

CHARACTER RECOGNITION USING FOURIER

DESCRIPTORS

by

Jared A. Hopkins

A project

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

April 2006

c© 2006
Jared A. Hopkins

ALL RIGHTS RESERVED

The project presented by Jared A. Hopkins entitled Character Recognition Using

Fourier Descriptors is hereby approved.

Tim Andersen, Advisor Date

Elisa Barney Smith, Committee Member Date

Amit Jain, Committee Member Date

John R. Pelton, Graduate Dean Date

ACKNOWLEDGEMENTS

I would like to thank the members of my committee for their excellent help. I

would also like to thank my family for their support.

This material is based upon work supported by the National Science Foundation

under Grant No. 0321233.

iv

ABSTRACT

A set of features for performing optical character recognition of bi-tonal images is

implemented within the Gamera framework. The features are based on the Fourier

Descriptor but include a method which allows classification of images which contain

multiple boundaries. This is accomplished by assigning to each character image a

signature which encodes the boundary types that are present in the image as well as

the positional relationships that exist between them. This allows a boundary-wise

comparison of different images to be accomplished using their Fourier Descriptors.

Under this approach, only images having the same signature are comparable. This

fact in turn affects the architecture of exemplar-based classifiers which use these

features. Effectively, a meta-classifier is used which first computes the signature of

an input image and dispatches the image to a classifier which is trained to recognize

images having that signature. The implementation is carried out by extending the

functionality of Gamera, an existing open-source framework for building document

analysis applications. The features are then tested by implementing a fuzzy-knn

and a neural-network classifier based on them. The fuzzy-knn classifier achieves an

estimated generalization accuracy of 94%, which is the best rate yet achieved on

the particular data set used. The neural-network classifier achieves an estimated

generalization accuracy of 91%.

v

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

2 BACKGROUND . 4

2.1 Related work . 4

2.1.1 Fourier Descriptors . 4

2.1.2 Sequence Matching . 7

2.1.3 Optical Character Recognition 9

2.2 Gamera . 12

2.3 C++ Templates . 12

3 PROJECT . 15

3.1 Gamera . 16

3.2 Neural Network . 17

3.3 Neural-Network Based Classifier . 21

3.4 Fuzzy-KNN Based Classifier . 22

3.5 Training Data Format . 23

3.5.1 SDF File Format . 23

3.5.2 SDF Image Format . 25

3.6 Features . 26

vi

3.6.1 Pre-Processing . 37

3.7 Reconstruction of Images From Features 39

3.8 Advantages of Features . 43

3.9 Disadvantages of Features . 45

4 EXPERIMENT & RESULTS . 46

4.1 Training Data . 46

4.2 Experimental Setup . 47

4.2.1 Feature Extraction Parameters 47

4.2.2 Fuzzy-KNN Configuration . 48

4.2.3 Neural-Network Configuration 48

4.3 Training Result . 49

4.3.1 Accuracy . 50

4.3.2 Error Correlation . 50

4.4 Weighted Voting . 52

4.5 Other Techniques . 53

4.5.1 Dictionary Lookup . 53

4.6 Implementation Results . 82

4.6.1 Hardware Configuration . 82

4.6.2 Software . 82

5 CONCLUSION . 83

5.1 Future Directions . 84

REFERENCES . 85

vii

LIST OF TABLES

3.1 The SDF File Layout. 24
3.2 The Image Header Layout . 25

4.1 Feature Extraction Parameters . 48
4.2 Dictionary Lookup Error Bounds . 54
4.3 Error Correlation for k = 1, m = 1.2 55
4.4 Error Correlation for k = 1, m = 1.5 56
4.5 Error Correlation for k = 1, m = 2 57
4.6 Error Correlation for k = 1, m = 2.5 58
4.7 Error Correlation for k = 3, m = 1.2 59
4.8 Error Correlation for k = 3, m = 1.5 60
4.9 Error Correlation for k = 3, m = 2 61
4.10 Error Correlation for k = 3, m = 2.5 62
4.11 Error Correlation for k = 5, m = 1.2 63
4.12 Error Correlation for k = 5, m = 1.5 64
4.13 Error Correlation for k = 5, m = 2 65
4.14 Error Correlation for k = 5, m = 2.5 66
4.15 Error Correlation for k = 7, m = 1.2 67
4.16 Error Correlation for k = 7, m = 1.5 68
4.17 Error Correlation for k = 7, m = 2 69
4.18 Error Correlation for k = 7, m = 2.5 70
4.19 Error Correlation for k = 9, m = 1.2 71
4.20 Error Correlation for k = 9, m = 1.5 72
4.21 Error Correlation for k = 9, m = 2 73
4.22 Error Correlation for k = 9, m = 2.5 74
4.23 Error Correlation for k = 11, m = 1.2 75
4.24 Error Correlation for k = 11, m = 1.5 76
4.25 Error Correlation for k = 11, m = 2 77
4.26 Error Correlation for k = 11, m = 2.5 78
4.27 Fuzzy-KNN Accuracy . 79
4.28 NN Accuracy . 80
4.29 Neural Network Error Correlation . 81

viii

LIST OF FIGURES

3.1 An image containing a single connected component 27
3.2 The curve representation of the example image 28
3.3 The curve representation of the example image, with centroids 30
3.4 The curve ordinals of the pair of curves associated with a lowercase “i”. 31
3.5 The curve ordinals of a pair of curves associated with a lowercase m. 32
3.6 Original image boundaries of a “B” 40
3.7 Reconstruction of a “B” from high-resolution feature data 41
3.8 Reconstruction of a “B” from medium-resolution feature data 42
3.9 Reconstruction of a “B” from low-resolution feature data 43
3.10 Zero-phase points on different instances of the same character class. . 44

ix

1

Chapter 1

INTRODUCTION

Optical Character Recognition (OCR) is an important application of pattern classifi-

cation. There are many documents of historical, technical, and economic importance

which exist only in printed form. OCR can help to reduce the cost of digitizing these

documents. There exist many successful OCR techniques which have been applied to

areas such as handwriting recognition, recognition of mechanically printed text, and

recognition of musical notes. Such applications have been carried out in the context

of bi-tonal as well as gray-scale images. These systems employ a large number of

different image features and many of them make use of multiple features in order to

obtain good performance. Descriptions of features commonly used for OCR can be

found in [1], [2], [10], [14], [15], [19], and [20]. When evaluating the usefulness of a

feature set it is important to look not only at the accuracy of a classifier based on

it, but also at the correlation between errors made by the classifier and those made

by a classifier which uses an independent set of features. If two classifiers are found

which have a low error correlation then it may be possible to combine them in order

to attain a classification accuracy greater than either classifier alone can provide.

This project develops a new set of image features and investigates their use for

2

performing OCR on bi-tonal images. Fuzzy-knn and neural-network based classifiers

are constructed and their performance is compared to that of an independent neural-

network-based classifier which makes use of a completely different feature set. In

addition, the error correlation between each pair of classifiers is measured.

The goals of this project are to develop a set of image features for performing

OCR on bi-tonal images and to develop image-processing software for handling the

features, including neural-network and fuzzy-knn based classifiers. The features need

to perform well and should differ from those typically used for OCR, with the intention

that the errors made by classifiers based on them will not be highly correlated with

those made by existing classifiers. In addition, the software is integrated with the

Gamera framework and made available as an open-source project.

The project has achieved these goals and represents a significant contribution in

the following areas of OCR:

1. Theoretical Contribution: New image features were developed which are

based on Fourier Descriptors. The features are novel and different from typical

features used for OCR.

2. Material Contribution:

(a) An open-source software library for extracting the features from images

was created and made publicly available.

(b) Open-source software was created which implements fuzzy-knn and neural-

3

network based classifiers, both of which use the new image features to

perform OCR.

(c) This software was integrated into an existing open-source framework for

document processing research.

3. Experimental Results: It was experimentally verified that the features have

the desired attributes of good performance and, in addition, have errors which

are not highly correlated with those of classifiers making use of other features.

4

Chapter 2

BACKGROUND

This chapter covers related work in optical character recognition and in applications

of the Fourier Transform that are similar to those presented in this paper. It covers

the Gamera [22] framework and discusses the use of C++ templates within that system.

2.1 Related work

2.1.1 Fourier Descriptors

The term “Fourier Descriptor” describes a family of related image features, origi-

nally introduced by Cosgriff [17]. Generally, the term refers to the use of a Fourier

Transform to analyze a closed planar curve. In the context of OCR, the curve is gen-

erally derived from a character boundary. Since each of a character’s boundaries is a

closed curve, the sequence of (x, y) coordinates which specifies the curve is periodic.

This makes it ideal for analysis with a Discrete Fourier Transform. There are several

variations of Fourier Descriptor features. The method developed in this project is

most similar to the Elliptic Fourier Descriptors used by Kuhl and Giardina [6]. This

method involves applying separate Fourier transforms to the sequence of x compo-

nents and the sequence of y components of each curve. The formulation used by Zahn

5

and Roskies [3] is to apply the Fourier Transform to the function which gives the total

angular change between a point on the curve and some fixed starting point on the

curve. The method used by Granlund [7] is to apply the transform to the sequence

of complex numbers formed by x + i y, where the point on the curve is (x, y).

The features used in [6] and [3] allow the curve to be reconstructed exactly from

the feature vector, provided that all components of the transform are saved. It is

not typically necessary to do this, however, as most of the information about typical

curves is contained in the low frequency components of their transforms. Similarly,

the features investigated in this project are formed by saving only a fixed number of

the low-frequency components of the transform. None of the prior works discussed

here provide a means to handle images which contain multiple curves. In contrast, the

features investigated in this project can be applied to images containing an arbitrary

number and arrangement of curves.

The Descriptors of Kuhl and Giardina

The features used in [6] are formed from closed, piecewise continuous, planar curves.

Each curve comprises line segments chosen from the following set of 8 vectors, repre-

sented in phasor notation:

{[

1 +

√
2 − 1

2

(

1 − (−1)i
)

]

6
π

4
i : iε {0, 1, 2, 3, 4, 5, 6, 7}

}

(2.1)

The Fourier Transform is applied separately to the x and y projections of the

6

curves. Kuhl and Giardina apply their features to the problem of classifying 2-

dimensional projections of 3-dimensional objects.

The Descriptors of Zahn and Roskies

The features used in [3] are constructed as follows:

1. Let C be a clockwise parameterization of a curve in terms of its arc-length,

beginning at an arbitrary point, C(0). This implies that
∣

∣

∣

∂C(l)
∂l

∣

∣

∣ ≡ 1. Let the

total arc-length of the curve be L.

2. Let θ(l) be the angular direction of the vector ∂C(l)
∂l

.

3. Let φ(l) be the total angular change between C(l) and C(0). Thus:

φ(l) = θ(l) − θ(0) (mod 2π) (2.2)

4. Let φ∗ (l) = φ
(

Ll
2π

)

+ l. Note that φ∗ (0) = 0 and φ∗ (L) = −2π hold for any

closed curve. The domain of φ∗ is [0, 2π]. Also, note that φ∗ (0) = 0 and

φ∗ (2π) = 0, and that φ∗ ≡ 0 when the curve is a circle.

The feature vector is formed by computing the Fourier Transform of φ∗ over the

domain [0, L] and discarding all but some specified number of the transform’s low-

order coefficients.

7

The Descriptors of Granlund

The features used in [7] are constructed as follows:

1. Given a curve, C, let (x (t) , y (t)) be the position, at time t, of a point moving

on C with constant velocity and period 2π. Define u (t) as follows:

u (t) = x (t) + i y (t) (2.3)

2. Define an as follows:

an =
1

2π

∫ 2π

0
u (t) e−ntidt (2.4)

3. Let dm,n be defined as follows:

dm,n =
a1−m

n
gcd(m,n) a1−n

m
gcd(m,n)

a1

m+n
gcd(m,n)

(2.5)

4. The feature vector for a given curve is defined to be [d1,1 d2,2 d2,1 d1,2 d3,1 d1,3 d4,4].

2.1.2 Sequence Matching

Similar uses of the Fourier Transform to reduce the dimensionality of a numeric

sequence can be found in applications where the sequence is derived from a data

source other than an image. For example, if the price of a particular good is measured

8

at uniform time intervals, the resulting sequence of prices often shows variation over

large time intervals which is much higher in magnitude than any variation shown over

small time intervals. This means that the Fourier Transform can be applied to such

sequences and then truncated in order to reduce their dimensionality without losing

the bulk of the information that they contain.

Sequence matching refers to the following scenario: Given a database of sequences

and a query sequence, we wish to find all sequences in the database which are within

some distance ε of the query sequence according to a Euclidean distance metric. An

application of the Fourier Transform to sequence matching is given in Agrawal [16].

Agrawal, Faloutsos, and Swami apply the Fourier Transform to their sequences to

reduce their dimensionality under the assumption that the low-frequency components

of the transform will typically carry most of the sequence’s information. If the number

of transform components saved is kept small enough then an approximate search on

them can be carried out efficiently using any of a variety of multidimensional data

structures. Since many of the high-frequency components are ignored by this search

it can produce incorrect matches which must be removed in a later step. However, the

fact that the low-frequency components tend to describe the sequence well means that

such false matches will be few in number. In addition, Parseval’s theorem guarantees

that the Euclidean distance between any pair of sequences is the same as the distance

between their corresponding transforms. This allows the results of a similarity search

carried out using the frequency components to be meaningful within the time (or

9

spatial) domain.

2.1.3 Optical Character Recognition

There exist many features and classification methods which are useful for performing

OCR. A few of the most common techniques are briefly discussed here. For a survey

of OCR techniques see [14].

Template Matching

Template matching is an image classification technique which attempts to match an

input image against a database of template images in order to find the template

images which are most similar to it. Various measures of similarity are possible. In

all cases the matching is performed at the pixel level rather than being based on

features extracted from the image. Thus, the template and input images must have

the same dimensions in order to be comparable at all. Some pre-processing such as

scaling or augmentation may be needed in order to ensure that the template and

input images have the same dimensions. Examples of similarity measures used are:

1. Minkowski distance: The Minkowski distance (or dissimilarity), M, between

two images a and b, each containing N pixels, is given by Equation (2.6), where

a (xi, yi) and b (xi, yi) give, respectively, the value of the pixel at coordinate

(xi, yi) in images a and b. Higher values of M imply a lower degree of similarity

between the two images. Note that this metric can be applied to both gray-scale

and bi-tonal images.

