 262146
[1:t40002] 001 /tmp/spmd_2-001/data.txt
[1:t40002] EOF
[1:t80001] me= 0
[1:t80001] 524289 262146
[1:t80001] 000 /tmp/spmd_2-000/data.txt
[1:t80001] Received Sibling Results from process 001
[1:t80001] EOF [1] finished pvm> halt Terminated

Next, we examine the contents of the two scratch files to see if the labor of cubing numbers has been divided up
between the two tasks. The parallel shell (pdsh) transcript is:

pdsh -w penguin,node02
pdsh> cat /tmp/spmd*/data.txt
penguin: 2 0.8000000E+01
penguin: 4 0.6400000E+02
penguin: 6 0.2160000E+03
penguin: 8 0.5120000E+03
penguin: 10 0.1000000E+04
node02: 1 0.1000000E+01
node02: 3 0.2700000E+02
node02: 5 0.1250000E+03
node02: 7 0.3430000E+03
node02: 9 0.7290000E+03
pdsh> quit
[pm@penguin testing]$ cat spmd_2-results.txt
Final Results for spmd_2
0.1000000E+01
0.8000000E+01
0.2700000E+02
0.6400000E+02
0.1250000E+03
0.2160000E+03
0.3430000E+03
0.5120000E+03
0.7290000E+03
0.1000000E+04

From the above we can see that penguin processed the even integers, and that node02 processed the odd integers.
Then we exit pdsh, and list the contents of the final output file. Process zero has assembled the results and written
them in the correct order.

Which node ran process zero? The following transcript answers that question very easily.

19

1 CONVERTING A SERIAL PROGRAM 1.6 Debug Code

pdsh -w penguin,node02
pdsh> ls -R /tmp/spmd*
penguin: /tmp/spmd_2-001:
penguin: data.txt
node02: /tmp/spmd_2-000:
node02: data.txt
pdsh> quit

From the above, it is clear that process zero was run on node02 (even though PVM was initiated and the job
spawned from penguin). This is evident because we composed the directory names to include the process index (the
integer me in the program). This can be a helpful trick, since it immediately associates the files with the task that
generated them.

With the SPMD paradigm, we can assign any task to be the zero process. The if-statement blocks which guide the
processing test against a variable named zero. Examination of spmd_2.f reveals that we have set �

������� �
in this case.

We could have just as easily set �
������� �

. However, it is probably a good practice to set �
������� �

, since any other
value would require the user to spawn at least that many processes for one to serve as a master task.

1.6 Debug Code

When debugging code in PVM, we recommend running all the tasks on a single node and using the gdb program.
While it isn’t required, running debug sessions on a single node avoids the common problems associated with exporting
X-displays. These issues have a solution, but cluster setups vary, and it is just convenient to do it on one machine. For
example, one might spawn two tasks (master and one sibling) with the following:

[pm@penguin testing]$ pvm
pvm> spawn -2 -? -penguin -> spmd_2 10
[1]
2 successful
t40002
t40003
pvm> [1:t40002] EOF
[1:t40003] EOF
[1] finished

The “-?” option triggers the unix gdb program. The -penguin argument runs both tasks on penguin. A debug
program is initiated for each task. One can then engage in an interactive debug session for each task. Usually one sets
a breakpoint at main, run, then steps through the program, listing some lines, setting other breakpoints, continuing,
printing variable contents, etc.. An example is shown in the transcript taken from the gdb xterm window:

20

1 CONVERTING A SERIAL PROGRAM 1.6 Debug Code

Debugging Code: gdb xterm window contents
use: run 10
__
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i386-redhat-linux-gnu"...
(gdb) b main
Breakpoint 1 at 0x80605e6
(gdb) run Starting program: /home/pm/pvm3/bin/LINUXI386/spmd_2
Breakpoint 1, 0x080605e6 in main ()
(gdb) s
Single stepping until exit from function main,
which has no line number information.
MAIN__ () at /home/pm/devel/beowulf-1.0/Fort/bsegy/LINUXI386/../spmd_2.f:25
warning: Source file is more recent than executable.
25 call startpvm(mytid,ntids,tids)
Current language: auto; currently fortran
(gdb) l 20 integer*1 bz
21 character*80 outfil
22 real*4 values(NDIM),results(NDIM)
23 c
24 c---- enroll in PVM
25 call startpvm(mytid,ntids,tids)
26 c
27 c---define zero process (master)
28 zero=0
29 call mypvmid(mytid,ntids,tids,me) (gdb) l
30 c
31 write(*,’(” me=”,i5)’) me
32 write(*,*) (tids(k),k=0,ntids-1)
33 c
34 c---get input parameter
35 nargsx=iargc()
36 if(nargsx.ge.1) then
37 call getarg(1,arg1)
38 read(arg1,’(i10)’) npts
39 else
(gdb) b 35
Breakpoint 2 at 0x8049a34: file
/home/pm/devel/beowulf-1.0/Fort/bsegy/LINUXI386/../spmd_2.f, line 35.
(gdb) c Continuing. me= 1
262146 262147
Breakpoint 2, MAIN__ ()
at /home/pm/devel/beowulf-1.0/Fort/bsegy/LINUXI386/../spmd_2.f:35
35 nargsx=iargc()
(gdb) p me $1 = 1
(gdb) p ntids $2 = 2

