
Using the Beowulf Cluster Lab
Amit Jain

Department of Computer Science

Boise State University

September 2, 2010

This material is based upon work supported by the National Science Foundation under grant No. 0321233,

Development of Tools to Enable the Port of Software to a Beowulf Cluster. Any opinions, findings, and

conclusions, or recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

Contents

1 Cluster Configuration 3

2 Setup 3

3 Working on the Cluster 4

3.1 Accessing the cluster from a remote system . 4

3.2 Useful cluster commands . 4

3.2.1 Cluster Monitoring . 4

3.2.2 Parallel Shell . 5

4 Using Swarm to run multiple sequential programs 6

5 Compiling Parallel Programs on the Cluster 7

5.1 Compiling MPI programs on the cluster . 7

5.2 Compiling PVM programs on the cluster . 7

6 Running parallel programs interactively 8

6.1 Acquiring nodes from the PBS system . 8

6.2 Running PVM programs . 10

6.2.1 Using the PVM console . 10

6.2.2 Using the XPVM GUI . 13

6.2.3 Using the pvmrun application . 17

6.3 Running MPI programs . 19

7 Running parallel programs in batch mode 20

7.1 Getting ready to run PBS batch jobs . 20

http://cs.boisestate.edu/~amit

7.2 Preparing a PBS batch job script . 21

7.3 Submitting a PBS batch job script . 23

8 Debugging PVM programs 24

8.1 Using print statements . 24

8.2 Using a debugger . 25

9 How to Setup and use MPICH2 on your Linux PC or notebook 25

9.1 How to download and install MPICH2 . 25

9.2 Using MPICH2 on your computer . 26

10 How to setup and use PVM on your Linux PC or laptop 27

10.1 Installing PVM . 27

10.2 Setting up the Environment . 27

10.3 Running PVM programs . 28

11 Documentation 28

12 Dealing with obscure errors 29

2

1 Cluster Configuration

The Beowulf Cluster Lab in MEC305 has one master node, named node00, and 62 compute nodes,
named node01, . . ., node62, which are connected with a private Gigabit Ethernet switch.

The machine beowulf.boisestate.edu is the master node and the only one that is on the public
Internet. The master node beowulf.boisestate.edu is connected to the private switch with the
name node00. The figure below shows the layout of the Beowulf Cluster Lab.

Linux Channel
Bonding

.

To Internet

1000 MBits/sec link

Gigabit Switch Gigabit SwitchGigabit Switch

(dual 2.4 GHz Xeons, 4GB RAM, RAID disk drives)

dual 2.4 GHz Xeons, 1GB RAM, 80GB ATA100 drive

Node00

node01 node20 node21 node40 node41 node60

beowulf

1000 MBits/sec to
campus backbone

 32000 MBits/sec link
Each Compute Node:

Gigabit Switch: Cisco 24−port Gigabit ctacking cluster switch

node00
192.168.1.1

192.168.1.120 192.168.1.121 192.168.1.140 192.168.1.141 192.168.1.160192.168.1.101

 Beowulf Cluster Architecture

To use the cluster you must login to beowulf.boisestate.edu. Your home directory resides on the
master node, which is the file server for the cluster. Thus you have the same home directory on all
machines in the cluster.

2 Setup

Your home directory is shared among all nodes of the cluster. The master node acts as a network
file server for the home directories.

When you log in to the master node, your account is already setup to use MPICH2 as the default
MPI implementation.

When you log in to the master node, you will find a directory named pvm3 in your home directory.
This directory is setup (when you login for the first time) for PVM to work correctly. This directory
contains a sub-directory bin, which contains a sub-directory named LINUXI386, where LINUXI386

3

is the architecture of the system as used by the PVM system. Your PVM executables normally
reside in the ~/pvm3/bin/LINUXI386 directory, which is already set to be in your PATH.

3 Working on the Cluster

3.1 Accessing the cluster from a remote system

The following are some common commands for accessing the master node of the cluster from a
remote site.

• ssh beowulf.boisestate.edu starts a secure remote login session on the master node of the
cluster.

• ssh beowulf.boisestate.edu <command> runs the command remotely on the cluster and
redirects the output to your terminal.

• scp lets you copy files to remote machines.

Note that the letter s stands for secure. All these commands encrypt your data on the network to
protect against eavesdroppers. These commands replace the insecure equivalents (rlogin, rsh,

rcp) that have been used commonly for accessing remote machines. Note that rsh commands
work internally on the cluster (to support some software that needs it) but it is operating behind
a firewall on a private network.

The command scp also has an option -r that lets you copy directories. In addition, you can specify
a directory to copy to on the remote machine. Remember that the pathnames are relative to your
home directory on the remote machine. For example to copy recursively a directory named prog1

on your local system to the master node beowulf.boisestate.edu under the directory cs430 or
tt cs530 in your home directory, use the following command:

scp -r prog1 beowulf.boisestate.edu:cs430/prog1

3.2 Useful cluster commands

3.2.1 Cluster Monitoring

The following is a set of useful cluster commands that are available on the cluster lab. They can
be run from the master node in the cluster.

• cchk Check the machines on the cluster by pinging the machines. Quick way to check if
any machines are down.

• cdate Check the current time and date on each node of the cluster. The master node is a
NTP time server (and also a client to another trusted source of accurate time). All the other
nodes in the cluster are NTP time service clients of the master node.

4

• cmips Check the total computing power of the cluster. The computing power is reported
in MIPS (using the bogoMIPS value reported by the kernel).

• cfree Reports memory usage across the cluster.

• cdisks Reports /tmp scratch disk space usage across the cluster.

• ctemp Reports CPU temperatures across the cluster. May not be available on all clusters.