10

M = p

√

√

√

√

N
∑

i=1

(a (xi, yi) − b (xi, yi))
p (2.6)

2. Yule’s Q statistic [8]: If A and B are sets then Yule’s Q statistic gives a measure

of correlation between them which is shown in Equation (2.7). In the case of

matching a pair of bi-tonal images, a and b, the sets A and B contain the

coordinates (x, y) at which images a and b, respectively, have a darkened pixel.

Higher values of Q imply a greater degree of similarity between the two images.

Note that this measure applies to bi-tonal images only.

Q =
|A ∩ B|

∣

∣

∣A ∩ B
∣

∣

∣ −
∣

∣

∣A ∩ B
∣

∣

∣

∣

∣

∣A ∩ B
∣

∣

∣

|A ∩ B|
∣

∣

∣A ∩ B
∣

∣

∣ +
∣

∣

∣A ∩ B
∣

∣

∣

∣

∣

∣A ∩ B
∣

∣

∣

(2.7)

3. Jaccard distance, shown in Equation (2.8) can be used to measure the similarity

between two bi-tonal images. Higher values of J imply a greater degree of

similarity between the two images.

J =
|A ∩ B|

|A ∩ B| +
∣

∣

∣A ∩ B
∣

∣

∣ +
∣

∣

∣A ∩ B
∣

∣

∣

(2.8)

Geometric Moments

Template matching is a classification technique which uses the input image directly. In

contrast, geometric moments can be used to build a set of image features which can be

given as input to any of a variety of general-purpose classification methods. Geometric

11

moment invariants were originally proposed as features for image classification by

Hu [13]. Each geometric moment µp,q, of image a, of order p + q, about the point

(x, y) is computed according to Equation (2.9). Various functions of the moments µp,q

can then be defined which are invariant under certain transformations such as scaling

and rotation. These invariants can be used as features for image classification. For

example, Hu [13] demonstrated that (2.10) is invariant under image scaling. Functions

of geometric moments which are invariant under general linear transformations can

be found in Reiss [19].

µp,q =
N

∑

i=1

a (xi, yi) (xi − x)p(yi − y)q (2.9)

µp,q

µ0,0
1+ p+q

2

(2.10)

Zernike Moments

Zernike moments are features constructed by viewing an image as a function of two

variables and projecting it onto the orthogonal basis formed by the family of functions

Vp,q (ρ, θ). These are given in [9] and are shown in Equation (2.11), where:

1. p is a non-negative integer

2. q is an integer less than or equal in magnitude to p such that p − |q| is even

3. (ρ, θ) εR × [0, 2π)

12

The Zernike basis functions are orthogonal but not orthonormal [9].

Vp,q (ρ, θ) = exp (iqθ)

p−|q|
2

∑

s=0

(−1)s (p − s)!

s!
(

p+|q|
2

− s
)

!
(

p−|q|
2

− s
)

!
ρp−2s (2.11)

2.2 Gamera

Gamera [22] is an extensible framework for developing document analysis applications.

It was developed at the Digital Knowledge Center at Johns Hopkins University by

Michael Droettboom, Ichiro Fujinaga and Karl MacMillian. It provides a library of

image processing algorithms as well as a graphical user interface framework. Gamera

is based on the object-oriented language Python [23]. Python is interpreted and

provides dynamic typing which makes it suitable as a “glue” language as well as

for interactive scripting. Gamera provides a facility for creating plug-ins via C++

templates which can be leveraged from Python. This allows performance-critical

algorithms to be implemented efficiently in C++ while allowing them to be utilized

from a scripted environment.

2.3 C++ Templates

The Gamera framework is capable of handling various image formats in a way that is

relatively seamless to the user. In addition, most image processing algorithms can be

implemented more efficiently in C++ than in Python. This means not only that the

13

image processing algorithms in Gamera must be implemented in C++, but that the

C++ code must be specialized for different image formats. C++ templates and function

overloading provide a natural way to accomplish this by allowing the following two

scenarios to be handled in a way that is transparent to the code which is calling the

image processing algorithm (in this case, the Gamera build system):

1. If an image-processing algorithm can be expressed in a way that allows it to be

directly applied to many different image types then the algorithm can be written

as a function template which accepts the image type as a template parameter.

This template will then be instantiated by the Gamera build system for each

image type that it applies to. The template code is written in terms of a set

of methods that are common to all image types in Gamera. Since the compiler

has all available type information about the image object being passed to the

function it will be able to generate more efficient code than it could if the

function was simply written against a common base class that all image types

were derived from.

2. If an algorithm must be expressed in a fundamentally different way for each

image type then it can be implemented in terms of several different functions

which are overloaded based on the image type. The function can then be called

by the Gamera build system with an instance of a specific image type and the

correct version of the function will be bound seamlessly by the compiler.

14

The Gamera Python API provides an Image class which can hold an image in a

variety of formats. In both of the above cases the Gamera build system generates

code which performs roughly the following steps when an operation is invoked on an

Image object:

1. find the image’s format

2. switch based on that format

3. cast the image data to the native format

4. pass the image data to the native C++ function which was specialized for that

image type at compile-time

Essentially, this mechanism allows the function dispatch overhead to be incurred

a single time for each operation on the Python image object rather than once for each

low-level operation within the image processing code.

15

Chapter 3

PROJECT

This chapter covers the overall goals of the project and the integration provided

with the Gamera framework. The neural network architecture selection, the training

methods used, the training data storage format, the features used by the classifier,

the methods for feature extraction, as well as the advantages and disadvantages of

this feature set.

This project has the following goals:

1. Develop a set of features which can be used to perform OCR on bi-tonal images.

The features should yield good classifier accuracy and should be computation-

ally efficient to extract and manipulate. In addition, the features should differ

sufficiently from those used in other classifiers so that the errors made by clas-

sifiers based on them are not highly correlated with the errors made by existing

classifiers. This property of decorrelated errors enables classifiers to be com-

bined in order to improve overall classification accuracy. This is discussed in

Section 3.6.

2. Develop software for extracting the features mentioned above from an image.

16

This software will be made publicly available to enable future classifiers to make

use of these features.

3. Implement software classifiers which make use of these features in order to clas-

sify character images. Two classifiers are developed: one which employs neural-

networks and another which employs fuzzy-nearest-neighbor search. This soft-

ware will be made publicly available. These classifiers are discussed in Sec-

tion 3.3 and Section 3.4, respectively.

4. Add support to the Gamera system for using the neural-network-based classifier

above. This addition to the Gamera system will be made publicly available.

5. Extend the Gamera Image class to provide support for the SDF image format.

This addition to the Gamera system will be made publicly available. The SDF

image format is discussed in Section 3.5.1.

3.1 Gamera

Gamera provides a Python-based framework for creating document analysis applica-

tions. This framework can be extended through plug-ins which are implemented in

C++ and bound to methods on Gamera’s Python Image class. This binding is ac-

complished by the Gamera build system. The build system must be provided with

meta-data regarding the plug-in and its methods. For the purposes of this project,

several methods were added to the Image class for extracting the feature data, the

17

image signature, and accessing the image’s classification data. Some functions were

also added to the built-in Gamera modules, independently of the Image class.

3.2 Neural Network

The design choices regarding the neural-network-based classifier and the rationale for

them are given in the following sections.

Architecture Selection

A series of two-layer neural-networks is used to implement the classifier. One network

is used for each image signature, since the signature determines the number and the

semantics of the network inputs. Every unit is completely connected to the units in

each layer adjacent to it. Bias inputs are used for units in the middle and output

layers. The number of units in the input layer is determined as a configurable function

of the image signature. Due to the fact that the number of feature elements per curve

is constant, the number of inputs is roughly proportional to the number of curves in

the image. The output layer is configured with one output per character class. This

allows the network to recognize multiple character classes in a single propagation,

which means that computations which are needed for recognizing different characters

can be shared within the same network. The overall classifier is made up of multiple

networks. Each image is assigned a signature which is used to select the network used

to classify it. Image signatures are discussed in Section 3.6.

18

The hidden layer size can be customized by the user. In order to choose the hidden

layer size, the user passes a Python function to the neural network object when it is

created. The function accepts parameters which describe properties of the network

and it returns a hidden layer size. It’s parameters are as follows:

1. signature: the image signature; This is defined in Section 3.6.

2. input size: the size of the network’s input layer

3. output size: the size of the network’s output layer

4. training pattern count: the number of training patterns which will be presented

to the network

Training Methods

The basic method used for training the network is back-propagation. Back-propagation

essentially involves performing gradient descent in the weight-space of the network

in order to minimize the value of the error function. In this project, a stochastic

training method is used in which the network weights are adjusted after each training

pattern is presented to the network. This is in contrast to batch training, in which

the network weights are adjusted only at the end of each training epoch after all pat-

terns have been presented to the network. In comparison to stochastic training, batch

training has the advantage that the network weights are being adjusted in response

to the true network error function. However, as discussed in Section 3.2, it is more

19

difficult in practice to choose a proper back-propagation step factor for batch training

than it is for stochastic training.

Additional Training Techniques

Despite its conceptual simplicity, several additional techniques are needed in order to

obtain good performance with back-propagation. The techniques below were imple-

mented according to the guidelines in Section 6.8 of Duda [18]:

1. input standardization: It is quite possible that the mean value of certain input

elements is much larger than that of others. This means that during back-

propagation the weights associated with these input elements will be adjusted

at a higher rate than other weights. Since the mean value of different input

elements is arbitrary from the perspective of classification, each input is stan-

dardized so that the sample mean over the entire training set becomes 0. In

addition, the input values are scaled so that their sample variance is equal to

1. This allows the network weights to be initialized in a straightforward way,

as described in item 2 below.

2. initializing the network weights: The link weights in the network are initialized

with random values chosen uniformly from the interval
[

−1√
d
, 1√

d

]

, where d is the

number of inputs to the unit whose input weights are being initialized. Com-

bined with the fact that the input values are being standardized to a variance

of 1, this means that the net activation of each unit will be in the range [−1, 1].

20

3. stopping criteria: A pitfall of training is that the network may become over-

trained. This is a condition in which the network has very high accuracy on the

training set but is unable to accurately classify data that it has not seen before.

The stopping criteria used in this project is based on the use of a validation set,

on which the neural network is not trained, but which is used to stop training

when the network’s error on it reaches a minimum. The only additional aspect

needed to implement this is a method for determining when the validation error

has reached a minimum. This is provided by specifying a maximum iteration

count when training is started. If the training process goes through more than

this number of iterations without improving the validation error, then training

is stopped.

4. choice of back-propagation step factor: At each step of the back-propagation

algorithm, the gradient of the error function is computed in terms of its partial

derivatives with respect to each weight. The magnitude of adjustment for each

weight is determined by multiplying the gradient by the scalar step factor.

Ideally, the step factor is chosen in a way which both reduces the error as

quickly as possible and avoids convergence to local minima. A class of methods

which rely on the values of the second partial derivatives of the error with

respect to the weights are known as second-order methods. One such method

assumes that the error surface can be approximated by a quadratic function,

and chooses the step factor to be
(

∂2E

∂w2

)−1
where E is the error function and w

21

is the weight being adjusted.

Another approach is to choose a fixed step factor which is used for the duration

of training. For batch training this method is not generally satisfactory as the

size of the weight adjustment vector can be quite large when the number of

training examples is large. This strategy can result in a step size that is either

too large to allow convergence or which is so small that training is much slower

than necessary.

3.3 Neural-Network Based Classifier

Although the neural network provides the core of the functionality needed for classi-

fication, there are several additional details that need to be handled that the neural

network itself does not implement.

1. The neural network has a series of outputs which are interpreted as confidence

values for membership in a particular character class. This mapping is estab-

lished by the Neural Network Classifier. The classifier builds a dictionary of

character classification strings and establishes a mapping between character-

class identifiers and numeric values. Character class identifiers are represented

as strings. This abstraction allows the classifier to transparently create the ap-

propriate network output patterns during training. It also allows the output of

the network to be transparently mapped to a list of (confidence, character-class)

pairs after an unknown sample has been classified.

22

2. As described in Section 3.2, the mean and variance of the training data needs to

be standardized in order to allow effective training. This of course requires the

input pattern associated with any unknown sample to be transformed in the

same way before being presented to the network for classification. The process

of mapping from image features to network input patterns during both training

and classification is handled by the neural network classifier.

3.4 Fuzzy-KNN Based Classifier

A fuzzy K-nearest neighbors classifier (fuzzy-knn) is similar to a K nearest neighbors

classifier (knn) [4, 5] but differs in that each output class is assigned a fuzzy set

membership value which is derived from the distance between the query point and

the set of its nearest neighbors in the training set. The fuzzy K-nearest neighbors

algorithm was introduced by Keller in [11]. Given the set of k training images which

are nearest to the query point: {xj : 1 ≤ j ≤ k}, the fuzzy set membership assigned

to character class C for the query image Q is denoted by µC(Q) and is defined in

Equation (3.1):

µC(Q) =

∑k
j=1 µC(xj)

1

|Q−xj |
2

m−1

∑k
j=1

1

|Q−xj |
2

m−1

(3.1)

The value of µC(x) for xε {xj : 1 ≤ j ≤ k} is given by Equation (3.2):

23

µC(x) =

1 class(x) = C

0 class(x) 6= C

(3.2)

The parameter m in Equation (3.1) ranges over (1,∞) and controls the “fuzziness”

of the distance metric. As m increases, the k neighbors become more evenly weighted

regardless of their distance from Q. As m decreases toward 1 the neighbors which

are nearest to Q become weighted more and more heavily compared to those which

are farther away from Q.