21

3 ACKNOWLEDGMENTS 1.7 Adding Pre-processor Code

1.7 Adding Pre-processor Code

Once we have a version working in PVM, we can go back and merge both the serial and parallel versions into a single
code base. This is done using the C-pre-processor that comes with the GCC compiler. This can be made to work
with Fortran77 code, and is implemented with some changes in the make file. The serial version will have a make file
option -DSERIAL and the parallel version will have an option -DPARALLEL. Figure 4 shows the merged version. It
is in file spmd_3.fpp (note the different suffix).

The dashed lines indicate the IF blocks for the pre-processor. Depending on the value of the option specified on the
compile line of the file, Makefile.aimk, either the serial or parallel version is compiled. Another important point is that
the include file must now be the C-language version, not the Fortran version (since it goes through the C-preprocessor).

1.7.1 Makefile.aimk for Pre-processor version

The make file has the following rules added (see Makefile.aimk listed in code listing 1.5.2c)

Code Listing 1.7.1: additions to the Makefile.aimk

seq_3$(EXESFX): $(SDIR)/spmd_3.fpp $(XDIR) $(SUBLIBF) $(SUBLIBC)
$(F77) $(FFLAGS) -DSERIAL -o $@ $(SDIR)/spmd_3.fpp $(LFLAGS)

$(FLIBS)
mv $@ $(SEQ_XDIR)

spmd_3$(EXESFX): $(SDIR)/spmd_3.fpp $(XDIR) $(SUBLIBF) $(SUBLIBC)
$(F77) $(FFLAGS) -DPARALLEL -o $@ $(SDIR)/spmd_3.fpp

$(LFLAGS) $(FLIBS)
mv $@ $(XDIR)

One also adds the new program names to the list of executables to build. Notice the definition option (-D<option>)
on the F77 compiler instructions. They are either -DSERIAL or -DPARALLEL. This is passed on to the make program
and the pre-processor, thus determining what version is compiled. The serial executable is installed in the directory
SEQ_XDIR (here, that would be $HOME/bin). The parallel version is installed in XDIR (here, $HOME/pvm3/bin/LINUXI386).
If both of these directories are in your PATH environment, then they can be executed from anywhere.

2 Summary

The above example is just a brief representation of what can be done in converting code from serial to parallel. In
this specific case, there was no need for the zero process to send any messages to the siblings before computation.
This conversion, where possible is about as good as it gets. The reason is that each task spends virtually all its time
computing with communications only at the end. This may not be always possible. Figure 5 is a modest expansion of
the flow presented above, and includes the possibility of messages being needed before the computation phase.

3 Acknowledgments

This material is based upon work supported by the National Science Foundation under grant No. 0321233, “Devel-
opment of Tools to Enable the Port of Software to a Beowulf Cluster”. Any opinions, findings, and conclusions, or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