3.2.2 Parallel Shell

The cluster comes with a simple parallel shell named pdsh. The pdsh shell is handy for running
commands across the cluster. See the man page, which describes the capabilities of pdsh in detail.
One of the useful features is the capability of specifying all or a subset of the cluster. For example:

pdsh -a <command> targets the <command> to all nodes of the cluster, including the master.

pdsh -a -x node00 <command> targets the <command> to all nodes of the cluster except the mas-
ter.

pdsh -w node[01-08] <command> targets the <command> to the 8 nodes of the cluster named
node01, node02, . . ., node08.

Another utility that is useful for formatting the output of pdsh is dshbak. Here we will show some
handy uses of pdsh.

• Show the current date and time on all nodes of the cluster.
pdsh -a date

• Show the current load and system uptime for all nodes of the cluster.
pdsh -a uptime

• Show all processes with the substring mpd in their name on the cluster.
pdsh -a ps augx | grep mpd

• Cleanup MPI files and sockets fom all nodes in the system. This can be handy in removing
leftover files from a earlier program or system crash.

pdsh -a mpdcleanup

• Remove all instances of pvm temporary files from the cluster. This can be handy in removing
leftover files from a earlier program or system crash.
pdsh -a /bin/rm -f /tmp/pvm*

• The utility dshbak formats the output from pdsh by consolidating the output from each node.
The option -c shows identical output from different nodes just once.

pdsh -a ls -l /etc/ntp | dshbak -c

Here is a sample output:

5

[amit@onyx amit]$ pdsh -a ls -l /etc/ntp | dshbak -c

ws[01-16]

total 16

-rw-r--r-- 1 root root 8 Jun 4 11:53 drift

-rw------- 1 root root 266 Jun 4 11:53 keys

-rw-r--r-- 1 root root 13 Jun 4 11:53 ntpservers

-rw-r--r-- 1 root root 13 Jun 4 11:53 step-tickers

ws00

total 16

-rw-r--r-- 1 ntp ntp 8 Sep 5 21:51 drift

-rw------- 1 ntp ntp 266 Feb 13 2003 keys

-rw-r--r-- 1 root root 58 Oct 3 2003 ntpservers

-rw-r--r-- 1 ntp ntp 23 Oct 3 2003 step-tickers

ws[17-32]

total 16

-rw-r--r-- 1 root root 8 May 27 13:31 drift

-rw------- 1 root root 266 May 27 13:31 keys

-rw-r--r-- 1 root root 13 May 27 13:31 ntpservers

-rw-r--r-- 1 root root 13 May 27 13:31 step-tickers

[amit@onyx amit]$

4 Using Swarm to run multiple sequential programs

Using the swatm utility, you can run mulitple sequential programs on multiple nodes of the cluster.
This helps you improve your throughput.

List the sequential programs that you want to run in one file (one per line). For example, we have
the following commands in the file named myjobs

program1; program1

program2

program3

Then submit your jobs with the following command

swarm -f myjobs

which creates PBS jobs and submits them. By default, swarm will run two processes per node
(assuming each node is a dual-processor) and create one PBS job per node. So the output from the
two commands will show up in the output file corresponding to the PBS job generated by swarm.

6

If you like to get email when your jobs are done, then use:

swarm -f myjobs -m e

You may want to set up a .forward file on beowulf so that the email notification from PBS gets
routed to your favorite mail address.

If your program is I/O or memory intensive, then you may want to tell swarm to only run one
process per node. This can be done as follows:

swarm -f myjobs -n 1 -m e

Check the status of your jobs with the following command.

qstat -a

To kill a job, use

qdel ¡job#¿.beowulf

To kill all your jobs, use

qdelall

You should use the above command with caution! For more information about swarm, see the man
page:

man swarm

5 Compiling Parallel Programs on the Cluster

5.1 Compiling MPI programs on the cluster

First setup the appropriate MPI system for your account. The default is MPICH2, which should
be fine for most users. Compiling MPI programs is pretty simple: just use mpicc instead of the
usual C compiler.

Here is a sample Makefile.

http://cs.boisestate.edu/˜amit/teaching/430/lab/Makefile.mpich2.sample

5.2 Compiling PVM programs on the cluster

The PVM package comes with a portable wrapper script for make called aimk, which takes
care of setting all the right option for a given architecture. The program aimk assumes that
the Makefile is named Makefile.aimk. A sample Makefile.aimk can be downloaded here:
http://cs.boisestate.edu/˜amit/teaching/430/lab/Makefile.aimk.sample

Edit the file Makefile.aimk to include a rule for your program and compile using the aimk com-
mand. Assuming that your rule in the Makefile.aimk is called myprog, you would use the following
command.

aimk myprog

The executable will be placed in the directory ~/pvm3/bin/LINUXI386.

7

http://cs.boisestate.edu/~{}amit/teaching/430/lab/Makefile.mpich2.sample
http://cs.boisestate.edu/~{}amit/teaching/430/lab/Makefile.aimk.sample

6 Running parallel programs interactively

To run a parallel program interactively on the cluster requires two steps.

• Acquire desired number of compute nodes via the Portable Batch System that controls com-
pute node allocation to users.

• Run the PVM or MPI parallel program.

– Running a PVM program. There are three possibilities:

∗ pvm: A command line console that can be used to start up the PVM system and
run parallel programs. It has built-in help. Useful for low-bandwidth remote access
to the cluster.

∗ xpvm: A graphical user interface that can be used to start/stop the PVM system, run
parallel programs, visualize the execution in various ways, debug parallel programs
and more. Excellent for developers.

∗ pvmrun: A self contained utility that starts the PVM system, runs the parallel
program and then cleanly stops the PVM system.

– Running a MPICH MPI program. Use the mpiexec command after starting the MPICH
daemons.

6.1 Acquiring nodes from the PBS system

The cluster uses the Portable Batch Scheduling system to manage the resources effectively. To
run a parallel program, the user needs to request nodes from the PBS system. The master node
is a shared resource and is always allocated to the user. The compute nodes are allocated in an
exclusive mode. Currently there is a time limit of 24 hours for the use of compute nodes at a time.