3.5 Training Data Format

The data used for classifier training is stored in a format known as SDF. The SDF

format represents a series of bi-tonal images using bit-packing. This format results

in reduced storage space requirements as well as in reduced I/O costs for a program

analyzing large numbers of images.

3.5.1 SDF File Format

The layout of an SDF file is shown in Table 3.1. The data size function referenced

in Table 3.1 is defined as follows:

data size(k) = b (width of image k)·(height of image k)
8

c + 1

An SDF file has three sections:

1. image count: The number of images contained in the file is stored in the first

24

Offset Byte Count Contents

0 1 b N
224 c mod 28

1 1 b N
216 c mod 28

2 1 bN
28 c mod 28

3 1 N mod 28

4 12 image header 0
.

12 · k + 4 12 image header k

.
12 · (N − 1) + 4 12 image header N − 1

12 · N + 4 data size(0) pixels for image 0
12 · N + 4 + data size(0) data size(1) pixels for image 1

12 · N + 4 + data size(0) + data size(1) data size(2) pixels for image 2
.

TABLE 3.1 The SDF File Layout.

four bytes of the file in big-endian format.

2. image headers: If the number of images in the file is n, then a sequence of n

image headers follows the image count in the file. The layout of an image header

is shown in Table 3.2. The first four bytes of the image header are not used.

Offsets four through nine store the classification of the sample. Offsets 10 and

11 give the height and width of the image, respectively, in pixels.

3. image pixel data: This section contains the bit-packed pixel data for each image.

The data for an image with height h and width w occupies 1+bh·w
8
c bytes. Since

only dh·w
8
e bytes are required, the additional byte is ignored if present.

25

Description Header Offset Value

(unused) 0 0
1 0
2 0
3 0

classification 4 1st byte of image class (or 0 if unused)
5 2st byte of image class (or 0 if unused)
6 3st byte of image class (or 0 if unused)
7 4st byte of image class (or 0 if unused)
8 5st byte of image class (or 0 if unused)
9 6st byte of image class (or 0 if unused)

image size 10 image height in pixels
11 image width in pixels

TABLE 3.2 The Image Header Layout

3.5.2 SDF Image Format

The pixels in an SDF image with height h and width w are represented as a sequence

of bytes of length bh·w
8
c+1. The image coordinates run from 0 to w−1 in the left-to-

right direction and from 0 to h−1 in the top-to-bottom direction. Let P (x, y) ε {0, 1}

represent the value of the pixel at position (x, y) within an image, with 0 representing

a white pixel and 1 representing a black pixel. Let I(k) be the kth byte of the image

data. Then the value of I(k) is given by Equation (3.3):

I(k) =
7

∑

i=0

27−(i·P((8·k+i) mod w,b 8·k+i
w

c)) (3.3)

This format offers fairly efficient use of storage space for bi-tonal images, while

allowing them to be decoded with a minimum of overhead.

26

3.6 Features

This section describes the feature set used by the classifier. The feature set is derived

from the closed curves which bound connected components in an image. The features

extracted from an image take the form of a feature vector as well as a “signature”.

Two images which have the same signature have feature vectors which are the same

size. This section introduces some basic terminology in 3.6, the feature vector is

described in 3.6, and the image signature is described in 3.6.

Terms

1. Adjacent Pixels

Two pixels are adjacent if one is a member of the N8 set of neighbors of the

other.

2. Connected Pixels

Two pixels a and b are connected if they have the same color and:

(a) they are adjacent or,

(b) a is adjacent to a pixel which is connected to b.

3. Connected Component:

A Connected Component is a set of black pixels which are pairwise connected.

Figure 3.1 shows a character image which contains a single connected compo-

nent.

27

0 2.5 5 7.5 10 12.5 15
-20

-15

-10

-5

0

Figure 3.1. An image containing a single connected component

4. Curve:

A curve is a polygon which forms a boundary of a connected component. Each

segment of the polygon is located either at the boundary between two adjacent

pixels that are of different color or at the edge of a black pixel located at the

extreme left, right, top, or bottom of the image. Note that the connected

component in Figure 3.1 has an inner boundary as well as an outer boundary.

Each curve is represented initially as a sequence of (x, y) coordinate pairs, where

each coordinate pair locates the corner of a pixel. By convention, the coordinate

sequence is ordered counter-clockwise for curves which enclose black pixels. The

28

sequence is ordered clockwise for curves which enclose white pixels.

0 2.5 5 7.5 10 12.5 15
-20

-15

-10

-5

0

Figure 3.2. The curve representation of the example image

Figure 3.2 shows the curves associated with the image in Figure 3.1. Note that

each segment in Figure 3.2 is displayed as an arrow. In addition, the arrows

which form the outer boundary of the character point in the counter-clockwise

direction around the boundary. The arrows which form the inner boundary

of the character point clockwise around the boundary. The initial coordinate

sequence for a curve is formed by picking an arbitrary vertex of the polygon,

noting its (x, y) coordinates, moving one pixel-width to the adjacent vertex in

the direction of the arrow, and repeating this process until all vertices in the

29

polygon have been visited.

5. Area:

This section defines the area of a curve. For curves which are oriented counter-

clockwise, this definition is identical to the standard one. The definition given

here has the property that if the orientations of the edges in a curve are all

reversed, then its area changes sign. The area of an arbitrary curve, C, is given

by (3.4):

1

2

∑

eεEdges(C)

(StartX(e) + EndX(e))(EndY (e) − StartY (e)) (3.4)

where Edges(C) gives the set of edges in C, with each edge having a start and

an end point, as in Figure 3.2, and where StartX(e), EndX(e), StartY (e), and

EndY (e) give the starting x, ending x, starting y, and ending y coordinates of

edge e, respectively. It is not hard to show that for an arbitrary polygon which

is oriented counter-clockwise, (3.4) gives the standard definition of the area

enclosed by it and that, for a polygon which is oriented clockwise, (3.4) gives

the negative of the area enclosed by it.

(3.4) has a positive value for a curve which encloses a black region. Such a

curve is defined to be a positive-area curve. Analogously, (3.4) has a negative

value for a curve which encloses a white region. Such a curve is defined to be a

negative-area curve.

30

6. Centroid:

The centroid of a curve is defined to be the (x, y) coordinate pair which is the

average of the coordinates of all vertices of the curve.

0 2.5 5 7.5 10 12.5 15
-20

-15

-10

-5

0

Figure 3.3. The curve representation of the example image, with centroids

Figure 3.3 shows the curves of an example image along with two black dots

which indicate the centroid position for each curve. The upper dot marks the

centroid of the outer curve and the lower dot marks the centroid of the inner

curve.

7. Curve Ordinal:

Let C be a positive(negative)-area curve with centroid (Cx, Cy). The ordi-

31

nal of C is a pair of non-negative integers (xOrd, yOrd), where xOrd is the

number of positive(negative) area curves in the image whose centroids have an

x-component which is smaller than Cx. Similarly, yOrd is the number of pos-

itive(negative) area curves in the image whose centroids have a y-component

which is smaller than Cy.

0 5 10 15 20 25 30

-60

-40

-20

0

80, 0<

80, 1<

Figure 3.4.: The curve ordinals of the pair of curves associated with a lowercase “i”.

Figure 3.4 shows a lowercase “i” with the ordinal of each curve labeled. Note

that the curve associated with the upper “dot” of the “i” has an ordinal of (0, 1),

32

while the lower curve has an ordinal of (0, 0). The x − coordinates of the two

ordinals are equal, indicating that their horizontal positions are approximately

the same. The y − coordinates of the lower and upper curves are 0 and 1,

respectively. This encodes the fact that the lower curve is “below” the upper

curve. Taken together, the two curve ordinals encode the positional relationship

between the curves in the image.

-7.5 -5 -2.5 0 2.5 5 7.5

-4

-2

0

2

4

6

80, 0< 81, 0<80, 0<

Figure 3.5. The curve ordinals of a pair of curves associated with a lowercase m.

Figure 3.5 shows a lowercase “m” with the ordinal of each curve labeled. Note

that this image contains a single positive-area curve as well as two negative-area

curves. Note that both the outer curve and the leftmost inner curve have the

33

ordinal (0, 0). This is due to the fact that curve ordinals are determined by

comparing the centroids of curves with area of the same sign. Thus, since the

two inner curves have negative area, their ordinals are computed without taking

into account the presence of the outer positive-area curve.

Feature Vector

The feature vector for an image is constructed using the curves which bound the

connected-components in the image. The feature vector is formed by concatenating

the following values:

1. centroid difference

The centroids of the positive area curves in the sample are averaged to form

an (x, y) pair. Similarly, the centroids of the negative area curves are averaged.

The difference of these two averages is an (x, y) pair which is placed into the

feature vector.

2. centroid offset of each curve

For each curve: If it is positive(negative)-area then the average of the positive(negative)-

area curve centroids is subtracted from the curve’s centroid. The result is an

(x, y) pair which is placed into the feature vector. These curve centroid offsets

are placed into the feature vector in lexicographic order by curve ordinal and

by whether the curve has positive or negative area.

34

3. discrete Fourier transform

In order for the Fourier Transforms of different curves to be directly compara-

ble each curve needs to be defined by the same number of points. In order to

accomplish this, linear interpolation is used in order to treat the curve as a pe-

riodic, continuous, piecewise-linear parametric function of a single independent

variable. This function is then sampled at 2n points in its domain, where n is a

parameter determined before training begins. The same value of n will be used

for every curve that the classifier is trained on as well as to unknown images

when they are being classified. The implementation of the Fourier Transform

being used in this project is a Fast-Fourier-Transform and it requires the num-

ber of points sampled on each curve to be a power of 2, which is why this

constraint is imposed.

Each curve is uniquely identified by the sequence of (x, y) coordinates of its ver-

tices. The x and y coordinate sequences can be viewed independently as discrete

functions of an independent parameter. Both of these functions are periodic,

which makes them well-suited to be analyzed using a Discrete Fourier Trans-

form (DFT). The x-sequence transform of a curve will be called the “x-DFT”.

The y-sequence transform will be called the “y-DFT”. Some fixed number of

the DFT’s lowest frequency components are preserved while the other higher-

frequency components can be discarded. The low-frequency components of the

transform will typically contain most of the information about the sample while

35

the high-frequency components often represent noise of various kinds. The

ability to ignore high-frequencies in the DFT allows the dimensionality of the

feature vector to be reduced without sacrificing information which is likely to

be crucial in identifying the sample. For each curve, the feature vector contains

the components of the curve’s x-DFT followed by the components of its y-DFT.

The curve detection process does not guarantee that the point sequences for

two similar curves will begin at similar relative points in their cycles. In fact,

the point at which a given curve starts can differ significantly between curves

that are only slightly different. In order for two similar curves to be compared

accurately, their point sequences need to start at similar positions in their overall

cycles. To this end, the components in the Fourier transforms are all effectively

shifted in phase by some number of time units, T. The value of T is chosen so

that the phase of the component of the y-coordinate spectrum corresponding

to the analyzing function exp
(

−2πit
N

)

becomes 0 after shifting by T time units.

The rationale for choosing this component is that, by definition, it undergoes

exactly one cycle during the sequence. Thus, it has exactly one point at which

the phase is zero. The value of T is used to shift both the x and y coordinate

sequences.

The DFTs of the negative-area curves are placed into the feature vector in

lexicographic order by curve ordinal. Similarly, the DFTs of the positive-area

curves are placed into the feature vector in lexicographic order by curve ordinal.

36

Thus, given two images which have the same signature, the DFTs of any pair

of curves within the images which have the same curve ordinal and the same

area-sign will appear at the same position within their respective feature vectors.

Image Signature

The features described in Section 3.6 are such that the size of the feature vector for

an image is dependent upon the number of positive-area and negative-area curves in

the image. In order to determine when two different images will have feature vectors

that are comparable, a “signature” is assigned to each image. An image signature has

the following property: If two images have the same signature then the images have

the same arrangement of curves and will consequently have feature vectors that are

the same size. The signature for an image is defined to be the ordered pair (N, P),

where N is the set of ordinals for the negative-area curves in the image and P is the

set of ordinals for the positive-area curves in the image. If the signature of image A

is (N1, P1) and the signature of image B is (N2, P2) then (N1, P1) = (N2, P2) holds if

and only if both of the following conditions hold:

1. N1 and N2 contain exactly the same curve ordinals

2. P1 and P2 contain exactly the same curve ordinals

Thus, a signature identifies a set of images whose feature vectors can be meaning-

fully compared to one another. Note that images A and B will have feature vectors of

the same size if and only if |N1| = |N2| and |P1| = |P2|. However, if the signatures of

37

A and B are not equal then the curves which are encoded within their feature vectors

will not necessarily have equivalent positional relationships within their respective

images.

3.6.1 Pre-Processing

Before constructing the feature vector for a given sample, some preliminary steps are

performed:

1. detect curves: A curve forms the boundary of a component in the sample.

Curves are detected by scanning the sample image in order to find components

and their boundaries.

2. remove curves having sufficiently small area: Some curves in the sample may

represent noise due to printing errors or imperfections in the physical media,

etc. The set of curves is filtered by first finding the curve in the image that

encloses the largest area. Let this area be A. Any curve whose area falls within

the interval (−0.03A, 0.055A) is removed from the curve set on the basis that

it is likely to represent noise. The particular interval used here was chosen

because it worked well for removing noise from the sample data being used in

this project.

3. find the ordinal for each curve: Each curve in a sample has a unique centroid

which is used to form an approximate description of the curve’s position relative

38

to other curves in the sample. A “curve ordinal” (x-ordinal, y-ordinal) of in-

teger values is assigned to each curve with centroid (cx, cy) using the following

calculation: The x-ordinal of the pair is set to the number of other curves in

the sample with the same area sign (positive/negative) having centroids whose

x-coordinate is less than cx. Similarly, the y-ordinal of the pair is set to the

number of other curves in the sample with the same area sign having centroids

whose y-coordinate is less than cy. The ordinal pair for a curve thus provides a

rough description of the position that it occupies relative to other curves within

the sample which have the same area sign. For some characters, such as an

upper-case “B”, the curve ordinal computation would ideally assign the ordi-

nals (0, 0) and (0, 1) to the two negative-area curves. This accurately captures

the conceptual relationship between the two curves, which is essentially that one

curve is directly above the other. In practice, however, the sample is likely to

contain noise which will cause the x-coordinates of the two negative-area curves

to differ. So, this will tend to result in the ordinal assignments {(0, 0) , (1, 1)}

or {(1, 0) , (0, 1)} for samples which are only slightly different from each other.