22

3 ACKNOWLEDGMENTS

Figure 4: Pre-processor version spmd_3.fpp

spmd_3.fpp Mon Jul 05 17:06:23 2004 1
c P. Michaels <pm@cgiss.boisestate.edu> 27 June 2004
c Example program spmd_3.f: serial program for conversion
c to pvm, beowulf cluster
c second step, sending messages, divide the work, assemble
c with process zero
 program main
 parameter (NDIM=10000000)
c
#ifdef PARALLEL
c
c−−−PVM stuff
c include ’fpvm3.h’
#include <fpvm3.h>
c
 integer*4 tids(0:128), ntids, mytid, i, idum
 integer*4 me,info,who,zero
 integer*4 proczro,sibrslt,msgtype,ncmd
 real*4 buff(100)
 character*4 mid
#endif
c
 character*80 cmd
 character*80 arg1
 integer*1 bz
 character*80 outfil
 real*4 values(NDIM),results(NDIM)
c
#ifdef PARALLEL
c−−−− enroll in PVM
 call startpvm(mytid,ntids,tids)
c
c−−−define zero process (master)
 zero=0
 call mypvmid(mytid,ntids,tids,me)
c
 write(*,’(’’ me=’’,i5)’) me
 write(*,*) (tids(k),k=0,ntids−1)
#endif
c
c−−−get input parameter
 nargsx=iargc()
 if(nargsx.ge.1) then
 call getarg(1,arg1)
 read(arg1,’(i10)’) npts
 else
 write(*,*) ’USAGE: spmd_3 <npts>’
 stop
 endif
c
c−−−check for valid parameter
 if(npts.gt.NDIM) then
 write(*,*) ’ABORT: dimensions exceeded, NDIM’
 stop
 endif
c
c−−−generate some data
 bz=0
 do 50, j=1,npts
 values(j)=float(j)
 results(j)=0.0
 50 continue
c
c−−−define a scratch file
 write(cmd,’(40(1h))’)
#ifdef SERIAL
 write(cmd,’(’’mkdir −p /tmp/spmd_3’’,a)’) bz
 write(outfil,’(’’/tmp/spmd_3’’,’’/data.txt’’)’)
 write(*,’(1x,a)’) outfil
#elif PARALLEL
 write(mid,’(i3.3)’) me
 write(cmd,’(’’mkdir −p /tmp/spmd_3−’’,a3,a)’) mid,bz
 write(outfil,’(’’/tmp/spmd_3−’’,a3,’’/data.txt’’)’) mid
 write(*,’(i3.3,1x,a)’) me,outfil
#endif
c
 call runcmd(cmd)
c
 open(unit=3,file=outfil,access=’sequential’)
c
c−−−process the data−−−−−−−−−−−−−−−−−−−−−−−
#ifdef SERIAL
 do 100, j=1,npts
#elif PARALLEL
 do 100, j=me+1,npts,ntids
#endif
 call comput(values(j),results(j))
c
c−−−perhaps write results to temporary file for additional
c processing or possibly debugging
 call outtmp(j,results(j))
c
 100 continue
c end of data processing loop−−−−−−−−−−−−−
c
c−−−close temporary file
 close(3)
c
#ifdef SERIAL
c
c...save total results in file in working directory
 call finio(npts,results)
#elif PARALLEL
cz−−−−Assemble Results PVM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

cz Siblings send results to process zero
 sibrslt=5
 if (me.ne.zero) then
cz pack results in vectors to message pass
cz (drop skipped values)
 icount=0
 do 600, j=me+1,npts,ntids
 icount=icount+1
 results(icount)=results(j)
 600 continue
c
 call pvmfinitsend(PVMDEFAULT,bufid)
 call pvmfpack(INTEGER4,me,1,1,info)
 call pvmfpack(INTEGER4,icount,1,1,info)
 call pvmfpack(REAL4,results,icount,1,info)
 msgtype=sibrslt
 proczro=tids(zero)
 call pvmfsend(proczro,msgtype,info)
 endif
cz−−−−Wait for results from siblings
 if (me.eq.zero) then
 msgtype=sibrslt
 do 610, i=0,ntids−2
 call pvmfrecv(−1,msgtype,bufid)
 call pvmfunpack(INTEGER4,who,1,1,info)
 call pvmfunpack(INTEGER4,icount,1,1,info)
 call pvmfunpack(REAL4,buff,icount,1,info)
 call rsltld(who,icount,npts,ntids,results,buff)
 write(*,’(’’Received Sibling Results from process ’’,i3.3)’) who
 610 continue
 endif
c
c−−−−−zero process writes out final results
 if (me.eq.zero) then
c
c...save total results in file in working directory
 call finio(npts,results)
 endif
c
c−−−shut down pvm
 call pvmfexit(info)
#endif
 stop
 end
c−−
 subroutine comput(valuex,resultx)
 real*4 valuex,resultx
 resultx=valuex*valuex*valuex
 end
c−−
 subroutine outtmp(j,resultx)
 integer*4 j
 real*4 results
 write(3,’(1x,i10,1x,e14.7)’) j,resultx
 end
c−−
 subroutine finio(npts,results)
 integer*4 npts
 real*4 results(*)
 character*80 outfil
c
 write(outfil,’(’’/home/pm/pvm3/testing/spmd_3−results.txt’’)’)
 open(unit=3,file=outfil,access=’sequential’)
 write(3,*) ’Final Results for spmd_3’
c
 do 620, j=1,npts
 write(3,’(1x,e14.7,1x)’) results(j)
 620 continue
 close(3)
 end
#ifdef PARALLEL
c |−−|
c | Author: P. Michaels 21 June 2004|
c | rsltld: Results load |
c | Transfers each siblings results from a temporary buffer |
c | to the appropriate, sorted position in a parameter vector|
c | |
c | who = process number (not process zero) |
c | icount = number of values sent from sibling |
c | buff = real values from sibling (icount of them) |
c | parm = parameter to return |
c | hldtvr) |
c | npts = number of values |
c | ntids = number of processes spawned |
c | |
c |−−|
 subroutine rsltld(who,icount,npts,ntids,parm,buff)
 real*4 buff(*),parm(*)
 integer*4 who, icount, npts, ntids
 ic=0
 do 20, j=who+1,npts,ntids
 ic=ic+1
 parm(j)=buff(ic)
 20 continue
 if (ic.ne.icount) then
 write(*,50) ic, icount, who
 50 format(’Count Error in rsltld:’/
 #’ Number of values expected = ’,i5/
 #’ Number of values packed = ’,i5/
 #2x,i5,’=process number’)
 endif
 end
#endif

