Beowulf Cluster Lab

Laboratory Experience

The Beowulf Cluster has 61 nodes: the master node is beowulf (also known as node00 inside
the cluster), the compute nodes are node01, node02, ..., node60. The master node is mainly
used for monitoring the cluster and for submitting jobs while the compute nodes do the real
work.

In this exercise, we will work through some of the basics of using a cluster and running
parallel programs. A more detailed users guide for the Beowulf Cluster Lab is at:

http://cs.boisestate.edu/ amit/research/beowulf/lab-notes/lab-notes.html

There are currently three popular libraries for developing parallel programs: PVM, MPICH-
MPI and LAM-MPI. All are supported in the Beowulf Cluster Lab. We also use the PBS
batch system to control allocation of nodes to users.

1 Laboratory Session

1.1 Part 1

1. Login in to any workstation in the ET213-214 lab using the account and password
provided to you.

2. Login to the master node, beowulf, using the command ssh in the console window as
shown below:

ssh yourlogin@beowulf.boisestate.edu
3. Change your password using the command: passwd

4. Browsing files. Type in the command filebrowser to bring up a graphical file
browser for your beowulf account. The browser is useful for looking at your home
directory and doing simple editing.

5. Setting up Email Forwarding. In the file browser, select the View menu, then
select Show Hidden Files option. Now find the file named .forward and double click
on it to edit it. When the file opens in the editor, type in your preferred email address
on the first line. Then save the file. If you want to forward your email to more than
one account, then type in extra email addresses separated by commas. Next, select
View menu and then unselect Show Hidden Files.

6. Cluster monitoring. Click your mouse back in the beowulf console. Here we will try
a few cluster monitoring commands. Try the following commands.

e cchk: Check the status of the cluster nodes.



e cdate: Check the time on each node of the cluster.

e cfree: Check the amount of memory available on the cluster.

e cmips: Check the amount of computing power of the cluster.

e cdisks: Check the amount of disk space available on the cluster.
e ctemp: Check the temperature of the cluster CPUs.

e xpbsmon &: Starts up a GUI program that lets you watch the allocation status
of the cluster. Green means a node is free.

7. Cluster control with parallel shell. The pdsh shell is a simple parallel shell that

10.

11.

is useful for doing tasks across the cluster. The utility dshbak helps with sorting the
output from pdsh. Try the following commands: pdsh -a date

pdsh -a uptime

pdsh -a ps augx | grep ‘whoami-®

pdsh -w node[16-26] who

pdsh -w node[16-26] who | dshbak

Finding out how many nodes are available. The command freenodes tells you
the number of free nodes that are available for running your programs. Remember
that each node has two CPUs. Try the commands freenodes and freenodes -v.

Acquiring nodes for running programs. Acquire 8 nodes using the command:
pbsget -6

Check the nodes allocated to you with the command gstat -n. In general, you can use
the command gstat -a to get a quick summary of everything running on the system

Running parallel programs interactively. Here we will show how to run parallel
programs that use PVM, LAM-MPI and HPF. Let us first run a PVM program. The
source for the program is under the directory examples/parallel sum/PVM/C. We will
use the command pvmrun to run our PVM program as shown below.

pvmrun -np 12 spmd_sum 20000000

To run a LAM-MPI program, use the following commands:

lamsetup

lamboot

cd “/examples/parallel_sum/MPI
mpirun -np 12 spmd_sum_mpi 20000000
lamhalt

To run the HPF version of the sum program, use the command:



12.

13.

14.

15.

16.

mpichsetup
cd “/examples/parallel sum/HPF
mpirun -np 12 sum -pghpf -np 12

Note that we are specifying 12 tasks to be run even though we acquired 6 nodes on
the cluster. This is because each node on the cluster has two CPUs and we want to
make use of all the CPUs that we were allocated.

Running parallel programs in batch mode. Normally, you will be running your
big jobs in batch mode. This is convenient for several reasons. You can just submit
the job and logout of beowulf. You will get informed by email when you job completes.
Also there is a time limit of 1 hour for interactive PBS jobs. For batch jobs the default
time limit is 24 hours (which can be extended by using PBS options in your batch file).