In order to remedy this situation, the curve centroids are pre-processed before

ordinals are assigned to them. For the purposes of determining the curve ordi-

nals, the x-coordinates of the centroids of the curves of positive(negative) area

are sorted, and any run of coordinates in which adjacent values differ by less

than 10% of the sample width are each replaced with the average value of all

39

elements in the run. The centroid y-coordinates are updated similarly, with the

spacing tolerance being 10% of the sample height.

3.7 Reconstruction of Images From Features

The boundaries in an image can be reconstructed using the features described in

Section 3.6. Depending on the classification task, this can be helpful for determining

both the number of points to sample on each curve as well as the number of Fourier

components to save. Choosing a low number of Fourier components will result in lower

training and classification times due to the fact that the neural network will have fewer

nodes and weights. The use of the Fourier transform described in Section 3.6 has the

property that most of the information about a curve is contained in the low-frequency

components of the transform. Thus, the amount of information about the original

image which is contained in the feature data can be adjusted smoothly by changing

the number of high-frequency components which are discarded.

Figure 3.6 shows the unprocessed boundaries that are present in an image of a

“B”. Figure 3.7 shows a processed version of the same image which was reconstructed

from the feature data described in Section 3.6, without discarding any of the Fourier

components. There are a few things to note about the reconstruction:

1. The character boundaries show essentially the same level of detail as the original

image. Even the pixel edges are visible.

40

0 10 20 30 40 50

-60

-50

-40

-30

-20

-10

0

Figure 3.6. Original image boundaries of a “B”

2. Each curve is marked at some point with a small dot. This point represents

the zero-phase point for the curve. In order for similar curves to be compared

effectively it is important that their coordinate sequences begin at points which

represent the “same place” on the two curves, even if the two curves are not

identical.

3. Each curve is labeled with a coordinate pair near its centroid, which specifies

the curve ordinal. Note also that the curve ordinals of the two inner curves

are (0, 0) and (0, 1). This means that the two curves are represented in the

feature data as if they were aligned vertically, even though their centroids clearly

do not have the same y-coordinate. In addition, note that the ordinals are

computed separately for positive-area curves (the outer curve in this image) and

41

-20 -10 0 10 20
-30

-20

-10

0

10

20

30

80, 0<

80, 1<
80, 0<

Figure 3.7. Reconstruction of a “B” from high-resolution feature data

for negative-area curves (the inner two curves in this image). This is evidenced

by the fact that the ordinals of both the outer curve and the lower inner curve

are equal to (0, 0).

Figure 3.8 shows a reconstruction of the “B” image from feature data which con-

tains only the first 7 non-zero frequency components of the Fourier transform. This

choice of resolution appears to leave enough detail for most of the important image

features to be recognizable. The character still retains many of its features. In doing

this, the noise associated with pixel boundaries has been removed. This is due to the

fact that the 90 degree angle made by a pixel edge is associated with high-frequencies

in the spectrum of the curve. Ignoring these frequencies and then reconstructing the

image effectively reduces the noise associated with them.

42

-20 -10 0 10 20
-30

-20

-10

0

10

20

30

80, 0<

80, 1<
80, 0<

Figure 3.8. Reconstruction of a “B” from medium-resolution feature data

Figure 3.9 shows a reconstruction of the “B” image using the single lowest-

frequency component (excluding the constant frequency term) of each curve’s trans-

form. This results in every curve being reconstructed as an ellipse. This level of

resolution typically would not be sufficient to allow recognition of general charac-

ter images on its own, although it could possibly be used in conjunction with other

classification methods.

Figure 3.10 shows two reconstructions of different images of “h” characters. The

main aspect illustrated by these two images is that their zero-phase markers are

located in similar places on each character, even though the images are different. The

zero-phase point seems to work fairly well as a way of identifying similar points on

different curves.

43

-20 -10 0 10 20
-30

-20

-10

0

10

20

30

80, 0<

80, 1<
80, 0<

Figure 3.9. Reconstruction of a “B” from low-resolution feature data

3.8 Advantages of Features

The main advantages of the feature set developed in this paper are as follows:

1. translation-invariance: The constant term of the Fourier-transform identifies

only the centroid of the curve, and can be ignored without losing any information

about the shape of a curve. Only the relative positions of centroids are stored in

the feature data. This means the character can be translated anywhere within

the image without changing the features that are generated for it.

2. noise-robustness: Curves which have an area below a certain threshold relative

to the largest-area-curve in the image can often be ignored on the basis that they

represent noise. In addition, since most noise tends to involve high-frequencies,

44

0 5 10 15 20
-35

-30

-25

-20

-15

-10

-5

0

80, 0<

0 5 10 15 20 25

-35

-30

-25

-20

-15

-10

-5

0

80, 0<

Figure 3.10. Zero-phase points on different instances of the same character class.

ignoring these components of the Fourier-transform simultaneously results in

reduction of noise as well as of the dimensionality of the feature vector.

3. space-efficiency: Before the image is pre-processed and the high-frequency com-

ponents of the curve DFTs are discarded, the features contain the same infor-

mation as the original image. This is due to the fact the original bi-tonal image

can be reconstructed exactly from the curves which form the boundaries of its

connected components. The curves will typically require less space to represent

than a bitmap of the image would. If an image has dimensions A × B, then

its curves will typically require Θ (A + B) space, while a bitmap of the image

will occupy Θ (AB) space. This can allow a reduction in classifier size. For

example, a typical approach for a neural-network based classifier is to config-

45

ure the network with one input per pixel. The ability to represent the same

information in less space suggests that a neural-network trained using image

boundaries may require fewer neurons to perform the same classification tasks

as a classifier which uses one input per pixel.

3.9 Disadvantages of Features

The main disadvantages of this feature set are as follows:

1. Images which differ in only a few pixels can have large differences in feature

values. Such images can even have different signatures altogether. For example,

two similar samples, one containing a well-formed “O” and one containing an

“O” with a small “cut” can have feature vectors that are quite different. The

first image would have two boundaries and the other would have only one. This

problem can be reduced if the training set contains enough examples of such

errors, but given the number of possibilities it may not be possible to get enough

training data to cover them all.

2. Some signatures have relatively few representative samples associated with

them. Because of this such samples are difficult to classify accurately. In

practice, most character images have one of only a few different signatures.

Although, noisy images can have signatures that are unique which can make

them hard to classify with an exemplar-based approach.

46

Chapter 4

EXPERIMENT & RESULTS

This chapter discusses the results obtained from evaluating three different classifiers

on a test data set. The first two classifiers evaluated are the neural-network and

fuzzy-knn classifiers already discussed. The third classifier is a neural-network which

uses an 8 × 8 normalized input window of the image as its feature-set. The esti-

mated generalization accuracy of each classifier is presented and various relationships

between the errors made by the classifiers are discussed. Various methods of combin-

ing the classifier outputs to increase overall generalization accuracy are discussed as

well. In addition, the performance of a method which increases overall generalization

accuracy by combining the classifier outputs using weighted-voting is presented.

4.1 Training Data

The generalization accuracy of each classifier was estimated using 10-fold cross-

validation. Ten pairs of training and test data sets were produced from a master

data set containing character images with classes 0-9, a-z, and A-Z. The master data

set contained a total of 312346 distinct images. Each training set contained 280881

images and each test set contained 31209 images. The pairs of training and test data

47

sets were selected from the master set in such a way that the fraction of images from

each character class remained as close as possible to the fraction seen in the master

set.

The character samples were taken from microfilm copies of The Dallas Morning

News and the Chicago Tribune newspapers. The papers were printed in the 1920s,

30s, 40s, and 70s. The character images were taken from all parts of each newspaper

and so included varying sizes and styles of print. The images tended to be noisy due

to degradation in the media and non-uniform lighting used during the photographic

process.

4.2 Experimental Setup

This section describes the experimental configuration including the parameters used

to configure the feature set as well as the specifications of each classifier trained.

4.2.1 Feature Extraction Parameters

The feature extraction parameters used are shown in Table 4.1. The vector shown in

the “Smoothing Filter” row gives the kernel of the linear filter used to smooth each

input curve before sampling it. A set of points, equally-spaced along the curve in

terms of arc-length, are then chosen. The number of sample points chosen is shown

in the “Sample Points” row of Table 4.1. A Discrete Fourier transform is then applied

to the sequence of points. The number of low-frequency components saved from the

48

Parameter Value

Sample Points 128
DFT Components 16

Smoothing Filter
[

1
4
, 1

2
, 1

4

]

TABLE 4.1 Feature Extraction Parameters

transform is shown in the “DFT Components” row of Table 4.1. The rest of the

transform components are discarded.

4.2.2 Fuzzy-KNN Configuration

The fuzzy-knn instances used were configured using two parameters, k and m, which

are discussed in Section 3.4. The combinations of (k, m) used for the experiments are

given in Equation (4.1). Each fuzzy-knn-based classifier consisted of many fuzzy-knn

instances. Each of these instances used the same value of k and m. Thus, a total of

24 separate fuzzy-knn-based classifiers were constructed and tested.

(k, m) ε {1, 3, 5, 7, 9, 11}× {1.2, 1.5, 2, 2.5} (4.1)

4.2.3 Neural-Network Configuration

Each neural-network-based classifier consisted of many neural networks. The archi-

tectures of these neural-networks were determined as follows:

49

1. input count: Each neural-network was designed to handle images having a

certain fixed signature. Each network was given a number of input nodes which

was equal to the feature vector length corresponding to its signature.

2. output node count: Each network had a single output node for each character

class seen in the training data among images having its particular signature.

3. hidden node count: The number of hidden nodes in each network was chosen

to be equal to the average of the number of input and output nodes.

Each layer of the network was fully connected to the immediately preceding layer,

with the initial link weights being chosen randomly. The training algorithm used

was simple stochastic back-propagation using only first-order methods without mo-

mentum. The input training data, taken from images having a given signature, was

statistically standardized to µ = 0, σ2 = 1 before the network was trained on it.

Details of the methods used are given in Section 3.2.

4.3 Training Result

One instance of each of the three classifiers was trained on each of the ten pairs of

training and test data sets. The generalization accuracy of each classifier was then

estimated as the average of its accuracy over the ten test data sets. The errors made

by each classifier in each of the test sets were recorded and compared to those made

by the other classifiers on the same test set.

50

The number of distinct image signatures which resulted from the processed images

in each training set ranged from 127 to 136 with the mean value being 129.8. Thus,

each of the ten fuzzy-knn-based classifiers consisted of roughly this number of fuzzy-

knn instances and each of the ten neural-network-based classifiers consisted of roughly

this number of neural networks.

4.3.1 Accuracy

The generalization accuracies of a series of instantiations of the fuzzy-knn classifier are

shown in Table 4.27. This classifier has parameters k and m, discussed in Section 3.4,

which can be adjusted and which influence its generalization accuracy. The best

raw fuzzy-knn accuracy is 0.9468, obtained with k = 5 and m = 1.5. This table also

shows the results of a weighted voting approach which is discussed in Section 4.4. The

generalization accuracies of the two neural-network classifiers are shown in Table 4.28.

4.3.2 Error Correlation

Tables 4.3 through 4.26 show various measures of the error correlation between the

fuzzy-knn and the first neural-network as well as between the fuzzy-knn and the

second neural-network. Table 4.29 shows the same correlation measures between the

two neural-networks. The terms used in the tables are as follows:

1. knnk,m: the fuzzy-knn-based classifier, instantiated with parameters k and m;

The parameters k and m are discussed in Section 3.4.

51

2. nn: the first neural-network-based classifier, which uses the feature set devel-

oped in this paper

3. nn2: the second neural-network-based classifier, which uses a feature set de-

scribed in the introduction to Chapter 4

4. KNNk,m: the set of images which are correctly classified by the knnk,m classifier

5. NN: the set of images which are correctly classified by the nn classifier

6. NN2: the set of images which are correctly classified by the nn2 classifier

7. P (imageSet): the size of imageSet as a fraction of the test-set size

8. equal (classifier1, classifier2): the set of images for which classifier1 and

classifier2 both produce the same output

9. unequal (classifier1, classifier2): the complement of equal (classifier1, classifier2);

the set of images for which classifier1 and classifier2 either produce different

output, or for which at least one of the classifiers produces no output

10. X: In Tables 4.3 through 4.26 this symbol designates NN for the values shown

in the “NN” column and it designates NN2 for the values shown in the “NN2”

column.

11. YuleQ: Yule’s Q statistic [8]. If A and B are sets then Yule’s Q statistic gives

a measure of correlation between them which is shown in Equation (2.7).

52

4.4 Weighted Voting

The classifiers tested in this project were voted together to achieve an overall improve-

ment in accuracy. The vote of each classifier was given a weight proportional to its

overall accuracy. Table 4.27 shows the accuracy of a classifier obtained by performing

a weighted-vote of the knn, nn, and nn2 classifier outputs and then choosing the

character class with the most votes. The best weighted-voting accuracy was 0.9536,

obtained with k = 5 and m = 1.2. As shown in the “Fraction Reduced” column

of Table 4.27, this represents an error reduction of 15.4 % as compared to the raw

fuzzy-knn accuracy using the same parameters and corresponds to an error reduction

of 12.7 % as compared to the best overall raw fuzzy-knn accuracy, obtained when

k = 5 and m = 1.5.

In all cases, the accuracy of the fuzzy-knn classifier is larger than that of either

neural-network. However, the neural-networks together can out-vote the fuzzy-knn

if they both agree on the character class of a sample. Thus, the weighted-voting

algorithm can be viewed as a method of using the two neural networks to correct

errors made by the fuzzy-knn. An error made by the fuzzy-knn on a given sample will

be corrected by weighted-voting exactly when the two neural-networks both correctly

classify the sample. The “Errors Corrected” column of Table 4.27 gives the overall

fraction of test samples for which this occurs. The errors corrected by weighted-voting

can be computed from (4.2).