To check the status of the nodes in the PBS system, there are two choices:

• qstat -n gives a list of all jobs running on the cluster along with the nodes allocated to the
jobs.

• xpbsmon is a GUI that shows the state of the nodes in the PBS system.

To request n nodes, use the command pbsget on the master node. Here is a sample session.

[amit@onyx ~]$ pbsget -4

###

Allocate cluster nodes via PBS for running interactive parallel jobs.

###

Trying for 4 nodes

8

http://www.pbspro.com

**

Scheduling an interactive cluster session with PBS.

Please end session by typing in exit.

Use qstat -n to see nodes allocated by PBS.

You may now run MPI, pvm, xpvm or pvmrun. They will automatically use

only the nodes allocated by PBS.

If you are using pvm or xpvm, then please always halt the pvm

system before exiting the PBS cluster session.

If you are using MPI, then please always halt the MPI daemons

system before exiting the PBS cluster session using mpdallexit command.

For running LAM MPI programs use the following command:

mpirun i-np <#copies> [options] <program> [<prog args>]

For running MPICH2 MPI programs use the following command:

mpiexec -n <#copies> [options] <program> [<prog args>]

For running PVM programs use the following command:

Usage: pvmrun -np <#copies> <executable> {<args>,...}

**

qsub: waiting for job 3613.onyx.boisestate.edu to start

qsub: job 3613.onyx.boisestate.edu ready

[amit@onyx PBS ~]:qstat -n

onyx.boisestate.edu:

Req’d Req’d

Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S

Time

--------------- -------- -------- ---------- ------ --- --- ------ ----- -

3613.onyx.boise amit interact STDIN 17742 5 -- -- 00:30 R

--

node00/0+node20/0+node19/0+node18/0+node17/0

[amit@onyx PBS ~]:echo $PBS_NODEFILE

/var/spool/pbs/aux/3613.onyx.boisestate.edu

[amit@onyx PBS ~]:cat $PBS_NODEFILE

node00

node20

node19

node18

node17

[amit@onyx PBS ~]:exit

9

logout

qsub: job 3613.onyx.boisestate.edu completed

[amit@onyx ~]$

The command pbsget attempts to allocate the requested number of nodes from the PBS system. If
it succeeds, it starts a new shell with the prompt modified to have PBS in the prompt. Note that
the environment variable PBS NODEFILE contains the name of a file that contains the list of nodes
allocated by PBS to the user. Now the user can run either PVM or MPI parallel programs. When
the user is done they would type exit to end the interactive PBS session.

If the required number of nodes are not available, then pbsget will wait. A user can cancel the
request by typing in Ctrl-c and try again later. Remember to use qstat -n to check the status
of the nodes.

6.2 Running PVM programs

6.2.1 Using the PVM console

To run a PVM program the PVM daemon must be running. To start the daemon, startup the
PVM console with the following command.

pvm

This invokes the PVM control program. The pvm console program is set to automatically add the
nodes allocated to you by PBS. You can check what machines are in the PVM system with the
conf command.

[amit@onyx amit]$ pbsget -4

###

Allocate cluster nodes via PBS for running interactive parallel jobs.

###

Trying for 4 nodes

...

qsub: waiting for job 806.onyx.boisestate.edu to start

qsub: job 806.onyx.boisestate.edu ready

[amit@onyx PBS ~]:pvm

pvm: Using list of machines from PBS.

pvm> conf

5 hosts, 1 data format

HOST DTID ARCH SPEED DSIG

ws00 40000 LINUXI386 1000 0x00408841

ws04 80000 LINUXI386 1000 0x00408841

ws03 c0000 LINUXI386 1000 0x00408841

ws02 100000 LINUXI386 1000 0x00408841

10

ws01 140000 LINUXI386 1000 0x00408841

pvm>

In the above example, we allocated 4 nodes using the PBS system. Note that the PVM console
program adds the four compute nodes plus the master node to the PVM system. PBS always
allocates the master node since that is a shared resource. Normally you would not run your
programs on the master nodes but use it for monitoring purposes.

If you have already started the daemon, then the pvm console program would inform you. The
simplest thing to do is to halt the already running daemon and start a fresh one, as shown below:

[amit@onyx PBS ~]:pvm

pvm: Using list of machines from PBS.

pvmd already running.

pvm> halt

Terminated

[amit@onyx PBS ~]:pvm

pvm: Using list of machines from PBS.

pvm>

You can type help in the pvm console program to get a list of all commands. You can run your
application using the spawn command from the PVM console. Here is the help on the spawn
command.

pvm> help spawn

spawn Spawn task

Syntax: spawn [options] file [arg ...]

Options: -(count) number of tasks, default is 1

-(host) spawn on host, default is any

-(host):(wd) spawn on host, in directory ’wd’

--host=(IP) spawn on host with given IP addr

--host=(IP):(wd) spawn on IP, in directory ’wd’

-(ARCH) spawn on hosts of ARCH

-(ARCH):(wd) spawn on hosts of ARCH, in ’wd’

-:(wd) spawn in working directory ’wd’

-? enable debugging

-> redirect job output to console

->(file) redirect output of job to file

->>(file) append output of job to file

-@ trace job, output to terminal

-@(file) trace job, output to file

pvm>

The following figure continues the example by running a parallel program using the spawn com-
mand. The program is a SPMD style program. Thus we need to spawn a number of copies together.
The output from the various nodes is captured together with the -> option to the spawn command.
Note that each output is tagged with the task id of the task creating that output.

pvm> spawn -4 -> spmd_sum 10000

11

[1]

4 successful

t80001

tc0001

t100001

t140001

pvm> [1:tc0001] EOF

[1:t80001] I got 2500 from 0

[1:t80001] I got 2500 from 1

[1:t80001] I got 2500 from 3

[1:t80001] I got 2500 from 2

[1:t80001] The total is 10000

[1:t80001] EOF

[1:t140001] EOF

[1:t100001] EOF

[1] finished

pvm>

There is no limitation in PVM as to the number of tasks versus the number of nodes. So we could
have invoked 12 tasks in the above example even though we acquired only 4 compute nodes. By
default the PVM system distributes the tasks on the available nodes in a round robin fashion.

