Boise State Beowulf Cluster

Amit Jain

amit@cs.boisestate.edu Computer Science College of Engineering Boise State University

Project Goals

- Establish a resource for researchers on campus with large computing needs.
- Help researchers convert their programs to run on the cluster.
- Research performance bottlenecks.
- Develop tools to improve the usability of clusters.

The Beowulf Cluster Lab is funded by the National Science Foundation Major Research Infrastructure Award No. 0321233.

Cluster Specifications

The main Beowulf Cluster (beowulf.boisestate.edu)

- 61 nodes
- 122 2.4 GHz Intel Xeon processors
- 64GB RAM
- 2.4 TB disk space
- private Gigabit network
- Gigabit connection to the campus backbone

Other clusters:

- 6 processor developmental cluster (tux.boisestate.edu)
- 32 processor teaching cluster (onyx.boisestate.edu)

Beowulf Cluster Lab

BEOWULF CLUSTER LAB

Cluster Hardware

Compute nodes (about \$1400/node for 64 nodes = \$90,000)

- Tyan i7505 S2665ANF dual-533 MHz FSB
- dual 2.4 Ghz Intel Xeon CPUs with 512K Cache 533MHz FSB
- 2 x 512MB Micron Technology Memory Module 184-pin DIMM PC2100 DDR 266 MHz, unbuffered, non-parity
- Samsung SP4002H disk drives, 80GB 7200RPM ATA100
- HP Broadcom NetXtreme 5782 Gigabit card
- Antec 1080 Plus AMG case with Antec True Power 550W Supply
- Master node: same, except with 4GB RAM and SATA drives with RAID

Networking: (about \$12,000)

• 3 x Cisco 3750G 24-port Stacking Cluster Gigabit Switches with redundant power supply

Facilities: Liebert A/C, power setup to handle up to 300 Amps (\$29,000)

Cluster Architecture

32000 MBits/sec link

Each Compute Node: dual 2.4 GHz Xeons, 1GB RAM, 80GB ATA100 drive Gigabit Switch: Cisco 24-port Gigabit stacking cluster switch

Cluster Software

- Red Hat Linux 9.0 with custom 2.4.24 -bigmem SMP kernel (Fedora Core 1 Linux with stock kernel on the cluster used for teaching)
- Portable Batch Scheduling for job scheduling
- Parallel Programming Libraries and Tools
 - PVM, MPICH/MPI, LAM/MPI
 - XPVM and XMPI
- Portland Group Cluster Development Toolkit
 - HPF, Fortran 90, Fortran 77, C, C++
 - Parallel graphical debugger
 - Parallel graphical profiler
- GNU C, C++ and Fortran 77 compilers and related tool set like ddd (Data Display Debugger)
- Full suite of other tools available under Linux.

Cluster Setup Experiences

- YACI (Yet Another Cluster Installer) was used for automated installation. The 61- node cluster went from bare disks to fully operational in 12 minutes! YACI is available from Larwence Livermore National Lab.
- Design choice to go with boxes instead of blades since cooling boxes is easier and real estate was a relatively smaller issue.
- Evaluated AMD Athlon, AMD Opteron, Intel Xeon for Performance/Power/Price (PPP) factor to choose Intel Xeons.
- Chose to go with a regular PC assembler rather than a "cluster" company to keep costs down and have more control of what goes in each node.

People

- Faculty: Amit Jain (Computer Science) and Paul Michaels (Geophysics)
- Graduate Students: Kevin Nuss, Hongyi Hu and Mason Vail
- Undergraduate Students: Joey Mazzarelli, Brady Catherman, Luke Hindman, Charles Paulson, Jason Main and Oralee Nudson.

The project uses a model of teaming up computer scientists with researchers from other fields to create a synergistic environment.

Projects

Some applications running on the cluster.

- *Air Quality Modeling*. Paul Dawson (Mechanical Engineering), Kevin Nuss and Charles Paulson.
- Modeling of Ocean Currents. Jodi Mead (Mathematics) and Hongyi Hu.
- *Waveform Relaxation*. Barbara Zubik-Kowal (Mathematics) and Hongyi Hu.
- *Hydraulic Tomography*. Tom Clemo (Geophysics) and Kevin Nuss.
- *Bioinformatics: Bayesian Analysis of Phylogeny*. James Smith (Biology) and Amit Jain.
- *Basic Seismic Utilities* package. Paul Michaels (Geophysics) and Amit Jain.
- *Biologically Inspired Computing*. Crowley Davis Research (private company)

Design Patterns

Gossip (All-to-all communication)

Distributed Queue (Large data set)

Projects (contd.)

- *Clusmon*. A comprehensive web-based cluster monitoring software. (Joey Mazzarelli, Computer Science senior)
- *Remote Power Control.* A cluster of smart power strips to enable remote hard power on/off, cascaded power on/off etc. (Brady Catherman, Computer Science junior)
- *Parallel Shell*. A more capable parallel shell for system administration. (Mason Vail, Computer Science graduate student)

Clusmon: Cluster Monitor

this page was generated in about 0.0225 seconds with 3 database queries.