53

P
(

KNN ∩ NN ∩ NN2
)

(4.2)

Conversely, a sample which is correctly classified by the fuzzy-knn will be classified

in error by weighted-voting precisely when the two neural networks agree on the

sample’s class but are both incorrect. The “Errors Introduced” column of Table 4.27

gives the overall fraction of test samples which were classified correctly by the fuzzy-

knn but not by weighted-voting. The errors introduced by weighted-voting can be

computed from (4.3).

P
(

KNN ∩ NN ∩ NN2 ∩ equal (nn, nn2)
)

(4.3)

4.5 Other Techniques

Voting requires the number of available classifiers to be odd. However, given only two

classifiers there exist other techniques for combining them to improve generalization

accuracy. Dictionary lookup is one such technique and is discussed in this section.

4.5.1 Dictionary Lookup

Assume that classifiers a and b each produce a single class as output when presented

with an image. Further, let A and B be the sets of images which are classified

correctly by a and b, respectively. Further, assume that |A| ≥ |B|. One technique

54

a b P
(

A ∩ unequal (a, b)
)

P (A ∩ unequal (a, b))

knn5,1.2 nn 0.0291134 0.0509084
knn5,1.5 nn 0.0263482 0.0501458

nn nn2 0.0823993 0.156634

TABLE 4.2 Dictionary Lookup Error Bounds

for combining their output is as follows. Let ai and bi be the outputs of classifiers a

and b when presented with image i. During training a table can be built which, given

(ai, bi) for ai 6= bi, yields the most likely character class of the image. Alternately,

the table can contain a weighted list of character classes for each output pair. When

a new image is to be classified it is presented to both a and b. If their outputs differ

then at least one of the classifiers is in error. The pair of classifier outputs are then

located in the table and the result found there is reported instead of either classifier

output.

This technique may or may not improve accuracy. An upper bound on the fraction

of errors that can be corrected by this technique is given by P
(

A ∩ unequal (a, b)
)

.

An upper bound on the fraction of errors that could be introduced by this technique is

given by P (A ∩ unequal (a, b)). These expressions can be looked up from Tables 4.3

through 4.26 and Table 4.29. Table 4.2 shows the values of these two measures taken

from Tables 4.11, 4.12, and 4.29.

55

Measure X → NN X → NN2

P
(

KNN1,1.2 ∩ X
)

0.0381364 0.0283284

P
(

KNN1,1.2 ∩ X ∩ unequal (knn1,1.2, x)
)

0.0135057 0.0226121

P
(

KNN1,1.2 ∩ X ∩ equal (knn1,1.2, x)
)

0.0246307 0.0057163

P
(

KNN1,1.2 ∩ X | equal (knn1,1.2, x)
)

0.0270116 0.00737324

P
(

KNN1,1.2 ∪ X
)

0.112772 0.230389

P (KNN1,1.2 ∩ unequal (knn1,1.2, x)) 0.0509917 0.168608
P (KNN1,1.2 | unequal (knn1,1.2, x)) 0.578465 0.750547

P
(

KNN1,1.2 ∩ unequal (knn1,1.2, x)
)

0.0371495 0.056064

P
(

KNN1,1.2 | unequal (knn1,1.2, x)
)

0.421535 0.249453

P
(

KNN1,1.2 | X
)

0.427838 0.14386

P
(

equal (knn1,1.2, x) | KNN1,1.2 ∩ X
)

0.646075 0.201917

P
(

equal (knn1,1.2, x) | KNN1,1.2

)

0.398654 0.092618

P
(

equal (knn1,1.2, x) | X
)

0.276369 0.0290299

P (X ∩ unequal (knn1,1.2, x)) 0.0236438 0.0334519
P (X | unequal (knn1,1.2, x)) 0.268304 0.148836

P
(

X ∩ unequal (knn1,1.2, x)
)

0.0644974 0.19122

P
(

X | unequal (knn1,1.2, x)
)

0.731696 0.851164

P
(

X | KNN1,1.2

)

0.617123 0.458734

Y uleQ (KNN1,1.2, X) 0.931071 0.589137

TABLE 4.3 Error Correlation for k = 1, m = 1.2

56

Measure X → NN X → NN2

P
(

KNN1,1.5 ∩ X
)

0.0381364 0.0283284

P
(

KNN1,1.5 ∩ X ∩ unequal (knn1,1.5, x)
)

0.0135057 0.0226121

P
(

KNN1,1.5 ∩ X ∩ equal (knn1,1.5, x)
)

0.0246307 0.0057163

P
(

KNN1,1.5 ∩ X | equal (knn1,1.5, x)
)

0.0270116 0.00737324

P
(

KNN1,1.5 ∪ X
)

0.112772 0.230389

P (KNN1,1.5 ∩ unequal (knn1,1.5, x)) 0.0509917 0.168608
P (KNN1,1.5 | unequal (knn1,1.5, x)) 0.578465 0.750547

P
(

KNN1,1.5 ∩ unequal (knn1,1.5, x)
)

0.0371495 0.056064

P
(

KNN1,1.5 | unequal (knn1,1.5, x)
)

0.421535 0.249453

P
(

KNN1,1.5 | X
)

0.427838 0.14386

P
(

equal (knn1,1.5, x) | KNN1,1.5 ∩ X
)

0.646075 0.201917

P
(

equal (knn1,1.5, x) | KNN1,1.5

)

0.398654 0.092618

P
(

equal (knn1,1.5, x) | X
)

0.276369 0.0290299

P (X ∩ unequal (knn1,1.5, x)) 0.0236438 0.0334519
P (X | unequal (knn1,1.5, x)) 0.268304 0.148836

P
(

X ∩ unequal (knn1,1.5, x)
)

0.0644974 0.19122

P
(

X | unequal (knn1,1.5, x)
)

0.731696 0.851164

P
(

X | KNN1,1.5

)

0.617123 0.458734

Y uleQ (KNN1,1.5, X) 0.931071 0.589137

TABLE 4.4 Error Correlation for k = 1, m = 1.5

57

Measure X → NN X → NN2

P
(

KNN1,2 ∩ X
)

0.0381364 0.0283284

P
(

KNN1,2 ∩ X ∩ unequal (knn1,2, x)
)

0.0135057 0.0226121

P
(

KNN1,2 ∩ X ∩ equal (knn1,2, x)
)

0.0246307 0.0057163

P
(

KNN1,2 ∩ X | equal (knn1,2, x)
)

0.0270116 0.00737324

P
(

KNN1,2 ∪ X
)

0.112772 0.230389

P (KNN1,2 ∩ unequal (knn1,2, x)) 0.0509917 0.168608
P (KNN1,2 | unequal (knn1,2, x)) 0.578465 0.750547

P
(

KNN1,2 ∩ unequal (knn1,2, x)
)

0.0371495 0.056064

P
(

KNN1,2 | unequal (knn1,2, x)
)

0.421535 0.249453

P
(

KNN1,2 | X
)

0.427838 0.14386

P
(

equal (knn1,2, x) | KNN1,2 ∩ X
)

0.646075 0.201917

P
(

equal (knn1,2, x) | KNN1,2

)

0.398654 0.092618

P
(

equal (knn1,2, x) | X
)

0.276369 0.0290299

P (X ∩ unequal (knn1,2, x)) 0.0236438 0.0334519
P (X | unequal (knn1,2, x)) 0.268304 0.148836

P
(

X ∩ unequal (knn1,2, x)
)

0.0644974 0.19122

P
(

X | unequal (knn1,2, x)
)

0.731696 0.851164

P
(

X | KNN1,2

)

0.617123 0.458734

Y uleQ (KNN1,2, X) 0.931071 0.589137

TABLE 4.5 Error Correlation for k = 1, m = 2

58

Measure X → NN X → NN2

P
(

KNN1,2.5 ∩ X
)

0.0381364 0.0283284

P
(

KNN1,2.5 ∩ X ∩ unequal (knn1,2.5, x)
)

0.0135057 0.0226121

P
(

KNN1,2.5 ∩ X ∩ equal (knn1,2.5, x)
)

0.0246307 0.0057163

P
(

KNN1,2.5 ∩ X | equal (knn1,2.5, x)
)

0.0270116 0.00737324

P
(

KNN1,2.5 ∪ X
)

0.112772 0.230389

P (KNN1,2.5 ∩ unequal (knn1,2.5, x)) 0.0509917 0.168608
P (KNN1,2.5 | unequal (knn1,2.5, x)) 0.578465 0.750547

P
(

KNN1,2.5 ∩ unequal (knn1,2.5, x)
)

0.0371495 0.056064

P
(

KNN1,2.5 | unequal (knn1,2.5, x)
)

0.421535 0.249453

P
(

KNN1,2.5 | X
)

0.427838 0.14386

P
(

equal (knn1,2.5, x) | KNN1,2.5 ∩ X
)

0.646075 0.201917

P
(

equal (knn1,2.5, x) | KNN1,2.5

)

0.398654 0.092618

P
(

equal (knn1,2.5, x) | X
)

0.276369 0.0290299

P (X ∩ unequal (knn1,2.5, x)) 0.0236438 0.0334519
P (X | unequal (knn1,2.5, x)) 0.268304 0.148836

P
(

X ∩ unequal (knn1,2.5, x)
)

0.0644974 0.19122

P
(

X | unequal (knn1,2.5, x)
)

0.731696 0.851164

P
(

X | KNN1,2.5

)

0.617123 0.458734

Y uleQ (KNN1,2.5, X) 0.931071 0.589137

TABLE 4.6 Error Correlation for k = 1, m = 2.5

59

Measure X → NN X → NN2

P
(

KNN3,1.2 ∩ X
)

0.0381493 0.0272742

P
(

KNN3,1.2 ∩ X ∩ unequal (knn3,1.2, x)
)

0.0129161 0.0216572

P
(

KNN3,1.2 ∩ X ∩ equal (knn3,1.2, x)
)

0.0252331 0.00561697

P
(

KNN3,1.2 ∩ X | equal (knn3,1.2, x)
)

0.0275116 0.0072119

P
(

KNN3,1.2 ∪ X
)

0.108049 0.226733

P (KNN3,1.2 ∩ unequal (knn3,1.2, x)) 0.0509789 0.169663
P (KNN3,1.2 | unequal (knn3,1.2, x)) 0.615566 0.767411

P
(

KNN3,1.2 ∩ unequal (knn3,1.2, x)
)

0.031837 0.0514531

P
(

KNN3,1.2 | unequal (knn3,1.2, x)
)

0.384434 0.232589

P
(

KNN3,1.2 | X
)

0.427982 0.138502

P
(

equal (knn3,1.2, x) | KNN3,1.2 ∩ X
)

0.661531 0.206228

P
(

equal (knn3,1.2, x) | KNN3,1.2

)

0.442239 0.0986437

P
(

equal (knn3,1.2, x) | X
)

0.283144 0.0285238

P (X ∩ unequal (knn3,1.2, x)) 0.0189208 0.0297959
P (X | unequal (knn3,1.2, x)) 0.228498 0.134683

P
(

X ∩ unequal (knn3,1.2, x)
)

0.063895 0.19132

P
(

X | unequal (knn3,1.2, x)
)

0.771502 0.865317

P
(

X | KNN3,1.2

)

0.668573 0.478303

Y uleQ (KNN3,1.2, X) 0.944873 0.613736

TABLE 4.7 Error Correlation for k = 3, m = 1.2

60

Measure X → NN X → NN2

P
(

KNN3,1.5 ∩ X
)

0.0385306 0.0268801

P
(

KNN3,1.5 ∩ X ∩ unequal (knn3,1.5, x)
)

0.0127367 0.0212279

P
(

KNN3,1.5 ∩ X ∩ equal (knn3,1.5, x)
)

0.0257938 0.00565222

P
(

KNN3,1.5 ∩ X | equal (knn3,1.5, x)
)

0.0280226 0.00723873

P
(

KNN3,1.5 ∪ X
)

0.105319 0.224778

P (KNN3,1.5 ∩ unequal (knn3,1.5, x)) 0.0505976 0.170057
P (KNN3,1.5 | unequal (knn3,1.5, x)) 0.636305 0.776192

P
(

KNN3,1.5 ∩ unequal (knn3,1.5, x)
)

0.0289276 0.0490692

P
(

KNN3,1.5 | unequal (knn3,1.5, x)
)

0.363695 0.223808

P
(

KNN3,1.5 | X
)

0.432237 0.136492

P
(

equal (knn3,1.5, x) | KNN3,1.5 ∩ X
)

0.669689 0.210657

P
(

equal (knn3,1.5, x) | KNN3,1.5

)

0.471682 0.103575

P
(

equal (knn3,1.5, x) | X
)

0.289418 0.0287008

P (X ∩ unequal (knn3,1.5, x)) 0.0161908 0.0278413
P (X | unequal (knn3,1.5, x)) 0.203566 0.126984

P
(

X ∩ unequal (knn3,1.5, x)
)

0.0633343 0.191285

P
(

X | unequal (knn3,1.5, x)
)

0.796434 0.873016

P
(

X | KNN3,1.5

)

0.704359 0.491591

Y uleQ (KNN3,1.5, X) 0.953603 0.630109

TABLE 4.8 Error Correlation for k = 3, m = 1.5

61

Measure X → NN X → NN2

P
(

KNN3,2 ∩ X
)

0.0389567 0.0270467

P
(

KNN3,2 ∩ X ∩ unequal (knn3,2, x)
)

0.0127431 0.0213432

P
(

KNN3,2 ∩ X ∩ equal (knn3,2, x)
)

0.0262136 0.00570348

P
(

KNN3,2 ∩ X | equal (knn3,2, x)
)

0.0284462 0.0073003

P
(

KNN3,2 ∪ X
)