Finally you must remember to halt the PVM system and exit out of the PBS shell to release all
resources.

pvm>

pvm> halt

Terminated

[amit@onyx PBS ~]:exit

logout

qsub: job 806.onyx.boisestate.edu completed

[amit@onyx amit]$

Note that MPMD (or master/slave) style programs can be invoked directly from the PBS shell if
you have started the pvm daemon before. For example:

[amit@onyx amit]$ pbsget -4

###

Allocate cluster nodes via PBS for running interactive parallel jobs.

###

Trying for 4 nodes

...

qsub: waiting for job 807.onyx.boisestate.edu to start

qsub: job 807.onyx.boisestate.edu ready

[amit@onyx PBS ~]:pvm

pvm: Using list of machines from PBS.

pvm> quit

12

Console: exit handler called

pvmd still running.

[amit@onyx PBS ~]:psum 10000 4

Starting 4 copies of spsum

I got 2500 from 2

I got 2500 from 0

I got 2500 from 1

I got 2500 from 3

The total is 10000

[amit@onyx PBS ~]:exit

logout

qsub: job 807.onyx.boisestate.edu completed

[amit@onyx amit]$

The above technique does not work for SPMD programs. It also will not show you the output
from other nodes (unless you capture it using library calls in PVM). Finally, note that it is possible
to embed the start up of PVM daemon and adding of nodes inside a program, making PVM
transparent.

For more information on the pvm console program, see the man page for it.

6.2.2 Using the XPVM GUI

The xpvm graphical user interface to PVM is a nice visualization tool for developing, testing and
debugging PVM programs. The xpvm program has built in help and is intuitive and simple to use.
Similar to the PVM console program, pvm, the xpvm program starts up the PVM system with the
list of nodes allocated by the PBS system. Then the user can use it to run parallel programs,
visualize the execution, look at the output from all nodes, debug multiple nodes simultaneously,
check utilization of the cluster during execution of the parallel program, check message queue
length during execution and other features. A powerful feature of xpvm is its ability to graphically
playback the sequence of events during an execution. This allows the user to investigate the behavior
of a parallel program without having to spend a lot of time rerunning the parallel program. The
following figure shows a screenshot of xpvm in action.

13

As with the PVM console program, remember to halt the PVM system from the xpvm GUI when
you are done and then exit from the PBS session to release all resources.

To start xpvm, acquire nodes using pbsget and then start xpvm.

[amit@onyx amit]$ pbsget -4

...

qsub: waiting for job 820.onyx.boisestate.edu to start

qsub: job 820.onyx.boisestate.edu ready

[amit@onyx PBS ~]:xpvm

xpvm: Using list of machines from PBS.

New PVMD started... XPVM 1.2.5 connected as TID=0x40001.

[globs.tcl][procs.tcl][util.tcl]

Initializing XPVM.. done.

14

%

The xpvm will start up in a new window. Initially it will ask you want to overwrite the trace file.
You can answer “Yes” here. The main xpvm window will have two panels: Network View and Space

Time View.

Running a PVM program. Go to Tasks... menu, then click on Spawn option to get the spawn
window. In the Command: field you can type in the name of your program along with the command
line arguments. Next select the PvmHostCompl button. Then select the Host button. A new field
labeled Host will show up. Type the internal name of the master node, node00, here. The purpose
of the last two steps to ensure that the PVM processes are not scheduled on the master node. Next
type in the number of SPMD tasks you want to spawn in the NTasks field. Finally click on the
Start button to start the parallel program.

15

Checking output from your program. As the parallel program runs, the Network View and
the Space Time View are updated. You can also see the combined output from all the nodes by
selecting the Views... menu and selecting the Task Output choice. A separate task output window
will appear.

Other useful features. You can also go to the Views... menu and select the Utilization choice.
This will show the node utilization in a separate window. Similarly you can look at message queue
length with Views... and then Message Queue. The following screenshot shows some of the above
examples.

As with the PVM console program, remember to halt the PVM system from the xpvm GUI when
you are done and then exit from the PBS session to release all resources. To halt PVM, go to the
File menu and then select Halt PVM choice.

16

6.2.3 Using the pvmrun application

With PVM you need to create the PVM system with either the pvm console or the xpvm application.
Once the PVM system is operational, then you run your program. This is undesirable for several
reasons. For example, if you forget to start the PVM system, your applications fails. If you left the
PVM system running, then you will connect to what is already running. In order to avoid these
problems, we have created an application named pvmrun. Running pvmrun with the help option
shows its usage.

[amit@onyx amit]$ pvmrun -h

pvmrun: $Id: pvmrun.c,v 1.8 2004/09/02 00:00:28 amit Exp $

Usage: pvmrun -np <#tasks> <executable> {<args>,...}

**

For a pvm master/slave program: pvmrun -np 1 <executable>

{<args>,...}

For a pvm n-way spmd program: pvmrun -np n <executable> {<args>,...}

The list of machines to use for PVM is determined as follows:

if PBS_NODEFILE is set, then use the file specified by PBS

else: exit and ask user to run after getting nodes

using pbsget.

[amit@onyx amit]:

The pvmrun program starts the pvm system for you, runs your application (either master/slave
MPMD style or SPMD style) and then cleanly shuts down the PVM system. If the PVM system is
already running, it shuts it down and restarts it with the list of nodes supplied by the PBS system.
You must use pvmrun in your PBS batch jobs.

The following shows the usage of pvmrun to run a parallel program. Note that we show the program
being run twice. The second time we have redirected the standard error output from pvmrun to a
file so only the output from the application shows up.