Clusmon: Cluster Monitor

•	🥻 ClusMon - Beowu	lf Cluster Web	System Monitor - Mozilla				
<u>Eile</u>	Edit <u>V</u> iew <u>G</u> o <u>B</u> ookr	marks <u>T</u> ools	<u>W</u> indow <u>H</u> elp				
Q		http://t	ux.boisestate.edu/clusmon/node	s.php			💿 🔍 Search 🛛 🍕 🏢
🐔 Ho	me 🖾 Bookmarks 🛇	- Google 🔗 Ye	llow Pages 🛇 Local Weather 🔗	₩BR-G54 TOP STIAA-CREF SULS, Bank Inter	n		
10	Contraction of the local	C	MON				NODE LIST
	beowulf duster monito	or	LUSIMON				
							2004-10-22 08:53:21
	NODE LIST	UPTIME	MEMORY.	NETWORK	CPU LOAD	TEMP	FANSIUP
0	node00 at 3% 192.168.1.100	2416394	Used Memory: 2010800 0.56% of total	0 (in) + 72 (out) = 72 kb 14.40 kbps	0% 1 jobs	CPU1: 27 degrees CPU2: 24 degrees	* * * * * * *
0	node01 at 32% 192.168.1.101	10454729	Used Memory: 131520 0.13% of total	3 (in) + 0 (out) = 3 kb 0.60 kbps	50% 2 jobs	CPU1: 36 degrees CPU2: 23 degrees	* * * * * *
0	node02 at 0% 192.168.1.102	-1	Used Memory: 0 0% of total	0 (in) + 0 (out) = 0 kb 0.00 kbps	0% 0 jobs	CPU1: 0 degrees	
\bigcirc	node03 at 32% 192.168.1.103	10455012	Used Memory: 129388 0.13% of total	0 (in) + 0 (out) = 0 kb 0.00 kbps	50% 2 jobs	CPU1: 38 degrees CPU2: 24 degrees	* + * * * * *
0	node04 at 34% 192.168.1.104	10454991	Used Memory: 129064 0.12% of total	3 (in) + 0 (out) = 3 kb 0.60 kbps	50% 2 jobs	CPU1: 42 degrees CPU2: 26 degrees	* * * * * *
0	node05 at 34% 192.168.1.105	104549 <mark>5</mark> 6	Used Memory: 129800 0.13% of total	3 (in) + 2 (out) = 5 kb 1.00 kbps	50% 2 jobs	CPU1: 35 degrees CPU2: 33 degrees	* + * * + *
0	node06 at 312% 192.168.1.106	10454825	Used Memory: 505660 0.49% of total	779034 (in) + 219340 (out) = 998374 kb 199674.80 kbps	95% 3 jobs	CPU1: 42 degrees CPU2: 35 degrees	* + * * + *
\bigcirc	node07 at 64% 192.168.1.107	10454969	Used Memory: 512500 0.50% of total	0 (in) + 0 (out) = 0 kb 0.00 kbps	95% 3 jobs	CPU1: 38 degrees CPU2: 36 degrees	* + * * * * *
0	node08 at 103% 192.168.1.108	10454979	Used Memory: 525156 0.51% of total	159409 (in) + 0 (out) = 159409 kb 31881.80 kbps	95% 3 jobs	CPU1: 38 degrees CPU2: 34 degrees	* * * * * * X
0	node09 at 66% 192.168.1.109	10454887	Used Memory: 520424 0.50% of total	698332 (in) + -1776452 (out) = -1078120 kb -215624.00 kbps	95% 3 jobs	CPU1: 41 degrees CPU2: 39 degrees	* + * * + *
0	node10 at 261% 192.168.1.110	10454692	Used Memory: 521640 0.51% of total	0 (in) + 779649 (out) = 779649 kb 155929.80 kbps	95% 3 jobs	CPU1: 46 degrees CPU2: 42 degrees	* * * * * * *
0	node11 at 65% 192.168.1.111	8201685	Used Memory: 503536 0.49% of total	0 (in) + 0 (out) = 0 kb 0.00 kbps	95% 3 jobs	CPU1: 40 degrees CPU2: 36 degrees	* + * * + *
0	node12 at 255% 192.168.1.112	8201553	Used Memory: 504716 0.49% of total	0 (in) + 762425 (out) = 762425 kb 152485.00 kbps	95% 3 jobs	CPU1: 43 degrees CPU2: 38 degrees	*****
0	node13 at 65% 192.168.1.113	8201672	Used Memory: 520652 0.50% of total	0 (in) + 0 (out) = 0 kb 0.00 kbps	95% 3 jobs	CPU1: 41 degrees CPU2: 35 degrees	* + * * + *
0	node14 at 66%	8201564	Used Memory: 521016 0 50% of total	0 (in) + 0 (out) = 0 kb 0 00 kbps	95% 3 jobs	CPU1: 42 degrees CPL12: 37 degrees	*****

Remote Power Control

Cluster Statistics

- 1179 jobs since July, adding up to about 88000 CPU-hours.
- Average CPU temperatures: 77F at low load and 100F at full load. The A/C is set to 65F with tolerance of 4F.
- Hardware failures: Extremely low...
 - One disk drive failed right after installation.
 - The memory for one node failed.
- Only one unscheduled "downtime" in the last three months. The A/C compressor was cycling more than the factory set limit. As a result, it shut itself off. The CPU temperatures still remained below 115F after several hours! (as the air flow was maintained) The cluster was shut down as a precaution. The solution was to simply set a higher tolerance (4 degrees instead of 2 degrees)
- The experiences gained in this project were used to help Geophysics set-up a 10 processor cluster and Mathematics a 20 processor cluster.

Further Work

- Integrate Beowulf clusters with Condor grids.
- Develop a complete catalogue of programs illustrating each design pattern in PVM and MPI.
- Continue to team with researchers to help get their code up and running on clusters.