0.104688 0.224406

P (KNN3,2 ∩ unequal (knn3,2, x)) 0.0501714 0.16989
P (KNN3,2 | unequal (knn3,2, x)) 0.639465 0.776947

P
(

KNN3,2 ∩ unequal (knn3,2, x)
)

0.0283027 0.0488128

P
(

KNN3,2 | unequal (knn3,2, x)
)

0.360535 0.223053

P
(

KNN3,2 | X
)

0.437016 0.13734

P
(

equal (knn3,2, x) | KNN3,2 ∩ X
)

0.673056 0.21137

P
(

equal (knn3,2, x) | KNN3,2

)

0.481258 0.10498

P
(

equal (knn3,2, x) | X
)

0.294137 0.0289608

P (X ∩ unequal (knn3,2, x)) 0.0155596 0.0274696
P (X | unequal (knn3,2, x)) 0.198229 0.125523

P
(

X ∩ unequal (knn3,2, x)
)

0.0629145 0.191233

P
(

X | unequal (knn3,2, x)
)

0.801771 0.874477

P
(

X | KNN3,2

)

0.715013 0.496445

Y uleQ (KNN3,2, X) 0.956314 0.636367

TABLE 4.9 Error Correlation for k = 3, m = 2

62

Measure X → NN X → NN2

P
(

KNN3,2.5 ∩ X
)

0.039354 0.0272165

P
(

KNN3,2.5 ∩ X ∩ unequal (knn3,2.5, x)
)

0.0128617 0.0215034

P
(

KNN3,2.5 ∩ X ∩ equal (knn3,2.5, x)
)

0.0264924 0.0057131

P
(

KNN3,2.5 ∩ X | equal (knn3,2.5, x)
)

0.0287356 0.0073134

P
(

KNN3,2.5 ∪ X
)

0.10455 0.224496

P (KNN3,2.5 ∩ unequal (knn3,2.5, x)) 0.0497741 0.16972
P (KNN3,2.5 | unequal (knn3,2.5, x)) 0.637754 0.775891

P
(

KNN3,2.5 ∩ unequal (knn3,2.5, x)
)

0.0282835 0.0490628

P
(

KNN3,2.5 | unequal (knn3,2.5, x)
)

0.362246 0.224109

P
(

KNN3,2.5 | X
)

0.441473 0.138203

P
(

equal (knn3,2.5, x) | KNN3,2.5 ∩ X
)

0.673384 0.210336

P
(

equal (knn3,2.5, x) | KNN3,2.5

)

0.484054 0.104647

P
(

equal (knn3,2.5, x) | X
)

0.297271 0.02901

P (X ∩ unequal (knn3,2.5, x)) 0.0154218 0.0275594
P (X | unequal (knn3,2.5, x)) 0.197555 0.125882

P
(

X ∩ unequal (knn3,2.5, x)
)

0.0626358 0.191224

P
(

X | unequal (knn3,2.5, x)
)

0.802445 0.874118

P
(

X | KNN3,2.5

)

0.71884 0.497267

Y uleQ (KNN3,2.5, X) 0.957457 0.637608

TABLE 4.10 Error Correlation for k = 3, m = 2.5

63

Measure X → NN X → NN2

P
(

KNN5,1.2 ∩ X
)

0.0382197 0.0267807

P
(

KNN5,1.2 ∩ X ∩ unequal (knn5,1.2, x)
)

0.0124772 0.0212118

P
(

KNN5,1.2 ∩ X ∩ equal (knn5,1.2, x)
)

0.0257426 0.00556891

P
(

KNN5,1.2 ∩ X | equal (knn5,1.2, x)
)

0.0279818 0.00713481

P
(

KNN5,1.2 ∪ X
)

0.105764 0.225012

P (KNN5,1.2 ∩ unequal (knn5,1.2, x)) 0.0509084 0.170156
P (KNN5,1.2 | unequal (knn5,1.2, x)) 0.636175 0.775489

P
(

KNN5,1.2 ∩ unequal (knn5,1.2, x)
)

0.0291134 0.0492871

P
(

KNN5,1.2 | unequal (knn5,1.2, x)
)

0.363825 0.224511

P
(

KNN5,1.2 | X
)

0.428775 0.135994

P
(

equal (knn5,1.2, x) | KNN5,1.2 ∩ X
)

0.673705 0.208185

P
(

equal (knn5,1.2, x) | KNN5,1.2

)

0.469462 0.101682

P
(

equal (knn5,1.2, x) | X
)

0.288846 0.028282

P (X ∩ unequal (knn5,1.2, x)) 0.0166362 0.0280752
P (X | unequal (knn5,1.2, x)) 0.207906 0.127886

P
(

X ∩ unequal (knn5,1.2, x)
)

0.0633856 0.191368

P
(

X | unequal (knn5,1.2, x)
)

0.792094 0.872114

P
(

X | KNN5,1.2

)

0.696886 0.488518

Y uleQ (KNN5,1.2, X) 0.951643 0.626111

TABLE 4.11 Error Correlation for k = 5, m = 1.2

64

Measure X → NN X → NN2

P
(

KNN5,1.5 ∩ X
)

0.0389823 0.0265725

P
(

KNN5,1.5 ∩ X ∩ unequal (knn5,1.5, x)
)

0.0122272 0.020901

P
(

KNN5,1.5 ∩ X ∩ equal (knn5,1.5, x)
)

0.0267551 0.00567144

P
(

KNN5,1.5 ∩ X | equal (knn5,1.5, x)
)

0.0289711 0.00725074

P
(

KNN5,1.5 ∪ X
)

0.103249 0.223468

P (KNN5,1.5 ∩ unequal (knn5,1.5, x)) 0.0501458 0.170364
P (KNN5,1.5 | unequal (knn5,1.5, x)) 0.655565 0.782328

P
(

KNN5,1.5 ∩ unequal (knn5,1.5, x)
)

0.0263482 0.0474318

P
(

KNN5,1.5 | unequal (knn5,1.5, x)
)

0.344435 0.217672

P
(

KNN5,1.5 | X
)

0.437297 0.134935

P
(

equal (knn5,1.5, x) | KNN5,1.5 ∩ X
)

0.686594 0.213779

P
(

equal (knn5,1.5, x) | KNN5,1.5

)

0.504158 0.107097

P
(

equal (knn5,1.5, x) | X
)

0.300197 0.0288009

P (X ∩ unequal (knn5,1.5, x)) 0.0141209 0.0265308
P (X | unequal (knn5,1.5, x)) 0.184614 0.12175

P
(

X ∩ unequal (knn5,1.5, x)
)

0.062373 0.191265

P
(

X | unequal (knn5,1.5, x)
)

0.815386 0.87825

P
(

X | KNN5,1.5

)

0.734288 0.500764

Y uleQ (KNN5,1.5, X) 0.960318 0.640963

TABLE 4.12 Error Correlation for k = 5, m = 1.5

65

Measure X → NN X → NN2

P
(

KNN5,2 ∩ X
)

0.0400525 0.0271652

P
(

KNN5,2 ∩ X ∩ unequal (knn5,2, x)
)

0.0124323 0.0214425

P
(

KNN5,2 ∩ X ∩ equal (knn5,2, x)
)

0.0276202 0.00572271

P
(

KNN5,2 ∩ X | equal (knn5,2, x)
)

0.0298751 0.00731906

P
(

KNN5,2 ∪ X
)

0.103111 0.223807

P (KNN5,2 ∩ unequal (knn5,2, x)) 0.0490756 0.169772
P (KNN5,2 | unequal (knn5,2, x)) 0.650075 0.778591

P
(

KNN5,2 ∩ unequal (knn5,2, x)
)

0.0264155 0.048313

P
(

KNN5,2 | unequal (knn5,2, x)
)

0.349925 0.221409

P
(

KNN5,2 | X
)

0.449315 0.137948

P
(

equal (knn5,2, x) | KNN5,2 ∩ X
)

0.689824 0.211101

P
(

equal (knn5,2, x) | KNN5,2

)

0.511518 0.106243

P
(

equal (knn5,2, x) | X
)

0.309918 0.029061

P (X ∩ unequal (knn5,2, x)) 0.0139831 0.0268705
P (X | unequal (knn5,2, x)) 0.185277 0.123138

P
(

X ∩ unequal (knn5,2, x)
)

0.0615079 0.191214

P
(

X | unequal (knn5,2, x)
)

0.814723 0.876862

P
(

X | KNN5,2

)

0.74149 0.503069

Y uleQ (KNN5,2, X) 0.962567 0.644566

TABLE 4.13 Error Correlation for k = 5, m = 2

66

Measure X → NN X → NN2

P
(

KNN5,2.5 ∩ X
)

0.0407959 0.0275529

P
(

KNN5,2.5 ∩ X ∩ unequal (knn5,2.5, x)
)

0.0127015 0.0218142

P
(

KNN5,2.5 ∩ X ∩ equal (knn5,2.5, x)
)

0.0280945 0.00573873

P
(

KNN5,2.5 ∩ X | equal (knn5,2.5, x)
)

0.0303769 0.00734389

P
(

KNN5,2.5 ∪ X
)

0.103239 0.224291

P (KNN5,2.5 ∩ unequal (knn5,2.5, x)) 0.0483322 0.169384
P (KNN5,2.5 | unequal (knn5,2.5, x)) 0.64319 0.77516

P
(

KNN5,2.5 ∩ unequal (knn5,2.5, x)
)

0.0268128 0.0491685

P
(

KNN5,2.5 | unequal (knn5,2.5, x)
)

0.35681 0.22484

P
(

KNN5,2.5 | X
)

0.457651 0.139917

P
(

equal (knn5,2.5, x) | KNN5,2.5 ∩ X
)

0.688986 0.208758

P
(

equal (knn5,2.5, x) | KNN5,2.5

)

0.51214 0.104893

P
(

equal (knn5,2.5, x) | X
)

0.315235 0.0291414

P (X ∩ unequal (knn5,2.5, x)) 0.0141113 0.0273543
P (X | unequal (knn5,2.5, x)) 0.187832 0.125083

P
(

X ∩ unequal (knn5,2.5, x)
)

0.0610337 0.191198

P
(

X | unequal (knn5,2.5, x)
)

0.812168 0.874917

P
(

X | KNN5,2.5

)

0.743292 0.502171

Y uleQ (KNN5,2.5, X) 0.963469 0.643979

TABLE 4.14 Error Correlation for k = 5, m = 2.5

67

Measure X → NN X → NN2

P
(

KNN7,1.2 ∩ X
)

0.0385017 0.0266718

P
(

KNN7,1.2 ∩ X ∩ unequal (knn7,1.2, x)
)

0.0123618 0.021074

P
(

KNN7,1.2 ∩ X ∩ equal (knn7,1.2, x)
)

0.0261399 0.00559774

P
(

KNN7,1.2 ∩ X | equal (knn7,1.2, x)
)

0.0283716 0.00716624

P
(

KNN7,1.2 ∪ X
)

0.104806 0.224445

P (KNN7,1.2 ∩ unequal (knn7,1.2, x)) 0.0506264 0.170265
P (KNN7,1.2 | unequal (knn7,1.2, x)) 0.643518 0.778105

P
(

KNN7,1.2 ∩ unequal (knn7,1.2, x)
)

0.02804 0.0485821

P
(

KNN7,1.2 | unequal (knn7,1.2, x)
)

0.356482 0.221895

P
(

KNN7,1.2 | X
)

0.431944 0.135438

P
(

equal (knn7,1.2, x) | KNN7,1.2 ∩ X
)

0.679114 0.210039

P
(

equal (knn7,1.2, x) | KNN7,1.2

)

0.482658 0.103506

P
(

equal (knn7,1.2, x) | X
)

0.293296 0.0284273

P (X ∩ unequal (knn7,1.2, x)) 0.0156782 0.0275081
P (X | unequal (knn7,1.2, x)) 0.199302 0.125636

P
(

X ∩ unequal (knn7,1.2, x)
)

0.0629882 0.191339

P
(

X | unequal (knn7,1.2, x)
)

0.800698 0.874364

P
(

X | KNN7,1.2

)

0.710738 0.492697

Y uleQ (KNN7,1.2, X) 0.954953 0.631176

TABLE 4.15 Error Correlation for k = 7, m = 1.2

68

Measure X → NN X → NN2

P
(

KNN7,1.5 ∩ X
)

0.0396905 0.0268256

P
(

KNN7,1.5 ∩ X ∩ unequal (knn7,1.5, x)
)

0.0120542 0.021074

P
(

KNN7,1.5 ∩ X ∩ equal (knn7,1.5, x)
)

0.0276363 0.00575155

P
(

KNN7,1.5 ∩ X | equal (knn7,1.5, x)
)

0.0298791 0.00735168

P
(

KNN7,1.5 ∪ X
)

0.102717 0.223391

P (KNN7,1.5 ∩ unequal (knn7,1.5, x)) 0.0494377 0.170111
P (KNN7,1.5 | unequal (knn7,1.5, x)) 0.658385 0.781746

P
(

KNN7,1.5 ∩ unequal (knn7,1.5, x)
)

0.0256432 0.047528

P
(

KNN7,1.5 | unequal (knn7,1.5, x)
)

0.341615 0.218254

P
(

KNN7,1.5 | X
)

0.445257 0.136219

P
(

equal (knn7,1.5, x) | KNN7,1.5 ∩ X
)

0.696482 0.214721

P
(

equal (knn7,1.5, x) | KNN7,1.5

)

0.519 0.108277

P
(

equal (knn7,1.5, x) | X
)

0.310087 0.029208

P (X ∩ unequal (knn7,1.5, x)) 0.013589 0.0264539
P (X | unequal (knn7,1.5, x)) 0.181051 0.121474

P
(

X ∩ unequal (knn7,1.5, x)
)

0.0614919 0.191185

P
(

X | unequal (knn7,1.5, x)
)

0.818949 0.878526

P
(

X | KNN7,1.5

)

0.745137 0.503938

Y uleQ (KNN7,1.5, X) 0.963004 0.645145

TABLE 4.16 Error Correlation for k = 7, m = 1.5

69

Measure X → NN X → NN2

P
(

KNN7,2 ∩ X
)