[amit@onyx parallel_sum]$ pbsget -4

###

Allocate cluster nodes via PBS for running interactive parallel jobs.

###

Trying for 4 nodes

...

qsub: waiting for job 850.onyx.boisestate.edu to start

qsub: job 850.onyx.boisestate.edu ready

[amit@onyx PBS ~/cs430/lab/PVM/parallel_sum]:pvmrun -np 4 spmd_sum 10000

pvmrun: Using host file: /var/spool/pbs/aux/850.onyx.boisestate.edu

pvmrun: Probing for pre-existing PVM.

libpvm [pid10012] /tmp/pvmd.999: No such file or directory

libpvm [pid10012] /tmp/pvmd.999: No such file or directory

libpvm [pid10012] /tmp/pvmd.999: No such file or directory

libpvm [pid10012]: pvm_mytid(): Can’t contact local daemon

17

pvmrun: PVM not running. Ignore error messages above from pvm_mytid().

pvmrun: Succeeded in starting new PVM daemon!

Selected nodes from file: /var/spool/pbs/aux/850.onyx.boisestate.edu

ws00

ws04

ws03

ws02

ws01

pvmrun: Succeeded in adding 5 hosts.

pvmrun: Parallel Virtual Machine configuration

ws00

ws04

ws03

ws02

ws01

[tc0001] BEGIN

[t100001] BEGIN

[t140001] BEGIN

[t80001] BEGIN

[t80001] I got 2500 from 0

[t80001] I got 2500 from 1

[t80001] I got 2500 from 2

[t80001] I got 2500 from 3

[t80001] The total is 10000

[t100001] EOF

[tc0001] EOF

Received PvmTaskExit notification from task id 100001

Received PvmTaskExit notification from task id c0001

[t140001] EOF

[t80001] EOF

Received PvmTaskExit notification from task id 140001

Received PvmTaskExit notification from task id 80001

pvmrun: 4 tasks finished!

pvmrun: Halting PVM.

pvmrun: End of PVM application.

[amit@onyx PBS ~/cs430/lab/PVM/parallel_sum]:pvmrun -np 4 spmd_sum 10000 2>

errorlog

[tc0001] BEGIN

[t140001] BEGIN

[t100001] BEGIN

[t80001] BEGIN

[tc0001] EOF

18

[t140001] EOF

[t80001] I got 2500 from 0

[t80001] I got 2500 from 1

[t80001] I got 2500 from 3

[t80001] I got 2500 from 2

[t80001] The total is 10000

[t100001] EOF

[t80001] EOF

[amit@onyx PBS ~/cs430/lab/PVM/parallel_sum]:exit

logout

qsub: job 850.onyx.boisestate.edu completed

[amit@onyx parallel_sum]$

6.3 Running MPI programs

• Create MPI config file. Create the file ˜/.mpd.conf and enter one line that contains a secret code
word. The commands to do this are shown below. Remember to put your own secret word in your
file.

touch ~/.mpd.conf

echo "MPD_secretword=abracadabara" > ~/.mpd.conf

chmod 600 ~/.mpd.conf

• Setting up MPICH2. Add the command mpich2setup at the end of your ~/.bashrc file and source
it with the command source ~/.bashrc (or log in again).

• Running a MPI program

– Log in to the head node onyx. Acquire nodes from the scheduler: pbsget -4

– Start up the MPI daemons on all nodes using the command: mpdboot

– Next run your mpi program with the mpiexec command.

mpiexec -n 4 hello world

– Stop all MPI daemons.

mpdallexit

– Exit and release all allocated nodes with the command: exit

Here is a sample session.

[amit@onyx hello-world]$ pbsget -4

###

Allocate cluster nodes via PBS for running interactive parallel jobs.

###

Trying for 4 nodes

**

19

Scheduling an interactive cluster session with PBS.

Please end session by typing in exit.

Use qstat -n to see nodes allocated by PBS.

or use xpbsmon to graphically see nodes allocated by PBS.

You may now run MPI, pvm, xpvm or pvmrun. They will automatically use

only the nodes allocated by PBS.

If you are using pvm or xpvm, then please always halt the pvm

system before exiting the PBS cluster session.

If you are using MPI, then please always halt the MPI daemons

system before exiting the PBS cluster session using mpdallexit command.

For running LAM MPI programs use the following command:

mpirun i-np <#copies> [options] <program> [<prog args>]

For running MPICH2 MPI programs use the following command:

mpiexec -n <#copies> [options] <program> [<prog args>]

For running PVM programs use the following command:

Usage: pvmrun -np <#copies> <executable> {<args>,...}

**

qsub: waiting for job 3614.onyx.boisestate.edu to start

qsub: job 3614.onyx.boisestate.edu ready

[amit@onyx PBS ~/cs430/lab/MPI/hello-world]:mpdboot

Starting 5 mpds

[amit@onyx PBS ~/cs430/lab/MPI/hello-world]:mpiexec -n 4 spmd_hello_world

Hello! I am 0 of 4 running on node17.

Hello! I am 1 of 4 running on node18.

Hello! I am 3 of 4 running on node20.

Hello! I am 2 of 4 running on node19.

[amit@onyx PBS ~/cs430/lab/MPI/hello-world]:mpdallexit

[amit@onyx PBS ~/cs430/lab/MPI/hello-world]:exit

logout

qsub: job 3614.onyx.boisestate.edu completed

[amit@onyx hello-world]$

7 Running parallel programs in batch mode

7.1 Getting ready to run PBS batch jobs

To be able to run PBS jobs, you must check your .bash profile and .bashrc files carefully. Any
command that manipulates the terminal must be put in a conditional statement of the following
form.

if test "$PBS_ENVIRONMENT" = "PBS_INTERACTIVE" -o -z "$PBS_ENVIRONMENT"

20

then

set up the prompt to the hostname

#

PS1="[\u@\h \W]":

fi

The reason is that there is no terminal when you are running in batch mode. If you try to manipulate
the terminal in batch mode, your login will fail and your batch job will not run. The environment
variable PBS ENVIRONMENT is set by PBS to be either PBS INTERACTIVE or PBS BATCH. When you
are not running under PBS, then the variable is unset.