A

A

use c include

Pr
ep

ro
ce

ss
or

 I
f−

B
lo

ck

23

3 ACKNOWLEDGMENTS

Figure 5: Slightly More Generalized SPMD Flow

ALL PROCESSES COMPUTE THEIR SHARE

call calcfunc(me, npts data, nproc, rnpts, results)

ASSEMBLE RESULTS, master grabs calcfunc results i/0, etc.

send directly to master

result vector

number of results

identify sibling

initialize buffer

RECEIVE RESULTS from Sibling Processes

call pvmfinitsend(PVMDEFAULT, bufid)
call pvmfpack(INTEGER*4, me, 1, 1, info)
call pvmfpack(type, rnpts, 1, 1, info)
call pvmfpack(type, results, rnpts, 1, info)
msgtag=siblrslt
master=tids(0)
call pvmfsend(master, msgtag, info)

BRANCH (Master or Sibiling Process?)

if (me.eq.0) then
siblrslt=5

else

endif

MASTER

SIBLING

if (me.eq.0) then
msgtag=siblrslt
do 100, i=0, nproc−2

100 continue
call pvmfunpack(type, sibresults(who,*), rnpts, 1, info)
call pvmfunpack(type, rnpts(who), 1, 1, info)
call pvmfunpack(type, who, 1, 1, info)
call pvmfrecv(−1, msgtag, bufid)

CODE ASSEMBLE who’s contribution to total result
Output results

endif

MASTER: WAIT FOR RESULTS FROM SIBLINGS

SPMD Flow continued

call pvmfexit(info)
stop
end

<pm@cgiss.boisestate.edu>
14 June 2004

integer*4 tids(0:MAXNPROC)
DIMENSION Task ID vector from 0 to no. processes

ENROLL in PVM
call pvmfmytid(mytid)

FIND NUMBER OF PROCESSES
call pvmfsiblings(ntids,−1,idum)

call pvmfsiblings(ntids,i,tids(i))
do 10, i=0,ntids−1

10 continue

LOOP Build Array of Task ID’s

do 20, i=0,ntids−1
if (tids(i).eq.mytid) then
me=i
go to 30
endif

20 continue
30 continue

ASSIGN UNIQUE PROCESS NUMBER to ME

if (me.eq.0) then

else

inbcast=0
BRANCH (Master or Sibling Process?)

MASTER

SIBLING

endif

DO CALCULATIONS
BROADCAST Variables to siblings

call pvmfinitsend(PVMDEFAULT,bufid)
call pvmfpack(type, nproc, 1, 1, info)
call pvmfpack(type, tids, nproc, 1, info)

call pvmfpack(type, data, npts, 1, info)
call pvmfpack(type, npts, 1, 1, info)

call pvmfmcast(nproc, tids, inbcast, info)

initialize buffer

process id’s

number of processes

number of data
data vector

call pvmfrecv(−1, msgtag,bufid)
call pvmfunpack(type, nproc, 1, 1, info)
call pvmfunpack(type, tids, nproc, 1, info)
call pvmfunpack(type, npts, 1, 1, info)
call pvmfunpack(type, data, npts, 1, info)

RECEIVE DATA from Process 0
msgtag=inbcast

PROCESS FLOW SPMD Paradigm

Version
FORTRAN 77

call mypvmid.f

in our example, spmd_0.f
There was no need to send messages to the siblings

example spmd_0.f focused here

call startpvm.f

Also, no need to receive messages not sent from master

24

Index
adding pre-processor, 22
aimk, 13
aimk, pre-processor, 22
architecture, 2
architecture independent, 13

bonus example, 11

calling c-language, 8

debugging, 20
directory tree, 5
dividing labor among tasks, 17
dividing the work, 8

figure 1, 2
figure 5, 24

gettime(), 4
gprof, 7

Instrumenting Code, 2
interface, 10

Makefile, 5
Makefile, sublibc, 6
modifying the code, 8
mypvmid.f, 12

output, instrumented, 7

pre-processor, 23
Profile code, 7
prog.f, 9

runcmd, 8
runcmd.c, 9

siblings, 11
startpvm.f, 12
strlen(), 10
stub, 10
subscript range, 12
summary, 22

tasks vs processors, 11
timing.c, 5

25