0.041331 0.0277452

P
(

KNN7,2 ∩ X ∩ unequal (knn7,2, x)
)

0.0126085 0.0219552

P
(

KNN7,2 ∩ X ∩ equal (knn7,2, x)
)

0.0287225 0.00579

P
(

KNN7,2 ∩ X | equal (knn7,2, x)
)

0.0310188 0.00740779

P
(

KNN7,2 ∪ X
)

0.102765 0.22416

P (KNN7,2 ∩ unequal (knn7,2, x)) 0.0477971 0.169192
P (KNN7,2 | unequal (knn7,2, x)) 0.645506 0.774941

P
(

KNN7,2 ∩ unequal (knn7,2, x)
)

0.0262456 0.0491781

P
(

KNN7,2 | unequal (knn7,2, x)
)

0.354494 0.225059

P
(

KNN7,2 | X
)

0.463669 0.14089

P
(

equal (knn7,2, x) | KNN7,2 ∩ X
)

0.695115 0.209137

P
(

equal (knn7,2, x) | KNN7,2

)

0.522976 0.105744

P
(

equal (knn7,2, x) | X
)

0.322283 0.0294016

P (X ∩ unequal (knn7,2, x)) 0.0136371 0.0272229
P (X | unequal (knn7,2, x)) 0.184222 0.124577

P
(

X ∩ unequal (knn7,2, x)
)

0.0604057 0.191147

P
(

X | unequal (knn7,2, x)
)

0.815778 0.875423

P
(

X | KNN7,2

)

0.752292 0.505233

Y uleQ (KNN7,2, X) 0.96554 0.647934

TABLE 4.17 Error Correlation for k = 7, m = 2

70

Measure X → NN X → NN2

P
(

KNN7,2.5 ∩ X
)

0.0421064 0.028197

P
(

KNN7,2.5 ∩ X ∩ unequal (knn7,2.5, x)
)

0.0129674 0.0223461

P
(

KNN7,2.5 ∩ X ∩ equal (knn7,2.5, x)
)

0.029139 0.00585088

P
(

KNN7,2.5 ∩ X | equal (knn7,2.5, x)
)

0.0314648 0.00749097

P
(

KNN7,2.5 ∪ X
)

0.10306 0.224778

P (KNN7,2.5 ∩ unequal (knn7,2.5, x)) 0.0470217 0.16874
P (KNN7,2.5 | unequal (knn7,2.5, x)) 0.636136 0.770921

P
(

KNN7,2.5 ∩ unequal (knn7,2.5, x)
)

0.0268993 0.0501874

P
(

KNN7,2.5 | unequal (knn7,2.5, x)
)

0.363864 0.229079

P
(

KNN7,2.5 | X
)

0.472365 0.143182

P
(

equal (knn7,2.5, x) | KNN7,2.5 ∩ X
)

0.69233 0.207973

P
(

equal (knn7,2.5, x) | KNN7,2.5

)

0.520572 0.104861

P
(

equal (knn7,2.5, x) | X
)

0.32696 0.0297102

P (X ∩ unequal (knn7,2.5, x)) 0.0139319 0.0278413
P (X | unequal (knn7,2.5, x)) 0.188488 0.127071

P
(

X ∩ unequal (knn7,2.5, x)
)

0.0599891 0.191086

P
(

X | unequal (knn7,2.5, x)
)

0.811512 0.872929

P
(

X | KNN7,2.5

)

0.751835 0.50376

Y uleQ (KNN7,2.5, X) 0.966007 0.646686

TABLE 4.18 Error Correlation for k = 7, m = 2.5

71

Measure X → NN X → NN2

P
(

KNN9,1.2 ∩ X
)

0.0387356 0.0266398

P
(

KNN9,1.2 ∩ X ∩ unequal (knn9,1.2, x)
)

0.0122625 0.0210452

P
(

KNN9,1.2 ∩ X ∩ equal (knn9,1.2, x)
)

0.0264731 0.00559454

P
(

KNN9,1.2 ∩ X | equal (knn9,1.2, x)
)

0.0287088 0.0071606

P
(

KNN9,1.2 ∪ X
)

0.104364 0.224269

P (KNN9,1.2 ∩ unequal (knn9,1.2, x)) 0.0503925 0.170297
P (KNN9,1.2 | unequal (knn9,1.2, x)) 0.646862 0.778866

P
(

KNN9,1.2 ∩ unequal (knn9,1.2, x)
)

0.0274985 0.0483771

P
(

KNN9,1.2 | unequal (knn9,1.2, x)
)

0.353138 0.221134

P
(

KNN9,1.2 | X
)

0.434569 0.135277

P
(

equal (knn9,1.2, x) | KNN9,1.2 ∩ X
)

0.683577 0.210173

P
(

equal (knn9,1.2, x) | KNN9,1.2

)

0.490625 0.103841

P
(

equal (knn9,1.2, x) | X
)

0.297027 0.0284107

P (X ∩ unequal (knn9,1.2, x)) 0.015236 0.0273319
P (X | unequal (knn9,1.2, x)) 0.195624 0.124929

P
(

X ∩ unequal (knn9,1.2, x)
)

0.062655 0.191342

P
(

X | unequal (knn9,1.2, x)
)

0.804376 0.875071

P
(

X | KNN9,1.2

)

0.717746 0.493998

Y uleQ (KNN9,1.2, X) 0.956641 0.632744

TABLE 4.19 Error Correlation for k = 9, m = 1.2

72

Measure X → NN X → NN2

P
(

KNN9,1.5 ∩ X
)

0.0404755 0.0272486

P
(

KNN9,1.5 ∩ X ∩ unequal (knn9,1.5, x)
)

0.0121375 0.0214009

P
(

KNN9,1.5 ∩ X ∩ equal (knn9,1.5, x)
)

0.028338 0.00584767

P
(

KNN9,1.5 ∩ X | equal (knn9,1.5, x)
)

0.0306142 0.00747691

P
(

KNN9,1.5 ∪ X
)

0.102704 0.22374

P (KNN9,1.5 ∩ unequal (knn9,1.5, x)) 0.0486526 0.169688
P (KNN9,1.5 | unequal (knn9,1.5, x)) 0.654171 0.778895

P
(

KNN9,1.5 ∩ unequal (knn9,1.5, x)
)

0.0257137 0.048204

P
(

KNN9,1.5 | unequal (knn9,1.5, x)
)

0.345829 0.221105

P
(

KNN9,1.5 | X
)

0.454045 0.138367

P
(

equal (knn9,1.5, x) | KNN9,1.5 ∩ X
)

0.700367 0.215016

P
(

equal (knn9,1.5, x) | KNN9,1.5

)

0.524622 0.108525

P
(

equal (knn9,1.5, x) | X
)

0.317958 0.0296957

P (X ∩ unequal (knn9,1.5, x)) 0.0135762 0.0268032
P (X | unequal (knn9,1.5, x)) 0.182628 0.122939

P
(

X ∩ unequal (knn9,1.5, x)
)

0.0607902 0.191089

P
(

X | unequal (knn9,1.5, x)
)

0.817372 0.877061

P
(

X | KNN9,1.5

)

0.749032 0.504475

Y uleQ (KNN9,1.5, X) 0.964318 0.646339

TABLE 4.20 Error Correlation for k = 9, m = 1.5

73

Measure X → NN X → NN2

P
(

KNN9,2 ∩ X
)

0.0425935 0.0284309

P
(

KNN9,2 ∩ X ∩ unequal (knn9,2, x)
)

0.012977 0.0224743

P
(

KNN9,2 ∩ X ∩ equal (knn9,2, x)
)

0.0296165 0.00595662

P
(

KNN9,2 ∩ X | equal (knn9,2, x)
)

0.0319644 0.00762808

P
(

KNN9,2 ∪ X
)

0.103082 0.225054

P (KNN9,2 ∩ unequal (knn9,2, x)) 0.0465347 0.168506
P (KNN9,2 | unequal (knn9,2, x)) 0.633476 0.769242

P
(

KNN9,2 ∩ unequal (knn9,2, x)
)

0.0269313 0.0505912

P
(

KNN9,2 | unequal (knn9,2, x)
)

0.366524 0.230758

P
(

KNN9,2 | X
)

0.477828 0.14437

P
(

equal (knn9,2, x) | KNN9,2 ∩ X
)

0.695603 0.209983

P
(

equal (knn9,2, x) | KNN9,2

)

0.524335 0.105726

P
(

equal (knn9,2, x) | X
)

0.332328 0.0302471

P (X ∩ unequal (knn9,2, x)) 0.0139543 0.0281169
P (X | unequal (knn9,2, x)) 0.189935 0.128241

P
(

X ∩ unequal (knn9,2, x)
)

0.0595117 0.19098

P
(

X | unequal (knn9,2, x)
)

0.810065 0.871759

P
(

X | KNN9,2

)

0.753677 0.5032

Y uleQ (KNN9,2, X) 0.966663 0.646337

TABLE 4.21 Error Correlation for k = 9, m = 2

74

Measure X → NN X → NN2

P
(

KNN9,2.5 ∩ X
)

0.0435163 0.0289756

P
(

KNN9,2.5 ∩ X ∩ unequal (knn9,2.5, x)
)

0.0133679 0.0229645

P
(

KNN9,2.5 ∩ X ∩ equal (knn9,2.5, x)
)

0.0301484 0.00601109

P
(

KNN9,2.5 ∩ X | equal (knn9,2.5, x)
)

0.032536 0.00770549

P
(

KNN9,2.5 ∪ X
)

0.103541 0.22589

P (KNN9,2.5 ∩ unequal (knn9,2.5, x)) 0.0456118 0.167961
P (KNN9,2.5 | unequal (knn9,2.5, x)) 0.621574 0.764045

P
(

KNN9,2.5 ∩ unequal (knn9,2.5, x)
)

0.0277804 0.0519177

P
(

KNN9,2.5 | unequal (knn9,2.5, x)
)

0.378426 0.235955

P
(

KNN9,2.5 | X
)

0.488196 0.147135

P
(

equal (knn9,2.5, x) | KNN9,2.5 ∩ X
)

0.693073 0.207912

P
(

equal (knn9,2.5, x) | KNN9,2.5

)

0.521074 0.104182

P
(

equal (knn9,2.5, x) | X
)

0.338308 0.030523

P (X ∩ unequal (knn9,2.5, x)) 0.0144125 0.0289532
P (X | unequal (knn9,2.5, x)) 0.19635 0.131578

P
(

X ∩ unequal (knn9,2.5, x)
)

0.0589798 0.190926

P
(

X | unequal (knn9,2.5, x)
)

0.80365 0.868422

P
(

X | KNN9,2.5

)

0.751716 0.500679

Y uleQ (KNN9,2.5, X) 0.966964 0.644044

TABLE 4.22 Error Correlation for k = 9, m = 2.5

75

Measure X → NN X → NN2

P
(

KNN11,1.2 ∩ X
)

0.0389151 0.0266814

P
(

KNN11,1.2 ∩ X ∩ unequal (knn11,1.2, x)
)

0.0122497 0.0210548

P
(

KNN11,1.2 ∩ X ∩ equal (knn11,1.2, x)
)

0.0266654 0.00562658

P
(

KNN11,1.2 ∩ X | equal (knn11,1.2, x)
)

0.0289022 0.00719993

P
(

KNN11,1.2 ∪ X
)

0.104073 0.224115

P (KNN11,1.2 ∩ unequal (knn11,1.2, x)) 0.0502131 0.170255
P (KNN11,1.2 | unequal (knn11,1.2, x)) 0.648626 0.779331

P
(

KNN11,1.2 ∩ unequal (knn11,1.2, x)
)

0.0271941 0.0482329

P
(

KNN11,1.2 | unequal (knn11,1.2, x)
)

0.351374 0.220669

P
(

KNN11,1.2 | X
)

0.436586 0.135489

P
(

equal (knn11,1.2, x) | KNN11,1.2 ∩ X
)

0.685449 0.211061

P
(

equal (knn11,1.2, x) | KNN11,1.2

)

0.495308 0.104638

P
(

equal (knn11,1.2, x) | X
)

0.299197 0.0285737

P (X ∩ unequal (knn11,1.2, x)) 0.0149444 0.0271781
P (X | unequal (knn11,1.2, x)) 0.193052 0.124337

P
(

X ∩ unequal (knn11,1.2, x)
)

0.0624628 0.19131

P
(

X | unequal (knn11,1.2, x)
)

0.806948 0.875663

P
(

X | KNN11,1.2

)

0.722627 0.495756

Y uleQ (KNN11,1.2, X) 0.957811 0.634983

TABLE 4.23 Error Correlation for k = 11, m = 1.2

76

Measure X → NN X → NN2

P
(

KNN11,1.5 ∩ X
)

0.041033 0.0275081

P
(

KNN11,1.5 ∩ X ∩ unequal (knn11,1.5, x)
)

0.0122657 0.0216668

P
(

KNN11,1.5 ∩ X ∩ equal (knn11,1.5, x)
)

0.0287673 0.00584126

P
(

KNN11,1.5 ∩ X | equal (knn11,1.5, x)
)

0.0310628 0.00747138

P
(

KNN11,1.5 ∪ X
)

0.102679 0.224012

P (KNN11,1.5 ∩ unequal (knn11,1.5, x)) 0.0480951 0.169429
P (KNN11,1.5 | unequal (knn11,1.5, x)) 0.650714 0.776708

P
(

KNN11,1.5 ∩ unequal (knn11,1.5, x)
)

0.0258163 0.0487423

P
(

KNN11,1.5 | unequal (knn11,1.5, x)
)

0.349286 0.223292

P
(

KNN11,1.5 | X
)

0.460317 0.139689

P
(

equal (knn11,1.5, x) | KNN11,1.5 ∩ X
)

0.701287 0.21273

P
(

equal (knn11,1.5, x) | KNN11,1.5

)

0.527457 0.10733

P
(

equal (knn11,1.5, x) | X
)

0.322798 0.0296646

P (X ∩ unequal (knn11,1.5, x)) 0.0135506 0.0270755
P (X | unequal (knn11,1.5, x)) 0.183382 0.12403