7.2 Preparing a PBS batch job script

Any parallel program that takes more than a few minutes should normally be run as a PBS
batch job. In order to run it as a PBS batch job, you will need to prepare a PBS batch script
(which is just a shell script with some additional features). Here is a sample PBS batch job
(~/amit/cs430/lab/PVM/tools/psort.pbs):

#!/bin/sh

#PBS -l nodes=1:master+16:node

This is a PBS job submission script. It asks for the master node

and 16 nodes in the PBS cluster to run the PVM application on.

#

IMPORTANT NOTE: Be sure to modify the "cd" command below to switch

to the directory in which you are currently working!

#

#--

cd /home/faculty/amit/cs430/lab/PVM/tools

pvmrun -np 16 psort 20000000 16

The line starting with #PBS is a PBS directive. There are many PBS directives but the one we
will use is mainly the one that lists the nodes that we need to run our program. The following list
shows some common options that can be used in the PBS directives:

PBS option Description

-N jobname name the job jobname
-l cput=N request N seconds of CPU time; N can also be in hh:mm:ss form
-l mem=N[KMG][BW] request N kilo—mega—gigabytes—words of memory
-l nodes=N:ppn=M request N nodes with M processors per node
-m e mail the user when the job completes
-m a mail the user if the job aborts
-a 1800 Start job after 6pm
-o outfile redirect standard output to outfile
-e errfile redirect standard error to errfile
-j oe combine standard output and standard error

For a full list, see the man page for pbs resources on the cluster.

21

Here is another sample PBS batch job. Here the psum program is assumed to spawn processes to
the 16 nodes.

#!/bin/sh

#PBS -l nodes=1:master+16:node

This is a PBS job submission script. It runs a master/slave PVM program

Note that even though we are specifying only one process to pvmrun, we

need to reserve the appropriate number of nodes to match what the parallel

program requires.

#

IMPORTANT NOTE: Be sure to modify the "cd" command below to switch

to the directory in which you are currently working!

#

#--

cd /home/faculty/amit/cs430/lab/PVM/parallel_sum

pvmrun -np 1 psum 10000 16

Here is a sample PBS batch script for a MPICH2 program.

#!/bin/sh

#PBS -l nodes=1:master+4:node

#--

setup for MPICH2

MPICH2_HOME=/usr/local/mpich2

export PATH=$MPICH2_HOME/bin:$PATH

export MANPATH=$MPICH2_HOME/man:$MANPATH

unset MPI_HOST

#--

cd /home/amit/MPI/hello_world

mpdboot

mpiexec -n 4 spmd_hello_world

mpdallexit

Here is a sample PBS batch script for a LAM MPI program.

#!/bin/sh

#PBS -l nodes=1:master+4:node

reset paths to point to LAM MPI

PATH=/usr/bin/:$PATH

MANPATH=/usr/share/man:/usr/man:$MANPATH

export PATH MANPATH

hash -r

cd /home/amit/MPI/hello_world

lamboot

mpiexec -n 4 spmd_hello_world

lamhalt -v

22

7.3 Submitting a PBS batch job script

The command qsub can be used to submit a PBS job. Please see the man page for qsub for a
variety of options that can be used with it. Continuing with the example script psort.pbs from
the previous subsection, we can submit it for execution as follows.

cd ~amit/cs430/lab/PVM/tools/

qsub psort.pbs

The status of a job can be checked with the qstat command. Using qstat -n also shows the nodes
that were allocated to your job.

[amit@onyx tools]:qsub psort.pbs qstat

[amit@onyx tools]:qstat

116.onyx.boisestate.edu

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

116.onyx psort.pbs amit 0 Q default

[amit@onyx tools]:qstat -n

onyx.boisestate.edu:

Req’d Req’d Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----

116.onyx.boises amit default psort.pbs -- 17 -- -- 00:30 R --

ws00/0+ws16/0+ws15/0+ws14/0+ws13/0+ws12/0+ws11/0+ws10/0+ws09/0+ws08/0+ws07/0

+ws06/0+ws05/0+ws04/0+ws03/0+ws02/0+ws01/0

[amit@onyx tools]:

You can delete jobs with the qdel command.

The standard output and standard error streams are redirected into the files psort.pbs.oxxx and
psort.pbs.exxx, where xxx is the job number assigned by PBS.

In case of an error in running the job after it has been accepted in the queue, PBS sends an email
to the user.

The following shows another example of submitting a job. This time we are specifying that the job
should start anytime after the time specified in the qsub command, that we should be emailed at
the start and end of the job, and the jobs is to be named test1.

[amit@onyx parallel_sum]$ qsub -m be -a 0400 -N test1 psum.pbs

853.onyx.boisestate.edu

[amit@onyx parallel_sum]$ qstat -n

onyx.boisestate.edu:

Req’d Req’d Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----

853.onyx.boises amit default test1 -- 17 -- -- 00:30 W --

--

[amit@onyx parallel_sum]$ date

23

Thu Sep 9 03:57:33 MDT 2004

[amit@onyx parallel_sum]$

[amit@onyx parallel_sum]$ date

Thu Sep 9 04:00:23 MDT 2004

[amit@onyx parallel_sum]$ qstat -n

[amit@onyx parallel_sum]$ls -l test1.*853

-rw------- 1 amit faculty 2047 Sep 9 04:00 test1.e853

-rw------- 1 amit faculty 1850 Sep 9 04:00 test1.o853

----------------------Mail message-----------------------------------

Date: Thu, 9 Sep 2004 04:00:00 -0600

From: adm <adm@onyx.boisestate.edu>

To: amit@onyx.boisestate.edu

Subject: PBS JOB 853.onyx.boisestate.edu

PBS Job Id: 853.onyx.boisestate.edu

Job Name: test1

Begun execution

----------------------Mail message-----------------------------------

Date: Thu, 9 Sep 2004 04:00:02 -0600

From: adm <adm@onyx.boisestate.edu>

To: amit@onyx.boisestate.edu

Subject: PBS JOB 853.onyx.boisestate.edu

PBS Job Id: 853.onyx.boisestate.edu

Job Name: test1

Execution terminated

Exit_status=0

resources_used.cput=00:00:00

resources_used.mem=312kb

resources_used.vmem=1440kb

resources_used.walltime=00:00:02

8 Debugging PVM programs

8.1 Using print statements

Any print statements in the process running on the local machine will who up on the console.
However prints from processes running on remote machines will not show up on your console. To
be able to see the output from all processes, you have three options.

• pvm control program: Run the application from the pvm control program using the spawn

command. Giving the appropriate options will redirect all output from all processes in your
application to the console. See the following example, which starts a master process that
further spawns 3 worker processes.

24

pvm> spawn -1 -> psum 100 3

spawn -1 -> psum 100 3

[1]

1 successful

t40002

pvm> [1:t40002] Starting 3 copies of spsum

[1:t40003] Sending result back to master

[1:t40004] Sending result back to master

[1:t40002] I got 33 from 0

[1:t40002] I got 33 from 1

[1:t40003] EOF

[1:t40005] Sending result back to master

[1:t40002] I got 33 from 2

[1:t40002] The total is 99

[1:t40002] EOF

[1:t40004] EOF

[1:t40005] EOF

[1] finished

pvm>

• XPVM: If you are running the PVM application under XPVM, then the output from all
processes can be seen by going to the menu option Views --> Task Output, which shows
the output from the processes in a separate window.

• PVM daemon log: The PVM daemon maintains a log in the file /tmp/pvml.xxx, where
xxx is your numerical user id (find out your user id with the command id). This log file
contains the output from all the remote processes.

8.2 Using a debugger

Using the debugger is recommended when running a small number of processes. If you supply
the PvmTaskDebug flag in the function pvm spawn(...), it will attempt to start each task in a
separate window under the control of a debugger. The same effect can be achieved by clicking on
the PvmTaskDebug button in the Spawn subwindow in xpvm. Under LINUX the default debugger
is gdb. The default debugger can be changed by setting the PVM DEBUGGER environment variable.

9 How to Setup and use MPICH2 on your Linux PC or notebook

9.1 How to download and install MPICH2

• Download the tarball of the software from http://www-unix.mcs.anl.gov/mpi/mpich2/. Un-
pack it somewhere, say in /usr/local/src with the command:

cd /usr/local/src

tar xzvf mpich2-xyz.tar.gz

25

http://www-unix.mcs.anl.gov/mpi/mpich2

• Assuming that you have Sun Java installed in /usr/local/java, I recommend the following
steps tp build MPICH2.

mkdir /usr/local/src/mpich2

./configure --prefix=/usr/local/mpich2 --enable-mpe --enable-cxx \

--enable-romio --with-java-home=/usr/local/java/jre 2>&1 | tee configure.log

make 2>&1 | tee make.log

make install 2>&1 | tee install.log

• For more details on installation, please read the instructions in the README file in the
MPICH2 source.

• Add /usr/local/mpich2/share/man in the /etc/man.config file to enable viewing man
pages in KDE Konqueror.

9.2 Using MPICH2 on your computer

• Create MPI config file. Create the file ˜/.mpd.conf and enter one line that contains a
secret code word. The commands to do this are shown below. Remember to put your own
secret word in your file.

touch ~/.mpd.conf

echo "MPD_secretword=abracadabara" > ~/.mpd.conf

chmod 600 ~/.mpd.conf

• Setting up MPICH2. Assume that you installed MPICH2 in the folder
/usr/local/mpich2 on your computer. Then add the following at the end of your ~/.bashrc
file and source it with the command source ~/.bashrc (or log in again).

#--

MPICH2 setup

export PATH=/usr/local/mpich2/bin:$PATH

export MANPATH=/usr/local/mpich2/man:$MANPATH

#--

• Running a MPI program

– Start up the MPI daemon with the command: mpdboot &

– Next run your mpi program with the mpiexec command.

mpiexec -n 4 hello world

– Stop the MPI daemon with the command: mpdallexit

26

10 How to setup and use PVM on your Linux PC or laptop

10.1 Installing PVM

Most recent Red Hat Linux distributions (Red Hat 9, Red Hat Enterprise, Fedora Core 1, Fedora
Core 2 etc) already have PVM in their installation. To check if you have the PVM software already
installed, use the following command:

rpm -qa | grep pvm

If the PVM software is not installed, then find them on the install CDs. Each Red Hat install CD
typically has a directory named RedHat/RPMS/ that has all the RPM packages. Mount the CD that
has the pvm rpm packages, change directory to the right directory on the CD and then issue the
following commands as superuser:

rpm -ivh pvm*

Or if you are using the GUI, you can just double click on the pvm RPMs to install the packages.

We have created custom packages of the PVM software for these distributions that have some en-
hancements. We recommend that you replace the stock packages with the ones available on our web-
site. See the information on local PVM packages here: http://cs.boisestate.edu/˜amit/teaching/430/CS430.html#sec11

10.2 Setting up the Environment

• Become superuser and add the following lines at the end of the /etc/bashrc file in your
system. The following lines set up the environment for PVM for all users on the system.

#---

#

PVM (Parallel Virtual Machine) Setup.