Look at the psum.pbs batch script in the directory ~/examples/parallel _sum/PVM/C.
(Just click on the file in the file browser or use the edit command from the console)
We will submit psum.pbs to run in batch mode. You don’t need to acquire nodes for
this purpose since the script acquires the nodes when it runs. Use the command shown
below. It names the job astest1.

gsub -N testl psum.pbs

Checking on the status of the job abd the output. Use the command gstat
-a and you should see your job listed. Once the job completes, the output should be
in the files test1.0<jobid> and testl.e<jobid>. Check those files.The PBS system
also will send you an email at the beginning and end of the job if the PBS script has
the appropriate settings (see the third line in our example)Check your email. If you
forward your email from beowulf, then you will see the emails at your regular email
address.

Checking your usage of the cluster. The command pbs_usage shows you how
much you have used the cluster in the current month. To get the total usage for all
months, use the command pbs_usage -t.

Compiling a parallel PVM program. Change directory to the
examples/parallel sum/PVM directory. Build the spmd_sum program using the aimk
command:

cd “/examples/parallel_sum/PVM/C
aimk spmd_sum

Similarly, we have provided C++/F77 versions of the PVM sum program.
Compiling a parallel HPF program. Change directory to the

examples/parallel sum/HPF directory. Build the sum program using the make com-
mand:

cd “/examples/parallel sum/HPF
make sum



17. Compiling a parallel LAM-MPI program. Change directory to the
examples/parallel sum/MPI directory. Build the sum program using the make com-
mand:

cd ~/examples/parallel sum/MPI
make spmd_sum_mpi

2 Part 2

In Part 2, we will get some experience with xpvm visualization environment for a parallel
PVM program.

1. Acquire nodes from PBS. Acquire 4 nodes from the cluster.

pbsget -4

2. Start up XPVM by typing in xpvm. It should show five machines in your virtual parallel
machine. We are going to run a parallel program without looking at the source code
first. Under the Views... menu, click on Utilization to open a cluster utilization window.
Also under Views... menu, click on the Message Queue choice to open another window
that shows queue length at each node and finally under the Views menu also select the
Task Output choice to get a window that shows the output from the program.

3. Go to Tasks... menu, then click on Spawn option to get the spawn window. In the
Command: field you can type in the name of your program, 1b_demo. It takes no
command line arguments. Next select the PvmHostCompl button. Then select the
Host button. A new field labeled Host will show up. Type the internal name of the
master node:node00. The purpose of the last two steps is to ensure that the PVM
processes are not scheduled on the master node. Next type in the number of SPMD
tasks you want to spawn in the NTasks field (4 in our case). Finally click on the Start
button to start the parallel program.

4. While the demo is running, we can monitor various properties of the parallel program.

5. Note that you can zoom in the visualization by pressing the middle mouse button and
dragging across the area in the visualization that you want to zoom in. Similarly,
clicking on the right mouse button zooms out.

6. What inferences can you draw about the parallel program 1b_demo?

7. Once you are done then halt the PVM system. To halt PVM, go to the File menu and
then select Halt PVM choice. Then exit out of the PBS session.



3 Working from your computer

3.1 Setup

If you are using Linux on your computer, then you will follow exactly the same steps as
above to connect to beowulf and use it.

If you are using MS Windows, then you will need to install the Cygwin package. The you
can use ssh to connect to beowulf. All the graphical tools that we have used will work as
usual.

If you are using MAC OS X, then you will need to install the X11 server/client athat comes
with MAC OS X distribution. Once you start the X11 server/client, then you can use ssh
to connect to beowulf. All the graphical tools that we have used will work as usual.

3.2 Copying files from/to the cluster
3.2.1 Command Line tools

From a console, use the scp command. For example, to copy a program progl.c from your
current directory to the directory programs on your account on beowulf, use:

scp progl.c beowulf:programs/
To copy an entire directory recursively, use the -r option. For example:

scp -r project beowulf:

3.2.2 Graphical File Transfer Programs

For Linux, use the konqueror file browser. In the address field, simply type in the ad-
dress:sftp://yourlogin@beowulf.boisestate.edu, where yourlogin is your login name
on the cluster. After that you can use the Window menu and select Split View Top/Bottom.
Now click your mouse on the bottom window and then click on your Home icon. This will
give you half a window on your local machine and the other on beowulf. Now you can
simply drag and drop your files in either direction.

For MS Windows, you can download a graphical SSH client (which includes a graphical File
Transfer client) from http://www.ssh.com.