P
(

X ∩ unequal (knn11,1.5, x)
)

0.0603608 0.191096

P
(

X | unequal (knn11,1.5, x)
)

0.816618 0.87597

P
(

X | KNN11,1.5

)

0.752079 0.504327

Y uleQ (KNN11,1.5, X) 0.965286 0.64654

TABLE 4.24 Error Correlation for k = 11, m = 1.5

77

Measure X → NN X → NN2

P
(

KNN11,2 ∩ X
)

0.0433881 0.0288987

P
(

KNN11,2 ∩ X ∩ unequal (knn11,2, x)
)

0.0132013 0.0229036

P
(

KNN11,2 ∩ X ∩ equal (knn11,2, x)
)

0.0301868 0.00599507

P
(

KNN11,2 ∩ X | equal (knn11,2, x)
)

0.032568 0.00768242

P
(

KNN11,2 ∪ X
)

0.103304 0.225602

P (KNN11,2 ∩ unequal (knn11,2, x)) 0.04574 0.168038
P (KNN11,2 | unequal (knn11,2, x)) 0.625766 0.765325

P
(

KNN11,2 ∩ unequal (knn11,2, x)
)

0.0273767 0.0515685

P
(

KNN11,2 | unequal (knn11,2, x)
)

0.374234 0.234675

P
(

KNN11,2 | X
)

0.486769 0.146747

P
(

equal (knn11,2, x) | KNN11,2 ∩ X
)

0.696067 0.207802

P
(

equal (knn11,2, x) | KNN11,2

)

0.52517 0.104465

P
(

equal (knn11,2, x) | X
)

0.338757 0.0304443

P (X ∩ unequal (knn11,2, x)) 0.0141754 0.0286648
P (X | unequal (knn11,2, x)) 0.193787 0.13044

P
(

X ∩ unequal (knn11,2, x)
)

0.0589413 0.190942

P
(

X | unequal (knn11,2, x)
)

0.806213 0.86956

P
(

X | KNN11,2

)

0.75436 0.502484

Y uleQ (KNN11,2, X) 0.967335 0.646168

TABLE 4.25 Error Correlation for k = 11, m = 2

78

Measure X → NN X → NN2

P
(

KNN11,2.5 ∩ X
)

0.0443366 0.0295171

P
(

KNN11,2.5 ∩ X ∩ unequal (knn11,2.5, x)
)

0.0136435 0.023474

P
(

KNN11,2.5 ∩ X ∩ equal (knn11,2.5, x)
)

0.0306931 0.00604313

P
(

KNN11,2.5 ∩ X | equal (knn11,2.5, x)
)

0.0331204 0.00775349

P
(

KNN11,2.5 ∪ X
)

0.103976 0.226605

P (KNN11,2.5 ∩ unequal (knn11,2.5, x)) 0.0447916 0.16742
P (KNN11,2.5 | unequal (knn11,2.5, x)) 0.611444 0.759227

P
(

KNN11,2.5 ∩ unequal (knn11,2.5, x)
)

0.0284918 0.0531417

P
(

KNN11,2.5 | unequal (knn11,2.5, x)
)

0.388556 0.240773

P
(

KNN11,2.5 | X
)

0.497411 0.149888

P
(

equal (knn11,2.5, x) | KNN11,2.5 ∩ X
)

0.692635 0.205088

P
(

equal (knn11,2.5, x) | KNN11,2.5

)

0.519418 0.102454

P
(

equal (knn11,2.5, x) | X
)

0.344442 0.0306882

P (X ∩ unequal (knn11,2.5, x)) 0.0148483 0.0296677
P (X | unequal (knn11,2.5, x)) 0.202507 0.134407

P
(

X ∩ unequal (knn11,2.5, x)
)

0.0584351 0.190894

P
(

X | unequal (knn11,2.5, x)
)

0.797493 0.865593

P
(

X | KNN11,2.5

)

0.749795 0.499261

Y uleQ (KNN11,2.5, X) 0.967209 0.643089

TABLE 4.26 Error Correlation for k = 11, m = 2.5

79

K M
Accuracy Errors

Raw Voting Corrected Introduced Fraction Reduced

1 1.2 0.93822 0.951959 0.0160146 0.00227498 22.2395 %
1 1.5 0.93822 0.951959 0.0160146 0.00227498 22.2395 %
1 2 0.93822 0.951959 0.0160146 0.00227498 22.2395 %
1 2.5 0.93822 0.951959 0.0160146 0.00227498 22.2395 %
3 1.2 0.94293 0.953065 0.0123458 0.0022109 17.7587 %
3 1.5 0.945279 0.95336 0.0102438 0.00216284 14.7675 %
3 2 0.945484 0.953132 0.0097536 0.00210516 14.0296 %
3 2.5 0.945224 0.952786 0.00964145 0.00207953 13.8052 %
5 1.2 0.945144 0.953616 0.0106508 0.00217886 15.4439 %
5 1.5 0.946897 0.95359 0.00874748 0.00205389 12.6048 %
5 2 0.945964 0.952581 0.00859688 0.0019802 12.245 %
5 2.5 0.945093 0.951802 0.00866417 0.00195456 12.2199 %
7 1.2 0.94582 0.953574 0.00991381 0.00215963 14.3119 %
7 1.5 0.94672 0.952994 0.00827966 0.00200583 11.7753 %
7 2 0.945032 0.951347 0.00826044 0.00194495 11.4894 %
7 2.5 0.943962 0.950447 0.00840142 0.00191611 11.573 %
9 1.2 0.946028 0.953449 0.00956775 0.00214682 13.7497 %
9 1.5 0.945948 0.952219 0.00820597 0.00193534 11.6012 %
9 2 0.943452 0.95005 0.00843026 0.0018328 11.667 %
9 2.5 0.942071 0.948944 0.0086898 0.00181678 11.8646 %

11 1.2 0.946141 0.953363 0.00932423 0.00210196 13.4095 %
11 1.5 0.945416 0.951706 0.00818995 0.00190009 11.5233 %
11 2 0.942436 0.949108 0.00847192 0.00180076 11.5892 %
11 2.5 0.940815 0.947935 0.00890448 0.00178474 12.0297 %

TABLE 4.27 Fuzzy-KNN Accuracy

80

Network Accuracy

NN 0.910872
NN2 0.803063

TABLE 4.28 NN Accuracy

81

Measure Value

P
(

NN ∩ NN2
)

0.0403025

P
(

NN ∩ NN2 ∩ unequal (nn, nn2)
)

0.0335736

P
(

NN ∩ NN2 ∩ equal (nn, nn2)
)

0.00672883

P
(

NN ∩ NN2 | equal (nn, nn2)
)

0.00884197

P
(

NN ∪ NN2
)

0.245762

P (NN ∩ unequal (nn, nn2)) 0.156634
P (NN | unequal (nn, nn2)) 0.655316

P
(

NN ∩ unequal (nn, nn2)
)

0.0823993

P
(

NN | unequal (nn, nn2)
)

0.344684

P
(

NN | NN2
)

0.204636

P
(

equal (nn, nn2) | NN ∩ NN2
)

0.167133

P
(

equal (nn, nn2) | NN
)

0.0755615

P
(

equal (nn, nn2) | NN2
)

0.034168

P (NN2 ∩ unequal (nn, nn2)) 0.0488257
P (NN2 | unequal (nn, nn2)) 0.20424

P
(

NN2 ∩ unequal (nn, nn2)
)

0.190208

P
(

NN2 | unequal (nn, nn2)
)

0.79576

P
(

NN2 | NN
)

0.452173

Y uleQ (NN, NN2) 0.597788

TABLE 4.29 Neural Network Error Correlation

82

4.6 Implementation Results

4.6.1 Hardware Configuration

The classifiers were trained and tested on a Linux beowulf cluster. The cluster con-

sisted of 61 individual nodes connected by a gigabit network with a total of 122 2.4

GHz Intel Xeon processors and a total of 64 GB RAM. The cluster is further described

in [21].

4.6.2 Software

The training and testing algorithms both utilized a master-worker model. For train-

ing, each worker was responsible for training a single neural-network or fuzzy-knn

instance. As described in Section 4.3, each of the 10 neural-network-based and fuzzy-

knn-based classifiers consisted of an average of 129.8 neural-networks or fuzzy-knn

instances, for an average total of 1298 neural-networks. In addition, there were an

average of 1298 fuzzy-knn instances per (k, m) pair, of which there were 24. This

yielded a total of 31152 fuzzy-knn instances. Each classifier was trained on a separate

cpu.

83

Chapter 5

CONCLUSION

A feature-set based on Fourier Descriptors was developed. The features employed a

new method for handling images which contain multiple curves. In addition, a set

of software components were developed which allow these features to be extracted

from an image and used for classification. The feature extraction software was made

available as an extension to the Gamera open-source document processing framework.

Two classifiers were implemented using the feature-set, one based on a fuzzy-knn

and the other based on a neural-network. In addition, software was developed for

training and testing the classifiers in parallel on a beowulf cluster. The software was

used to evaluate the classifier performance on a data set containing newsprint. The

fuzzy-knn classifier was tested using a range of parameter values in order to determine

their optimal values. The neural-network classifier was made available through the

python api in the Gamera system.

The classifier test results were analyzed in order to determine not only the accuracy

of each individual classifier but also the degree to which its errors are correlated with

those made by other classifiers. The performance of the fuzzy-knn and neural-network

classifiers based on the features investigated in this paper were compared to each other

84

as well as to a third neural-network classifier which used an unrelated feature set.

Lastly, the three classifiers were combined using weighted voting in order to obtain

an overall improvement in generalization accuracy.

5.1 Future Directions

There are a number of areas where this work could be extended. The method used

for combining the Fourier Descriptors from multiple image curves is not rotation

invariant. It may be possible to produce a version of it which has this property. In

addition, the work presented in this paper applies only to bi-tonal images which has

the drawback that it is susceptible to noise introduced during the binarization process.

In principle, the methods could be generalized to operate on gray-scale images which

would effectively eliminate binarization noise.

The two-layer neural networks investigated in this paper were chosen so that the

nodes in the hidden layer were fully connected to both the input and output nodes. It

may be fruitful to investigate other architectures. In particular, architectures which

are derived from the image signature may be able to take advantage of relationships

between elements of the feature vector in order to improve training and/or general-

ization performance.

85

REFERENCES

[1] A. Khotanzad, Y.H. Hong, Invariant image recognition by Zernike moments,
IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990) 489-497.

[2] C.-S. Lin and C.-L. Hwang. New Forms of Shape Invariants from Elliptic Fourier

Descriptors. Pattern Recognition, 20(5):535–545, 1987.

[3] C. T. Zahn and R. Z. Roskies. Fourier descriptors for plane closed curves. IEEE
Transactions on Computers, 1972.

[4] Evelyn Fix and Joseph L. Hodges, Jr. Discriminatory analysis: Nonparamet-
ric discrimination: Consistency properties. USAF School of Aviation Medicine,
4:261-279, 1951.

[5] Evelyn Fix and Joseph L. Hodges, Jr. Discriminatory analysis: Nonparametric
discrimination: Small sample performance. USAF School of Aviation Medicine,
11:280-322, 1952.

[6] F.P. Kuhl and Ch.R. Giardina, Elliptic Fourier Features of a Closed Contour,
CGIP 18, 236-258 (1982)

[7] G. H. Granlund, Fourier preprocessing for hand print character recognition IEEE
Trans. Comput., vol. C-21, pp. 195–201, 1972.

[8] G. U. Yule. On the association of attributes in statistics. Phil. Trans., A, 194:257-
319, 1900.

[9] P C Hew. Geometric and Zernike Moments. Diary, Department of Mathematics,
The University of Western Aus-
tralia, http://maths.uwa.edu.au/~phew/postgrad/diaries/geozermom.ps.Z, Oc-
tober 1996.

[10] J. Flusser, T. Suk, Pattern recognition by affine moment invariants, Pattern
Recognition 26 (1993) 167–174.

[11] J. Keller, M. R. Gary, and J. A. Givens. A fuzzy K-nearest neighbor algorithm.
IEEE Trans. Systems, Man, Cybernetics, Vol. SMC-15, No. 4, pp. 580-585, 1985.

[12] L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, Limits on the Majority Vote Accuracy

in Classifier Fusion. Pattern Analysis and Applications, 6, 2003, 22-31.

86

[13] M. K. Hu, Visual pattern recognition by moment invariants, IEEE Trans. Inform.
Theory, vol. 8, pp. 179-187, Feb. 1962.

[14] O. Trier and A. Jain and T. Taxt, Feature extraction methods for character

recognition - A survey. Pattern Recognition 29, pp. 641-662, 1996.

[15] T. Pavlidis. A vectorizer and feature extractor for document recognition. Compt.
Vision Graphics Image Process. Vol. 35, Issue 1, 111-127, 1986.

[16] Rakesh Agrawal and Christos Faloutsos and Arun N. Swami, Efficient Similarity

Search In Sequence Databases. Proceedings of the 4th International Conference
of Foundations of Data Organization and Algorithms, Chicago, Illinois: Springer
Verlag, pp. 69–84, 1993.

[17] R. L. Cosgriff, ”Identification of shape,” Ohio State Univ. Res. Foundation,
Columbus, OH, Tech. Rep. ASTIA AD 254-792, Dec. 1960.

[18] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification. New York: John
Wiley & Sons, 2001.

[19] T. H. Reiss, The Revised Fundamental Theorem of Moment Invariants, IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 830-834,
Aug. 1991.

[20] Y. Rui and A. She and T. Huang, Modified fourier descriptors for shape repre-

sentation – a practical approach. Proc of First International Workshop on Image
Databases and Multi Media Search., 1996.

[21] Beowulf Cluster Lab.
http://cs.boisestate.edu/~amit/research/beowulf/

[22] Michael Droettboom, Ichiro Fujinaga and Karl MacMillian. The Gamera Project.
http://dkc.jhu.edu/gamera/

[23] The Python Programming Language.
http://www.python.org/