#

PVM_ARCH=LINUXI386

export PVM_ARCH

PVM_ROOT=/usr/share/pvm3

export PVM_ROOT

MANPATH=$MANPATH:$PVM_ROOT/man

export MANPATH

PVM_DPATH=$PVM_ROOT/lib/pvmd

export PVM_DPATH

PATH=$PATH:$PVM_ROOT/lib:$HOME/pvm3/bin/$PVM_ARCH:

export PATH

XPVM_ROOT=/usr/share/pvm3/xpvm

export XPVM_ROOT

PVM_TMP=/tmp

export PVM_TMP

#---

Note that the following setup assumes that the PVM software is installed in the directory
/usr/share/pvm3, which is true on beowulf.boisestate.edu. If you want to setup PVM
on another system, find out where PVM is installed and adjust the directories as needed.

27

http://cs.boisestate.edu/~amit/teaching/430/CS430.html#sec11

Now you can either login again for these settings to take effect or source the /etc/bashrc

file for the setting to take effect immediately as shown below.

source /etc/bashrc

Test out your settings by typing the which pvm command. It should show the path to the
pvm control program.

[amit@kohinoor amit]:which pvm

/usr/bin/pvm

[amit@kohinoor amit]:

• You will also need to create some directories as follows.

mkdir ~/pvm3

mkdir ~/pvm3/bin

mkdir ~/pvm3/bin/LINUXI386

10.3 Running PVM programs

Running PVM programs on your PC or laptop is the same as on the cluster except you would not
be using the PBS system. You can use pvm console or xpvm directly. Note that all the processes in
your parallel program will run on your machine so you will not see any speedup (unless you have
more than one CPU!). However this is an excellent way to develop and test your code. You can
often resolve 90% to 95% of problems by running and testing on a single machine.

11 Documentation

Here are some sources of documentation:

• There are man pages for all MPI and PVM calls. For example, to read the man page for
MPI Send(), type:

man MPI Send

In the KDE desktop, you can use Alt+F2 to get a command window, where you can type
man:MPI Send to get the man page in hypertext.

• The entire PVM book is available for download from the class home page (under the Handouts
section). Checkout the PVM website for lots of info.

http://www.csm.ornl.gov/pvm/

• The MPI reference book is also available online at

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

28

http://www.csm.ornl.gov/pvm/
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

12 Dealing with obscure errors

1. If you see the following errors, then the pvm daemon is not running. You need to start the
pvm daemon using the pvm or xpvm control program.

[amit@kohinoor lab]: psum 100 2

Starting 2 copies of spsum

libpvm [pid12121] /tmp/pvmd.221: No such file or directory

libpvm [pid12121] /tmp/pvmd.221: No such file or directory

libpvm [pid12121] /tmp/pvmd.221: No such file or directory

libpvm [pid12121]: pvm_mytid(): Can’t contact local daemon

libpvm [pid12121] /tmp/pvmd.221: No such file or directory

libpvm [pid12121] /tmp/pvmd.221: No such file or directory

libpvm [pid12121] /tmp/pvmd.221: No such file or directory

libpvm [pid12121]: pvm_spawn(): Can’t contact local daemon

Trouble spawning slaves. Aborting. Error codes are:

TID -140

TID -130

TID -120

TID -110

TID -100

TID -90

TID -80

TID -70

TID -60

TID -50

TID -40

TID -30

TID -20

TID -117

TID 00

TID 10

libpvm [pid12121] /tmp/pvmd.221: No such file or directory

[amit@kohinoor lab]:

2. If you see the following error message(s):

[amit@onyx PBS ~]:xpvm

xpvm: Using list of machines from PBS.

libpvm [pid21054] mksocs() connect: Connection refused

libpvm [pid21054] socket address tried: /tmp/pvmtmp020154.0

Connecting to PVMD already running... libpvm [pid21054] mksocs() connect: Connection refused

libpvm [pid21054] socket address tried: /tmp/pvmtmp020154.0

libpvm [pid21054] mksocs() connect: Connection refused

libpvm [pid21054] socket address tried: /tmp/pvmtmp020154.0

libpvm [pid21054] mksocs() connect: Connection refused

libpvm [pid21054] socket address tried: /tmp/pvmtmp020154.0

libpvm [pid21054]: pvm_mytid(): Can’t contact local daemon

libpvm [pid21054]: Error Joining PVM: Can’t contact local daemon

29

This means that even though the PVM system thinks that the pvmd is running, the daemon
is not responding. This may happen because the system was rebooted (without a proper
shutdown) since you last started the pvmd daemon or at some point you unceremoniously
killed the pvm programs and daemon.

Check if your pvmd is still running using the following command.

pdsh -a ps -ax | grep pvmd

Kill all instances of the pvmd using he following command:

pdsh -a killall -9 pvmd

Then go to the /tmp directory and look for the files whose name starts with pvm. Remove all
such files that are owned by you. You can simply use:

pdsh -a rm -f /tmp/pvm*

Ignore warnings about failed deletes on other user’s pvm files. Now you should be able restart
the PVM daemon. You can use the command pvmclean to help you with this cleanup.

30

	Cluster Configuration
	Setup
	Working on the Cluster
	Accessing the cluster from a remote system
	Useful cluster commands
	Cluster Monitoring
	Parallel Shell

	Using Swarm to run multiple sequential programs
	Compiling Parallel Programs on the Cluster
	Compiling MPI programs on the cluster
	Compiling PVM programs on the cluster

	Running parallel programs interactively
	Acquiring nodes from the PBS system
	Running PVM programs
	Using the PVM console
	Using the XPVM GUI
	Using the pvmrun application

	Running MPI programs

	Running parallel programs in batch mode
	Getting ready to run PBS batch jobs
	Preparing a PBS batch job script
	Submitting a PBS batch job script

	Debugging PVM programs
	Using print statements
	Using a debugger

	How to Setup and use MPICH2 on your Linux PC or notebook
	How to download and install MPICH2
	Using MPICH2 on your computer

	How to setup and use PVM on your Linux PC or laptop
	Installing PVM
	Setting up the Environment
	Running PVM programs

	Documentation
	Dealing with obscure errors

